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Abstract

We present a graph-theoretic model of discourse based on the
Questions Under Discussion (QUD) framework. Questions
and assertions are treated as edges connecting discourse states
in a rooted graph, modeling the introduction and resolution
of various QUDs as paths through this graph. The amount
of common ground presupposed by interlocutors at any given
point in a discourse corresponds to graphical depth. We intro-
duce a new task-oriented dialogue corpus and show that ex-
perts, presuming a richer common ground, initiate discourse
at a deeper level than novices. The QUD-graph model thus
enables us to quantify the experthood of a speaker relative
to a fixed domain and to characterize the ways in which rich
common ground facilitates more efficient communication.

1 Introduction

The presuppositions of a speaker’s utterance are often a rich
source of insights into her understanding of the context —
what she assumes to be mutual knowledge of the discourse
participants, what she regards as the current goals, what
kinds of information she regards as relevant to those goals,
and so forth. These inferences are an important part of ro-
bust utterance understanding and thus vital for research in
linguistic pragmatics and artificial intelligence (Thomason
1990; Stone, Thomason, and DeVault 2007).

In this paper, we present a method for deriving (some of)
these inferences based on a speaker’s utterances and a par-
tial understanding of the context. We begin from the notion
that discourse is collaborative inquiry into the state of the
world (Stalnaker 1974; 1998; 2002). This inquiry is guided
by a partially ordered set of abstract questions under dis-
cussion (QUDs), which determine what is relevant, help to
define the domain of discourse, and influence the common
ground (Groenendijk and Stokhof 1984; Groenendijk 1999;
Ginzburg 1996; Roberts 1996; Cooper and Larsson 2001;
Roberts 2004; Büring 1999; Büring 2003; Stone 2002;
van Rooy 2003).

In very well organized (idealized) inquiry, the participants
begin from the most general questions and then move sys-
tematically to the most specific ones. For example, if A is
trying to find out where B would like to vacation, A should
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first resolve whether B would like to go to Europe before in-
quiring about specific European countries. If, and only if, A
and B arrive jointly at a positive resolution of the Europe
question should they press on to inquire about Germany,
Hungary, and so forth.

Of course, most discourse does not march from general to
specific in this transparent way. Speakers often begin with
very specific questions; A might in fact begin the vacation
discussion by asking which of Germany or Hungary they
should visit. In such cases, the speaker presupposes that the
more general issues have already been settled, or else acts as
though the addressee will accommodate resolutions of those
more general issues that make sense given the specific ques-
tion posed. Where it works, this can be an efficient strategy
of inquiry, allowing the participants to resolve many issues
at once. Where it fails, it leads to confusion and a rapid
retreat back to more general issues.

We present a formal model of these accommodation pro-
cesses. Questions and assertions are treated as edges in
a rooted graph, connecting potential discourse states. The
edges thus model the introduction and resolution of various
QUDs. The information that a speaker presupposes with an
utterance U can be characterized via the position of U in
the QUD graph, and the amount of information presupposed
with U is given by its depth in the QUD-graph.

To evaluate this proposal, we introduce a new task-
oriented dialogue corpus that represents not only the partici-
pants’ utterances, but also their goals and actions, thereby al-
lowing us to precisely model the context of utterance at any
stage of play. In particular, if a player poses or addresses
a task-oriented question Q, then we can identify where Q
sits in the QUD-graph determined by the nature of the task,
which provides an estimate of the amount and kind of infor-
mation contributed by Q. We show that expert players tend
to initiate discourse at greater depth in the QUD graph than
do novices. This behavior is explicable in terms of the as-
sumption that experts are more likely to presume rich com-
mon ground than novices, which allows them to bypass gen-
eral questions in favor of more specific ones.

2 The QUD model

We now develop a graph-theoretic model of discourse,
which we refer to as the QUD graph model. This model
is based on those of Roberts (1996), Ginzburg (1996) Groe-
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nendijk (1999), and Büring (2003), though we have made
various simplifications and modifications. The intuitive idea
is that any discourse can be viewed as a sequence of ques-
tions and their answers, all of which address sub-issues of
the current topic of conversation, until all such issues are ex-
haustively resolved. At any point in the discourse, there is
a current QUD, which interlocutors attempt to resolve, ei-
ther directly or by tackling a series of sub-questions, whose
answers, taken together, fully resolve that QUD. The over-
arching topic of conversation can be viewed as a (typically
quite general) question, e.g., What is the state of the world?,
and all moves in a discourse are in the service of resolving
its sub-questions.

To make this precise, we assume a possible-worlds frame-
work. Our most basic discourse notion is the common
ground, which includes vast quantities of basic world knowl-
edge as well as information about the public commitments
of the discourse participants, the salience of various objects,
a record of previous utterance events, and so forth.

Definition 1 (Common ground). Let W be a set of possible
worlds and D a set of discourse participants. The common
ground for D is the subset of W in which all and only the
public commitments of all the individuals in D are true.

A question is a partition on W . Intuitively, each cell of the
partition is a complete resolution of the issue (Groenendijk
and Stokhof 1984). For example, if p is the proposition that
it is raining, then R = {p,W−p} is the question of whether
it is raining. The question of what the weather is like corre-
sponds to the set of propositions C = {p, q, r, . . .}, where
p is the proposition that it raining (and nothing else), q is
the proposition that it is snowing (and nothing else), r is the
proposition that it is hailing (and nothing else), and so on for
all the mutually exclusive weather propositions.

We say that Q1 is a sub-question of Q2 relative to com-
mon ground CG iff every complete answer to Q1 in CG ex-
cludes (at least) some possible answers to Q2 (Groenendijk
and Stokhof 1984; 1997; van Rooy 2003):

Definition 2 (Contextual sub-question). Q1 is a sub-
question of Q2 relative to CG , written Q1 �CG Q2, iff
∀p ∈ Q1, ∃q ∈ Q2 such that CG ∩ (p ∩ q) = ∅.

Even without the contextual relativization, the question
R = {p,W−p} (is it raining?) is a subquestion of C =
{p, q, r, . . .} (what is the weather like?): p ∈ R excludes
all of q, r, . . . ∈ C, and W−p ∈ R excludes p ∈ C. We
see the effects of contextual relativization when we look at
more complex interactions. For example, the question of
whether it is summer, S = {s,W−s}, will not generally be
a sub-question of C, but if the common ground entails that
rain implies winter and hail implies summer, then we have
S �CG C, because s contextually excludes rain and W−s
contextually excludes hail.

The common ground and the QUD are essential to the
flow of discourse at all points, so we define discourse states
in terms of them:

Definition 3 (Discourse state). Let W be a set of possible
worlds and D a set of discourse participants. A discourse
state is a pair 〈CG ,QUD〉 where CG is a common ground

defined in terms of D and W (def. 1) and QUD is a partition
on W .

Equipped with these ancillary notions, we define a QUD
graph as a graph whose vertices are discourse states and
whose edges represent assertions and questions:
Definition 4 (QUD Graph). A QUD graph is a directed
graph G = 〈V,A,Q〉, where V a set of discourse states (ver-
tices); A is a set of edges corresponding to answers; and Q
is a set of edges corresponding to questions. Then for any
two states m and n,

1. mQn iff CGm = CGn and QUDm �CGm QUDn

2. mAn iff CGm ⊃ CGn and QUDm is the closest unre-
solved QUD in the path from m to the root node.

Question-edges relate two states (mQn) iff the first con-
tains a sub-question of the second. Answer-edges relate two
states (mAn) iff the QUD of the first is (at least partially) an-
swered by the common ground of the second and the QUD
of the second is constrained to be the closest unresolved
question in the graph.

As we discussed above, speakers will typically not obey
the strict structure of such a QUD graph in terms of their
actual utterances. However, their utterances will indicate
where in the graph they currently take themselves to be in
the discourse, and they will expect the other discourse par-
ticipants to reason in terms of the graph, by quietly resolving
super-questions in a way that delivers sensible results for the
sub-questions they pose, and by properly relating assertions
to the corresponding QUDs. Thus, the length of the short-
est path between two explicit moves can serve as a measure
of how far the interlocutors have progressed in a given dis-
course with respect to resolving a QUD, and, indirectly, how
much knowledge they take to be in the CG.

3 Experiment

We now present our evaluation of the QUD-graph model.
We first introduce the Cards corpus and describe the ad-
ditional annotations that were used to construct the Cards
graph, a QUD-graph informed by the structure of the task.
We then show that experts leave more information implicit
than do novices, which is expected in our model, since ex-
perts have richer common ground to rely on.

3.1 The Cards corpus

The Cards corpus is built around a Web-based, two-person
collaborative search task, partly inspired by similar efforts
(Thompson et al. 1993; Allen et al. 1996; Stoia et al. 2008).
The game-world consists of a maze-like environment in
which a deck of cards has been randomly distributed. The
players are placed in random initial positions and explore us-
ing keyboard input. A chat window allows them to exchange
information and make decisions together. Each player can
see his own location, but the location of the cards and the
other player are limited by distance and line-of-sight. Play-
ers can pick up and drop cards, but they can hold at most
three cards at a time. In addition, while most of the walls
are visible, some appear to a player only when within that
player’s line-of-sight.
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You are on 2DYellow boxes mark cards 
in your line of sight

Task description: Six 
consecutive cards of 

the same suit

TYPE HERE

The cards you are holding
Move with the arrow keys or 

these buttons

Figure 1: A annotated version of the Cards game-board.

When players sign on, they are presented with the follow-
ing underspecified task description:

Gather six consecutive cards of a particular suit (decide
which suit together), or determine that this is impossi-
ble. Each of you can hold only three cards at a time, so
you’ll have to coordinate your efforts. You can talk all
you want, but you can make only a limited number of
moves.

The players must decide together, via the chat interface,
which sequence to choose, which they usually do based on
initial random exploration. The following is a typical ex-
change right after this initial phase:

P1: I have 9 clubs and K clubs
P1: want to look for clubs?
P2: ok

In this transcript, the players then find various clubs, check-
ing with each other frequently, until they gain an implicit
understanding of which specific sequences to try for (either
8C-KC or 9C-AC):

P1: so you are holding Jc and Kc now?
P2: i now have 10d JC and KC
P2: yes
P1: drop 10d and look for either 8c or Ace of clubs
This snippet also highlights the value of limiting the play-

ers to holding three cards at a time: they are compelled to
share information about the locations of cards, and their so-
lutions are necessarily collaborative.

In some versions of the game, there are sub-regions of the
environment that are walled off. This can make the game

unsolvable: required cards might be unreachable by one or
both of the players. This led to different kinds of collabo-
ration, in which players shared extensive information about
the nature of the game-board in order to jointly arrive at the
verdict of impossibility. In the following snippet, the players
have already divided up the task of searching out the remain-
ing possible solutions:

P1: i see nothing in my colors. do you see any in yours?
P2: don’t think so – double check hearts for me, ok?
P1: ok
P1: i don’t see it
P1: so unsolvable
P2: unsolveable, agree?

The corpus consists of 439 transcripts. Each transcript
records not only the chat history, but also the initial state
of the environment and all the players’ actions (with tim-
ing information) throughout the game, which permits us to
replay the games with perfect fidelity. In all, the corpus con-
tains 12,280 utterances (mean length: 5.28 words), totaling
64,900 words, with a vocabulary size around 3,000. Most
actions are not utterances, though: there are 175,503 move-
ments, 8,330 card pick-ups, and 6,105 card drops. The me-
dian game-length is 392 actions, though this is extremely
variable (s.d.: 263 actions).

The transcripts were collected in two phases: 62 at the
University of Pennsylvania in 2008, and the rest via Me-
chanical Turk during the summer of 2010. Fig. 1 provides
the annotated game-board that was presented to the Turk-
ers before they began playing, to acquaint them with the in-
terface. Each player was paid $1.00 per game, with $0.50
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bonuses paid to especially thoughtful players. Feedback re-
ceived from the players suggested that they generally en-
joyed playing.

In our experiments, we use the number of transcripts each
player contributed as an objective measure of expertise. We
have this data only for 324 of the transcripts, all from the
Mechanical Turk section of the corpus, so we limit attenton
to them. These were created by 102 distinct players. While
33 played just once, 36 played 10 or more times; the median
number of games played was 4 (mean: 6.7; s.d.: 5.98). Fig. 2
depicts this distribution as a boxplot.

Games played

P
la

y
e

r

1 4 12 25

Figure 2: Number of games played by each player. The data
points have been jittered randomly along the y-axis to make
their clustering evident.

3.2 The Cards graph

We constructed the Cards graph around seven sets of ques-
tions. Each set can be thought of as an individual subgraph
whose root node is a high-level QUD. The restricted nature
of the game permits exhaustive identification of these sets.
For example, the questions What is the configuration of the
game board? and What is the expertise of my fellow player?
are members of a subgraph rooted at What is the state of this
particular game?. Utterances that do not pertain to the game
(e.g., What’s your name?) are excluded.

For the purposes of our experiment, the relative order of
the members of each individual subgraph is not consequen-
tial. However, the subgraphs themselves are linearly ordered
as in def. 4 (assuming a rich set of background assumptions
about the nature of play), with the root node of the entire
graph being the QUD How do we finish the game success-
fully? Each subgraph is assigned a depth: the number of
other subgraphs intervening between the root node and that
graph. Fig. 3 summarizes the subgraphs used with their re-
spective depths. We assume that each question in the graph
comes with a common ground that encodes for (i) the rules
of the game each player is exposed to prior to playing the
game, and (ii) answers to all the questions of a lower depth.

There are two ways in which a subgraph can be deeper
than another. (i) The questions in the first subgraph need to
be completely resolved before the questions in the second
can be tackled. This is true, for example, for the questions
of depth 1 and those of depth 2 in fig. 3: it is impossible to
sensibly discuss what the goals of the game are unless one
understands what the game world is like. Thus, a speaker
whose initial utterance relates to an issue in depth 2 will
presuppose that all issues in depth 1 are answered. (ii) The
questions in the second subgraph can be concerned with re-

solving a sub-issue of the first. This is the relation that holds
between the subgraph in depth 5 and the one in depth 6 – de-
termining how to gather the decided sequence involves de-
termining how to gather the specific cards in the sequence.

• Depth 1

– How do I interact with the game world?
– What are the meanings of the various technical terms?

• Depth 2

– What is the goal of the game generally?

• Depth 3

– What is the configuration of the game board?
– What is the expertise of my fellow player?

• Depth 4

– What is the goal of this game specifically?

• Depth 5

– How do we achieve this goal generally?

• Depth 6

– What cards do we need to achieve this goal specifi-
cally?

• Depth 7

– Have we obtained a particular winning sequence?

Figure 3: The clusters used to approximate the initial depth
of players in the QUD graph.

For each player in each transcript, we identified the
player’s first initiating utterance, i.e., a question that raises
a new (sub-)issue or an assertion that resolves a previously
unmentioned (sub-)issue. We then identified the subgraph
of the Cards graph that the utterance belonged to and coded
its depth. We did this by considering the first six utterances
of each player, thus allowing us to take into account vari-
ous contextual factors that might affect the interpretation of
those players’ utterances. For example, the utterance “6D”
(six of diamonds) could either be placed at depth 4 if it was
an attempt by a player to negotiate the six-card sequence the
two players should collect; or it could be placed at depth 6
if it was used to indicate that a player had picked up the six
of diamonds after the sequence had been settled upon.

Responses to initiating moves of the other player were
not considered initiating moves. Thus if Player 1 started
the conversation with Where [on the game board] are you?
and Player 2 responded with On the lower left, Player 1’s
initial depth was coded as 3, but Player 2’s initial depth was
determined by a later utterance.

The following transcript excerpt shows each utterances
with the depth of its associated subgraph. The first utter-
ances by P1 and P2 were identified as their initiating utter-
ances; the rest are included to help convey what the coding
is like:

P2: what suit do we want? (depth 4)
P1: I hit a KD. (depth 3)
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I think we should see what we get, and
keep the most promising suit (depth 3)

P2: i have a JD (depth 3)
P1: That works
P2: so we are looking for Ds? (depth 4)
P1: I vote Ds. (depth 4)
P2: okay i have 10D , 9D and JD (depth 6)
P1: 7D (depth 6)
P1: okay do you think my cards work? (depth 5)
P1: So we’re looking for 8D, and 6D or QD (depth 6)
P2: You should be good (I’m slow at this...) (depth 6)

3.3 Results

We expect experts to be more likely than novices to assume
that their partners will accommodate rich contextual knowl-
edge. In the context of the QUD model, this predicts that
experts will initiate discourse at a deeper level in the Cards
graph than novices. Furthermore, these effects should be
amplified if it is mutual knowledge between the two players
that they are both experts.

To test this at the individual level, we first fit an ordi-
nary least-squares regression, using the number of games
played up to and including the present one (GamesPlayed)
to predict initial utterance depth (Depth). The coefficient for
GamesPlayed in the fitted model is 0.02 with a standard er-
ror of 0.01 (p = 0.04). Thus, the association is significant
but weak. This is arguably because the game is not compli-
cated; one successful task completion might be enough to
show the presuppositional behavior we seek to characterize.
Thus, we classified a player–transcript pair (P, T ) as Novice
if T was the first transcript that P contributed, and Expert
otherwise. A linear regression using this Novice/Expert dis-
tinction (Expert) to predict Depth revealed a significant pos-
itive correlation; the coefficient for Expert, summarizing the
predicted difference between the two groups, is 0.54 with a
standard error of 0.11 (p < 0.0001).

At the transcript level, we grouped the discourses into
three types: Novice games (novice–novice pairings), Mixed
games (novice–expert pairings) and Expert games (expert–
expert pairings). Novice games had a mean word-count of
328.85, mixed games had a mean word-count of 190.03,
and Expert games had a mean word-count of just 113.01.
These successively shorter values are expected on a model
where rich common ground licenses speakers to presup-
pose more and say less overtly. In addition, we coded the
Novice/Mixed/Expert distinction as a variable Pairings (1
for Novice, 2 for Mixed, and 3 for Expert) and fit a linear
regression using this variable to predict the mean initial ut-
terance depth of the two players. The coefficient for Pairings
was 0.35 with a standard error of 0.07 (p < 0.001); expert-
ness once again correlates with increased utterance depth.

4 Discussion

The annotated Cards graph revealed that experts start with
general QUDs far less often than their novice counterparts,
supporting the idea that experts presuppose more. It is likely

this is because experts are more familiar with the game
world and had opportunities to develop optimal strategies.

Here is a typical start to a Mixed game interaction:

P2: Hi?
P1: hey
P2: Hey, I’m in the bottom right corner what suit are we

looking for?
P1: uh idk
P2: okay..let’s then browse for a while
P1: im so confused
P1: on how to play this
P2: I’ve got ah kh and 10 h do you wont to go for H?
P1: sure
P2: ok then :)
P2: we have to find 6 consecutive cards of a particular

suit
P1: ok so we need 9h 10h jh qh kh ah

The novice (P1) starts at depth 1, the expert (P2) at depth
4 (What suit are we looking for?). Moreover, we see that
P2 (belatedly) briefly accommodates to P1’s initial level by
explaining the basic goal of the game, i.e., we have to find 6
consecutive cards . . . . P1, in turn, signals that (s)he has re-
solved the lower-level questions, by initiating discussion of a
question at depth 5/6. This suggests that a discrepancy in the
amount of presupposed knowledge leads to re-negotiation of
the QUD.

The following complete transcript is an extreme example
of efficient communication between experts:

P2: hi–what side r u on?
P1: outside
P2: inside
P2: i have 3H, 5H and 6H
P2: can u find 4H, and other 2 cards that surrond the set

on either side?
P1: ok
P1: hey
P1: i mean i got it
P1: 4,7,8 H
P2: nice

As can be seen, not only do both players start at a deep
level in the Cards graph (depth 3), but they also exchange
a minimum of information, relying on each other to fill in
the content of their underspecified utterances. This shows
how players, after they have recognized each other as ex-
perts, take advantage of the rich common ground by drasti-
cally reducing the length and number of their utterances.

Interestingly, while expert players optimized their linguis-
tic behavior by using fewer words and moving swiftly to
deep levels in the QUD graph, they did not reliably complete
the games in fewer moves than novices. We found no reli-
able correlations between overall transcript length and ex-
pert levels. In many cases, experts moved too quickly to a
very specific strategy, one that was insensitive to the over-
all layout of the game world, and this meant more searching
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around for the required cards than would have been neces-
sary if they had been flexible in their approach.

5 Conclusion

This paper provided a metric for quantifying the amount of
common ground presupposed by interlocutors. In order to
achieve this, we developed the QUD graph model, in which
the common information presupposed by the interlocutors
corresponds to graphical depth.

The Cards corpus was collected in a controlled envi-
ronment where the interlocutors’ information state and ut-
terances were recorded at every point in the discourse,
which facilitated the construction of a detailed QUD graph.
The graph revealed that experts, able to rely heavily on
the common ground, require their interlocutors to accom-
modate more information than novices do. This is ex-
pected on a model of pragmatics in which accommodation
is a strategic decision in communication (Thomason 1990;
Stone, Thomason, and DeVault 2007).

We believe that the QUD-graph approach will general-
ize to other tasks and domains, since it is founded in very
general pragmatic theories (Groenendijk and Stokhof 1984;
Groenendijk 1999; Ginzburg 1996; Roberts 1996; Büring
2003; Stone 2002; van Rooy 2003). It should be said,
though, that few corpora have the rich metadata of the Cards
corpus, so it is far from straightforward to apply the ideas
elsewhere. What is needed are automatic methods for infer-
ring the QUD graph based on more superficial aspects of the
discourse, an area that is ripe for further systematic inquiry.
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