

Explorations in ACT-R Based Cognitive Modeling – Chunks,

Inheritance, Production Matching and Memory in Language Analysis

Jerry T. Ball

Air Force Research Laboratory
Wright-Patterson Air Force Base

 jerry.ball.@wpafb.af.mil

Abstract
This paper explores the benefits and challenges of using the
ACT-R cognitive architecture in the development of a large-
scale, functional, cognitively motivated language analysis
model. The paper focuses on chunks, inheritance, production
matching and memory, proposing extensions to ACT-R to
support multiple inheritance and suggesting a mapping from
the focus of attention, working memory and long-term
memory to ACT-R buffers and declarative memory (DM).

Introduction
Our research team has been working on the development of
a language analysis model (Ball, 2011; Ball, Heiberg &
Silber, 2007) within the ACT-R cognitive architecture
(Anderson, 2007) since 2002 (Ball, 2004). The focus is on
development of a general-purpose, large-scale, functional
model (Ball, 2008; Ball et al., 2010) that adheres to well
established cognitive constraints on human language
processing (HLP) as realized by ACT-R.

This paper explores the benefits and challenges of using
the ACT-R cognitive architecture in the development of the
language analysis model. ACT-R is a hybrid symbolic,
subsymbolic (or probabilistic) architecture which combines
parallel, probabilistic mechanisms for declarative memory
(DM) chunk activation and selection (i.e. retrieval), and a
parallel, utility based production matching and selection
mechanism, with a serial production execution mechanism.
The production system is the central component of ACT-R.
It interfaces to DM and other cognitive/perceptual modules
(e.g. motor module, visual module) via a collection of
module specific buffers which contain chunks that constitute
the current context for production matching. Buffers are
restricted to containing a single chunk at a time. The
production with the highest utility which matches the
current context is selected and executed. Execution of a
production may effect an action resulting in a change to the
current context (e.g. via retrieval of a DM chunk, or a shift
in attention to a new visual object). The changed context
determines which production next matches and executes.

The paper focuses on declarative memory (DM) chunks
and chunk types, inheritance, production matching and
selection, and the mapping of ACT-R architectural features

like buffers and DM to memory constructs like the focus of
attention, working memory and long-term memory.

To support the creation of integrated linguistic
representations, the language analysis model uses a
collection of buffers—an extension of the ACT-R
architecture—to retain the partial products of language
analysis. These buffers are functionally needed to support
language analysis. We view the collection of buffers, in
combination with productions which match against them, as
the ACT-R/language analysis model equivalent of
Baddeley’s Episodic Buffer (Baddeley, 2000). According to
Baddeley, “The episodic buffer is assumed to be a limited-
capacity temporary storage system that is capable of
integrating information from a variety of sources…the
buffer provides not only a mechanism for modeling the
environment, but also for creating new cognitive
representations” (ibid, p. 421). A key empirical result which
motivated Baddeley to introduce the episodic buffer after 25
years of working memory research is the prose recall effect.
Subjects are capable of recalling greater than 16 words
(without error) in the context of a text passage, whereas they
are limited to recalling about 5 words (without error) in
isolation. This prose recall capability greatly exceeds the
capacity of the phonological loop and appears to be based
on a chunking (or integration) mechanism. Evidence of a
prose recall effect in patients with a severely degraded long-
term memory (LTM) capacity argues against an LTM
explanation (LTM ~ DM in the ACT-R architecture).
Ultimately, the empirical evidence led Baddeley to propose
the addition of the episodic buffer to his model of working
memory.

Currently, the language analysis model comprises just
under 60,000 declarative memory (DM) chunks (including
59,000 lexical item chunks) and ~750 (grammatical)
productions. The model is capable of processing a broad
range of English language constructions (Ball, Heiberg &
Silber, 2007; http://doublertheory.com/comp-
grammer/comp-grammar.htm). Our ultimate goal is to be
able to handle unrestricted text at levels comparable to
leading computational linguistic systems (cf. Collins, 2003)
without extensive training on any specific corpus—as is true

Advances in Cognitive Systems: Papers from the 2011 AAAI Fall Symposium (FS-11-01)

10

of humans, but not computational linguistic systems which
require extensive training on specific, annotated corpora. In
terms of processing speed, the model is capable of
processing ~151 written words per minute (wpm) on a quad-
core, 64-bit machine running Windows 7 and Allegro
Common Lisp (ACL) (64-bit software versions). In
addition, ACT-R supports the measurement of cognitive
processing time, and the model is capable of processing
~150 wpm in ACT-R cognitive processing time. This
compares to a cognitive processing range of between 200
and 300 wpm for adult readers of English (for full
comprehension). To bring the model into closer alignment
with adult reading rates, we are working on reducing both
the number of productions which must execute, and the
number of DM elements which must be retrieved, during
language analysis (Freiman & Ball, 2010).

Chunks, Inheritance & Production Selection
ACT-R provides support for a hierarchy of chunk types with
a single inheritance mechanism. Default values can be set
for the values of slots. These default values may be
overridden in specific chunks. For example, in our model, a
verb chunk type is defined that inherits from a word-pos
chunk type (i.e. word form + part of speech). The verb
chunk type inherits word form slots from word-pos (e.g.
letter and trigram slots) along with default values (all are set
to “none” by default). The verb chunk type specifies a
collection of slots that are common to all verbs which
include “tense”, “aspect”, “voice”, and “verb-form”. The
default values for these slots are also “none”. A specific
verb chunk overrides these default values to provide verb
specific values. A sample chunk (present tense, base form of
the verb “get”) is shown below:

get-verb-pres-base-wf-pos
isa verb
index get-indx
word get-word
word-form “get”
word-symbol get-symb
word-length three3
letter-1 g
letter-2 e
letter -3 t
trigram-1 wbge ;; wb = word boundary
trigram-2 get
trigram-3 etwb
parent “none”
token “type”
stem “get”
super-type verb
type verb
subtype trans-verb
alt-subtype got-passive
subj-agree plur
verb-form v-base-fin
tense pres tense-1 fin

aspect “none”
voice act
gram-func-1 pred-head
gram-func-2 “none”
subj-agree-alt first-sing

“Get-verb-pres-base-wf-pos” is the chunk name. “Isa verb”
defines the chunk type. These entries are followed by a
collection of slot name, slot value pairs. (There are actually
12 letter and 6 trigram slots, but only 3 have values other
than “none”.) For example, “index” is a slot name and “get-
indx” is the value of the slot. If the value of a slot is a
symbol (i.e. the value is not a number or a quoted string), it
corresponds to the name of an ACT-R chunk. “Get-indx”
(which is not quoted above) corresponds to the name of an
ACT-R chunk. It is a feature of ACT-R that only slot values
which are chunks can spread activation (i.e. numbers and
strings do not spread activation).

We make extensive use of ACT-R’s single inheritance
mechanism, both in the definition of our grammatical
ontology and in the production matching and selection
process. For example, the full hierarchy for defining parts of
speech is shown below (note that word-pos is only one
subtype of construction-with-head, not all parts of speech
are shown, and it is actually word-pos-max-size that
specifies the 12 letter and 6 trigram slots, not word-pos):

In ACT-R, the production selection and execution process is
based on the matching of the left hand side of productions
against the chunks in buffers. These buffers provide the
context for production selection. During the production
selection process, ACT-R determines which productions
currently match the buffer contents. The production with the
highest utility which matches the current buffer contents is
selected for execution. Productions may selectively match
against any number of buffers, from 0 (in which case the
production may always match) to all the buffers.
Productions which match against a chunk in a buffer must

11

specify the type of the chunk being matched. The match to
the type succeeds if the chunk in the buffer is of the
specified type (e.g. isa verb in the production matches isa
verb in the buffer) or the specified type is a super-type of
the chunk in the buffer (e.g. isa word-pos in the production
matches isa verb in the buffer). We use the capability to
match to a type or super-type extensively. Specialized
productions match to chunks in buffers of a very specific
type (e.g. isa verb in the production), whereas a more
general production may match the same chunk as a high
level super-type (e.g. isa construction in the production).
Specialized productions have higher utility than general
productions since they are more likely to be useful in a
matching context than the more general production.
Productions which match chunks in buffers may also match
the slot names and slot values of the chunks in the buffer—
where slot values may be chunk names, numbers or strings.

The value of a slot may be the name of a chunk. The
name functions like a pointer to the chunk. For example, the
value “get-indx” for the slot “index” could be used to
retrieve the DM chunk corresponding to the chunk name
“get-indx”. Using the chunk name to retrieve a chunk is a
highly constrained from of retrieval—there is only one
chunk that can match the chunk name. It is important to note
that the contents of a chunk are not directly available from
the chunk name. Access to the contents of the chunk
requires a chunk retrieval. In this respect, ACT-R has a
highly constrained capability for accessing the contents of a
chunk and its chunk descendents. The contents of the
chunks which are the slot values of a chunk are not directly
accessible without a retrieval. We refer to this constraint as
local accessibility.

The language analysis model uses ACT-R productions to
support language analysis. The production matching
behavior of ACT-R can be compared to other approaches to
language analysis. Within computational linguistics, there is
an approach to language analysis which is based on the
unification of attribute-value matrices. This approach is a
key element of Head-Driven Phrase Structure Grammar
(HPSG) (Sag, Wasow & Bender, 2003) and certain variants
of Construction Grammar (e.g. Sign-Based Construction
Grammar, Sag 2010). A key difference between such
approaches and our ACT-R based language analysis model
is that the value of an attribute (where attribute corresponds
to a slot in ACT-R terms) is itself an attribute-value matrix.
Instead of the attribute having a value which is the name of
an attribute-value matrix, the matrix itself is the value of the
attribute. By comparison, ACT-R introduces a level of
indirection in that the value of a slot is the name of a chunk
and not the chunk itself. Combining the direct integration of
attribute-value matrices as the value of an attribute with the
unification algorithm for matching attribute-value matrices
provides a powerful language analysis capability. Unlike
ACT-R’s limited local accessibility pattern matching
capability, unification provides the capability to recursively
unify arbitrarily complex attribute-value matrices. While
this might appear to make approaches like HPSG preferable

to our approach, I believe that this unification capability is
too powerful to match human capabilities. In a similar vein,
Vosse & Kempen (2000) limit the unification capabilities of
their psychologically plausible language analysis system to
a single level of recursion, comparable to the local
accessibility of ACT-R. Further, there is an approach to
formal semantic analysis called Minimal Recursion
Semantics (Copestake et al., 2005) which has been used in
combination with both HPSG and SBCG. Minimal
Recursion Semantics limits the recursive capabilities of the
semantic analysis component to a single level, using pointer
variables within semantic representations to link to non-
atomic elements of the semantic representation (and
restricting the representations to be compliant with first
order predicate logic in the process). In using pointer
variables, the representations in Minimal Recursion
Semantics are closer in form to the representations of our
ACT-R based language analysis model than HPSG or
SBCG. In addition, Sag (2007) introduces an explicit
locality constraint into SBCG which limits grammatical
schemas to accessing the content of the daughters of a
phrase level representation, precluding access to lower
levels of representation (i.e. daughters of the daughter). The
introduction of locality constraints is a principle motivator
of Sag’s shift from HPSG to SBCG: “This paper proposes a
modification of HPSG theory – Sign-Based Construction
Grammar – that incorporates a strong theory of both
selectional and constructional locality” (Sag, 2007).
Information that is needed at a particular level of
representation must be passed up from lower levels to be
locally accessible. The language analysis model adopts a
similar approach. For example, grammatical features like
tense and aspect are lexically realized by verbs. For these
grammatical features to be accessible at the level of a
clause, they must be passed up or projected from the level
of the verb to the level of the clause. Whereas it is possible
in HPSG, and possible but discouraged in SBCG to use
unification to recursively descend to lower levels to match
grammatical features without projecting them up, the
constraints of ACT-R preclude this without explicitly
retrieving the lower level chunks in order to access features
that have not been projected.

As noted above, the pattern matching capabilities of
ACT-R’s production selection mechanism are limited to
matching slot values (of chunks in buffers) which may
contain the name of a chunk, strings or numbers, whereas
the matching to chunk types uses ACT-R’s inheritance
mechanism. There are cases where it is desirable to be able
to match slot values in a hierarchical manner. For example,
the language analysis model has an animacy feature of
nouns and object referring expressions (or nominals) that
has the possible values inanimate, animate and human
(where human is a subtype of animate). For generality, we
would like a production to be able to match either the
human or animate feature, when appropriate. For example,
when incrementally identifying the indirect or direct object
of a verb like “give” (e.g. “he gave the man…” vs. “he gave

12

the book…”), animacy is key, with the indirect object
typically being human or animate, and the direct object
typically being inanimate. We would like a single
production to handle the indirect object case and a single
production to handle the direct object case. If a test for
animacy matched either animate or human (a subtype of
animate), only a single production would be needed for the
indirect object case. ACT-R does not support this. A less
desirable workaround is to include a disjunctive match for
either animate or human. ACT-R also does not support
disjunctive matching. However, ACT-R does support
conjunctive negative matches. For example, the direct object
production could have separate tests for the animacy feature
not being either animate or human (e.g. - animacy animate,
- animacy human, instead of animacy inanimate). In
general, we avoid negative tests (and especially negative
conjunctive tests) on plausibility grounds—resorting to such
tests only to avoid a proliferation of productions with
independent positive tests. More typically, we step outside
the ACT-R architecture and add a function to the production
(using ACT-R’s !eval! mechanism) which performs a
disjunctive test using Lisp code.

Multiple Inheritance
For reasons that have not been make explicit, but are not
likely to be theoretical in any case, ACT-R only supports
single inheritance. The only reason I have been able to come
up with, is, if you want multiple inheritance in ACT-R (or
single inheritance for that matter), you should implement it
in the production system itself. In fact, there is an ACT-R
tutorial unit which implements a semantic net and uses
productions to provide an inheritance-like capability.
However, implementing an inheritance capability within the
production system would complicate model development,
lead to an undesirable proliferation in the number of
productions, and increase cognitive processing time.

As an example of production proliferation, consider how
production matching could be implemented without using
ACT-R’s built-in single inheritance capability. Instead of a
production matching on a super-type which encompasses a
collection of types, a separate production could be created
for each type. In the case of part of speech chunks, instead
of a generic production that matches all word-pos chunks,
one production could match verbs, another production could
match nouns, a third production could match adjectives, etc.
This collection of part of speech specific productions is the
computational equivalent of a single production that
matches the word-pos super-type. Note that there is no
cognitive cost associated with this type matching capability
since production selection occurs in parallel in ACT-R and
incurs no time cost. At least for production matching and
selection, using ACT-R’s single inheritance mechanism to
match a super-type can be viewed as a computational short
cut that reduces the number of productions. To implement
production matching with multiple inheritance, additional
productions are still needed.

Besides having multiple productions for each type of a
super-type, productions could be created to provide support
for inferring a super-type or subtype from a type. ACT-R’s
sample semantic memory model (unit 2 in the ACT-R 6
tutorial) provides an example of a chain production for
inferring the super-type of a type. However, each execution
of this chain production requires 50 msec to execute, and
ascending (or descending) our chunk hierarchy would
increase the cognitive processing time of the model which is
already slower than adult human reading rates. In addition,
the empirical evidence for the time cost of inferring the
super-types of a type is moot. Human memory does not
appear to be organized into a neat hierarchy of super-types,
types and subtypes (cf. Collins & Loftus, 1975). As an
aside, the ACT-R semantic memory model is one of a few
tutorial models which is not compared to human data.

There are many examples of categories that are best
viewed as inheriting from multiple super-types. A classic
example is that of the “pet cat”. A “pet cat” is at once a pet
and a cat. In a single inheritance system, a “pet cat” must be
categorized as either a subtype of pet or a subtype of cat. If
pet cats are categorized as cats, then for each pet cat, there
will need to be a slot in the cat type to indicate that it is a
“pet cat”. This approach misses the generalization that being
a pet is a characteristic of all pets that could be inherited
from a pet super-type, eliminating the need for a pet slot in
the cat type.

A good article with motivates the need for multiple
inheritance in language analysis (along with default
inheritance) is Daelemans, De Smedt & Gazdar (1992). In
this article, the authors argue that the representation of verbs
is best handled via multiple inheritance. For example, verbs
can be subcategorized on the basis of their argument
structure as intransitive (no object), transitive (1 object) and
ditransitive (2 objects). However, they can also be
subcategorized on the basis of tense and aspect as past tense
(e.g. “went”), present tense (e.g. “go”, “goes”), present
participle (e.g. “going”) and past participle (e.g. “gone”). A
multiple inheritance hierarchy can capture these different
categorizations efficiently. Without multiple inheritance, if
argument structure is used to subcategorize verbs, then tense
and aspect (i.e. the present participle expresses progressive
aspect, and the past participle expresses perfect aspect) will
have to be redundantly encoded for each type of verb,
missing a generalization that applies to all verbs.

Our model diverges from the analysis of Daelemans, De
Smedt & Gazdar in that we do not treat either argument
structure or tense and aspect as a basis for creating subtypes
of verbs. From a representational perspective,
subcategorizing on the basis of argument structure is
incompatible with the basic division of parts of speech into
categories like noun, verb, adjective and preposition, which
we view as abstract semantic categories in agreement with
Cognitive Grammar (Langacker, 1987/1991). Argument
structure is a different dimension of meaning for
categorizing verbs than that used to categorize nouns and
verbs (i.e. object words vs. action words). A common

13

mistake in the creation of ontologies is to change the
dimension of meaning which provides the basis for creating
subtypes at different levels of the ontology. For example,
categorizing my pet dog “Fido” as a subtype of dog,
confuses types and instances. “Fido” is an instance of a
dog—a particular dog—not a subtype or subclass of dog.
The Cyc Knowledge Base (Matuszek et al., 2006) makes a
clear ontological distinction between instances (#$isa) and
collections or classes (#$genls). This confusion is less
obvious in the treatment of intransitive verb as a subtype of
verb. However, consider the possibility of creating subtypes
of verb that correspond to action, event, process and state.
This seems like a more reasonable subcategorization to me
than a subcategorization based on the number of arguments.
Of course, multiple inheritance would make it possible to
have it both ways and would reduce the strength of this
argument. Wherever multiple dimensions of meaning are
involved in categorization (almost always the case), support
for multiple inheritance is needed.

As another example of where multiple inheritance would
be useful, consider wh-words like “who” and “what”. These
words are pronouns, but they are also wh-words. On the
other hand, “where” and “why” are typically considered to
be adverbs, not pronouns. Without multiple inheritance, we
have defined the chunk types wh-pronoun and wh-adverb.
These chunk types inherit from wh-word, but not from
pronoun or adverb. This means that they cannot inherit the
features of pronouns and adverbs and they cannot be
recognized as pronouns or adverbs when appropriate. The
result is a loss of generalization which requires extra
productions. There are productions which match against
pronouns, and separate productions which match against
wh-pronouns (which are wh-words, but not pronouns).
There are also productions which match against adverbs,
and separate productions which match against wh-adverbs
(which are wh-words, but not adverbs). With multiple
inheritance, fewer productions would be needed.

Mapping ACT-R Buffers and DM into
Memory Constructs

ACT-R comes with a small collection of buffers that
provide the interface between various modules (e.g. visual,
manual, retrieval, imaginal, goal) and the production
system. These buffers are limited to holding a single
chunk—a very strong constraint! Recent research has
provided neuro-scientific support (primarily fMRI based)
for the existence of these buffers, demonstrating that
specific regions of the brain are active when these buffers
are being matched against productions. With the
introduction of ACT-R 6, a capability to create new
modules and buffers was added to ACT-R. There are now
numerous ACT-R models that posit the existence of one or
two new buffers, often providing neuro-scientific support
for the buffers. Our language analysis model is unique in
positing the existence of dozens of new buffers (where each
buffer is limited by ACT-R to holding a single chunk). The

existence of these buffers is motivated on functional
grounds. I do not believe it is feasible to analyze language
without retaining the partial products of that analysis in a
directly accessible way that avoids the necessity of
retrievals from DM. As the capabilities of our model have
increased, we have needed to add buffers to retain more and
more different types of information. We have limited the
types of chunks that are retained in each buffer. The
alternative of using a smaller set of general purpose buffers
would create serious problems for production matching.
With type specific buffers, productions know which buffers
to match against (# of productions = # of types). With type
general buffers, multiple productions would be needed to
match against each type general buffer (# of productions = #
of buffers times # of types). Without types (or super-types),
the number of productions is even larger (# of productions =
of buffers times # of subtypes).

For an example of the need to retain the partial products
of language analysis in directly accessible type specific
buffers, consider the input

� What did he eat?

The wh-word “what” occurs at the beginning of the
sentence, but it is also the understood object of “eat” (i.e. it
is the object that was eaten that is being questioned by
“what”). In order to bind “what” to the object of “eat”,
“what” needs to be accessible at the time “eat” is processed.
The simplest solution within the constraints of ACT-R is to
have a buffer that contains the chunk for “what”. We call
this buffer the wh-focus buffer. Do we think this buffer is
innate? No. There are languages like Chinese which have in
situ wh-words (i.e. the equivalent of “he ate what”). For
such a language, a wh-focus buffer is not needed. This
suggests that English speakers learn how to buffer wh-
words at the beginning of sentences, because they need to.
Note that the distance between the wh-word and the binding
site can be arbitrarily far:

� What do you think he ate?
� What do you think he wants to eat?

What is not allowed is the occurrence of an intervening wh-
word:

� *What do you think who wants to eat?

This can be explained if there is only room for one wh-word
in the wh-focus buffer. Note also that there can be more
than one wh-word in a sentence:

� Who wants what?

So long as the wh-word in the wh-focus buffer doesn’t have
to “hop over” another wh-word for binding purposes, it’s
OK. (Of course there may be languages which allow wh-
words to be stacked in which case the language learner
would need to learn how to retain multiple wh-words in
buffers.)

One might ask why not just retrieve the wh-word from
memory when needed. Unless there’s some indication that a

14

wh-word has occurred, then there’s no reason the model
would attempt to retrieve a wh-word. Having the wh-word
in a buffer provides this indication, as well as avoiding the
need for a retrieval.

The occurrence of a wh-word at the beginning of a sentence
which corresponds to an object of a subsequent verb is an
example of a long-distance dependency. The representation
and processing of long-distance dependencies is an
important research topic in linguistics and computational
linguistics. In a common variant of generative grammar,
wh-words are moved from the object position to the fronted
position and leave behind an indexed trace in the object
position. In Generalized Phrase Structure Grammar (GPSG),
a slash notation is used to indicate the fronting of a wh-
phrase (e.g. S\NP indicates the fronting of an NP at the level
of the sentence, where wh-phrases are treated as NPs with a
+wh feature). This slash is propagated down the syntax tree
(thru the VP\NP node) until it is eliminated at the location
of the missing verb object. In our language analysis model,
we use the wh-focus buffer to retain the wh-word until it can
be bound to the object slot in the transitive verb
construction projected by the verb “eat”.

The originators of the ACT-R cognitive architecture do
not provide a definitive mapping from commonly used
memory constructs like focus of attention, working memory
and long-term memory to basic architectural features like
buffers and declarative memory. I have not come across any
suggested mapping of the focus of attention into ACT-R
architectural features. However, memory constructs have
been addressed to some extent. Anderson (1980) explicitly
rejects the notion of short-term memory as elaborated in the
1960’s (Atkinson & Shiffrin, 1968), and there is some
recognition of the need for an episodic memory capacity
within the ACT-R community.

In the absence of a definitive mapping, various proposals
have been made. In the case of working memory, it has been
suggested that the contents of the buffers constitute working
memory (Glenn Gunzelmann, p.c.). An alternative proposal
is that all chunks in DM whose activation exceeds the
retrieval threshold constitute working memory (Christopher
Myers, p.c.). Unfortunately, the first suggestion seems too
constrained and the second proposal too unconstrained as a
definition of working memory. The first suggestion would
limit working memory to one chunk of a given type, since
buffers are module, and presumably chunk type, specific,
and are limited to a single chunk. A capability to compare
two chunks of a given type seems necessary for an adequate
definition of working memory. (I should note that it is
common practice in the ACT-R community to compare
chunks across buffers, often enlisting the visual or imaginal
buffer for comparison with a chunk in the retrieval buffer. I
consider this practice suspect under the assumption that
modules and their associated buffers and chunks are
specialized for the module. Can a chunk in the visual buffer
really be compared to a chunk in the retrieval buffer?) For
the second proposal, unless there is an associated
assumption that only chunks that are receiving some amount

of spreading activation from the context will exceed the
retrieval threshold, then it is not clear what working memory
means in this case (i.e. all chunks with high base level
activation will exceed the threshold despite the context).

Working memory may not, itself, be a unified construct.
Ericsson & Kintsch (1995) introduce a distinction between
short-term working memory (STWM) and long-term
working memory (LTWM) which has not been adopted by
the ACT-R community, but which I find attractive. LTWM
is a construct which supports expertise, making potentially
large amounts of contextual relevant knowledge highly
accessible. How can this working memory distinction be
folded into a mapping to ACT-R, along with a mapping to
the focus on attention?

Here are my suggestions. The focus of attention is
extremely limited in capacity—estimates range between 1
and 4 chunks (Cowan, 2005). I suggest that the focus of
attention corresponds to the chunks in the buffers that have
been matched by the currently executing production.
Although there is no architectural limit on the number of
buffers which can be matched by a production, I suspect that
matching more than 4 buffers in a production is unlikely.
Ericsson and Kintsch limit STWM to 1 or 2 chunks which
suggests that STWM corresponds roughly to the focus of
attention. In a variant of ACT-R which includes carryover
activation and a resonance capability (see Ball, in
preparation), LTWM may correspond to the contents of all
buffers not in the focus of attention, plus the chunks in DM
that are resonating. There's one complication—according to
Ericsson and Kintsch, it takes time to access the contents of
LTWM, but access to LTWM is much faster than access to
long term memory (LTM) more generally (where DM ~
LTM less episodic memory ~ semantic memory). Access to
ACT-R buffers is instantaneous, so there is a disconnect
here if LTWM includes the contents of buffers not in the
focus of attention as well as resonating chunks in DM,
unless LTWM access time is an average across
instantaneous buffers and slower DM. It is also the case that
Ericsson and Kintsch believe that LTWM is adaptive.
Experts learn how to activate larger and larger quantities of
contextually relevant knowledge in LTWM where it is
readily accessible. I think this ability corresponds to an
ability to learn how to buffer useful knowledge in ACT-R
via the creation of new buffers—although this capability to
create new buffers doesn't currently exist in ACT-R. I
believe this capability is chunk type specific. A learned
buffer retains chunks of a particular type. I don't think
Ericsson and Kintsch consider this in their description of
LTWM, although it is clear that expert knowledge is
domain, if not type, specific. In sum, allowing LTWM to
map to a combination of learned buffers not in the focus of
attention and resonating DM chunks appears to provide a
good mapping, although neither of these are currently part
of the ACT-R architecture.

In an interesting article on working memory, Baddeley
(2002) revises his 25-year old theory of working memory by
adding an episodic buffer in addition to the phonological

15

loop and visualspatial sketchpad. The episodic buffer is a
temporary storage system and differs from Tulving’s notion
of episodic memory as a long-term memory construct in this
respect. The need for this buffer is motivated, in part, by the
relatively large number of words that can be accurately
recalled in the context of a sentence (~16 words without
error) compared to isolated words (~5 words without error).
This same prose recall data was used by Ericsson & Kintsch
to motivate their LTWM. Unlike ACT-R buffers which are
limited to holding a single chunk, Baddeley’s episodic
buffer is a complex system capable of holding an as yet
undetermined number of multi-modal memory structures—
with initial estimates ranging between 5 and 10 words in the
case of verbal information. The term episodic is used in the
sense that “it is capable of binding together information
from a number of different sources into chunks or episodes”
(Baddeley, 2003, p. 203), and the term buffer is used in the
sense of “providing a way of combining information from
different modalities into a single multi-faceted code” (ibid.).
Baddeley constrasts this episodic buffer, which is a distinct
temporary storage system, with Ericsson & Kintsch’s
LTWM, which corresponds to activated LTM (with pointers
from STWM to support efficient, direct retrieval). Baddeley
also provides neuro-scientific evidence for the episodic
buffer, referencing the research of Prabhakaran et al. (2000)
and providing the following quote from that research: “the
present fMRI results provide evidence for another buffer,
namely one that allows for temporary retention of integrated
information” (p. 89). Even more striking, Baddeley
discusses a subject studied by Endel Tulving who had
seriously impaired LTM, but was nonetheless a good bridge
player—which requires retention of considerable
information. Apparently, this subject had learned how to
buffer knowledge of bridge prior to suffering a LTM
impairment, and retained the ability to play bridge despite
the impairment.

There is a more direct mapping from Baddeley’s complex
(multi-chunk) episodic buffer to the collection of single
chunk buffers used in the language analysis model, than
from Ericsson & Kintsch’s LTWM when viewed as
activated LTM. Chunks in buffers are treated as specific
instances (i.e. episodic) rather than generic types (i.e.
semantic) even though they are retrieved from ACT-R’s
DM—which corresponds more closely to semantic memory
than episodic memory. It is unclear if LTWM is more
semantic or episodic in nature. In addition, the contents of
the episodic buffer are immediately accessible as are ACT-R
buffers, unlike LTWM.

To the extent that there is empirical support for constructs
like the episodic buffer and LTWM, and, more generally, to
the extent that there is empirical motivation for a larger
working memory than provided by the built-in ACT-R
buffers, the collection of buffers used in the language
analysis model is also supported.

In a recent presentation by John Anderson (June 2011),
he introduced a new collection of buffers to support
metacognition in ACT-R. Metacognition occurs during the

completion of complex tasks and encompasses processes
like reflection, high-level reasoning and theory of mind.
Anderson provided fMRI evidence for these buffers based
on the activation of several distinct brain regions during the
performance of complex algebraic tasks. Anderson also
noted that the performance of tasks which require a mapping
from learned techniques for completing algebraic equations,
to novel, but isomorphic, ways of representing algebraic
tasks requires simultaneous maintenance of at least two
chunks to perform the mapping from learned to novel
representation. The introduction of these new buffers and
the recognition of the need to maintain multiple chunks for
comparison and analogy extends the capability of ACT-R
for modeling complex tasks, and begins to address some of
the large areas of the brain for which ACT-R currently has
little to say (including much of the pre-frontal cortex).

In general, the introduction of new buffers in ACT-R is
based on extensive empirical evidence on simple tasks.
Across simple tasks, the same buffers are often reused—
obviating the need to expand the number of buffers.
However, as more complex ACT-R models are developed,
the attempt to reuse the small set of existing buffers can lead
to severe interference within individual buffers as chunks
override each other. This interference can take the form of
thrashing of DM retrievals as one retrieval overrides a
previous chunk that is still needed, necessitating its re-
retrieval, which overrides the current chunk that is also
needed. The result is an inability to model human
performance (i.e. too many retrievals are required which
slows the model down to well below human performance).
To perform complex tasks, more information is needed than
can be maintained by the existing ACT-R buffers, given
psychologically motivated chunk sizes. Either chunks must
grow in size, or the number of buffers must be increased.

In an earlier version of our synthetic teammate model
(Ball et al., 2010), we incorporated what we called a
“superchunk” that contained a large number of slots to
retain the information needed to pilot an Unmanned Aerial
Vehicle (UAV). This superchunk was stored in ACT-R’s
imaginal buffer and allowed the model to function, but was
representationally and cognitively problematic. We have
since modified the model (Rodgers et al., 2011) to introduce
a collection of buffers that contain chunks which are
representationally more defensible, and I would argue
cognitively more plausible. In complex systems,
representations matter. Our chunks are still larger than
standard psychological assumptions support (i.e. most
psychological theories limit chunks to having 3 or 4
elements), but Ball (2011, part 1) provides arguments for
why the chunks are as large as they are given ACT-R
constraints on activation spread.

Conclusions
ACT-R’s constraints on production matching and the limits
of single inheritance, combined with assumptions about
chunk size and local access to chunk contents have created

16

opportunities and challenges in the development of a large-
scale functional language analysis model. The problems can
be allayed to some extent by the addition of buffers to retain
the partial products of language analysis and the creation of
additional productions where multiple-inheritance is needed,
but not supported. Empirical support for the addition of
these buffers is provided via association with Baddeley’s
episodic buffer and, to some extent, with Ericsson &
Kintsch’s LTWM.

References
Anderson, J. (1980). Cognitive psychology and its implications.
San Francisco: Freeman.

Anderson, J. (2007). How Can the Human Mind Occur in the
Physical Universe? NY: Oxford University Press.

Anderson, J. (2011). Development of the ACT-R Theory and
System. Presentation at the ONR Cognitive Science Program
Review. Arlington, VA.

Atkinson, R. & Shiffrin, R (1968). Human memory: A proposed
system and its control processor. In Spence, W. & Spence, J.
(eds.), The psychology of learning and motivation, 89-195. NY:
Academic Press.

Baddeley, A. (2000). The episodic buffer: a new component of
working memory? Trends in Cognitive Sciences, 4(11), 417-423.

Baddeley, A. (2002). Is Working Memory Still Working?
European Psychologist, 7(2), 85-97.

Baddeley, A. (2003). Working memory and language: an
overview. Journal of Communication Disorders, 36, 189-208.

Ball, J. (2004). A Cognitively Plausible Model of Language
Comprehension. Proceedings of the 13th Conference on Behavior
Representation in Modeling and Simulation, pp. 305-316. ISBN: 1-
930638-35-3

Ball, J. (2008). A Naturalistic, Functional Approach to Modeling
Language Comprehension. Papers from the AAAI Fall 2008
Symposium, Naturally Inspired Artificial Intelligence. Menlo Park,
CA: AAAI Press

Ball, J. (2011). A Pseudo-Deterministic Model of Human
Language Processing. Proceedings of the 2011 Cognitive Science
Society Conference.

Ball, J. (in preparation). Explorations in ACT-R Based Cognitive
Modeling – Activation, Selection and Verification without
Inhibition in Language Analysis.

Ball, J., Freiman, M., Rodgers, S. & Myers, C. (2010). Toward a
Functional Model of Human Language Processing. Proceedings of
the 32nd Annual Meeting of the Cognitive Science Society.

Ball, J., Heiberg, A. & Silber, R. (2007). Toward a Large-Scale
Model of Language Comprehension in ACT-R 6. In R. Lewis, T.
Polk & J. Laird (Eds.) Proceedings of the 8th International
Conference on Cognitive Modeling. 173-179. NY: Psychology
Press.

Collins, A. & Loftus, E. (1975). A spreading activation theory of
semantic processing. Psychological Review, 82, 407-428.

Collins, M. (2003). Head-Driven Statistical Models for Natural
Language Parsing. Journal of the Association for Computational
Linguistics, 29, 589-637.

Copestake, Ann, Flickinger, Dan, Pollard, Carl J. and Sag, Ivan A.
(2005) Minimal Recursion Semantics: an Introduction. Research
on Language and Computation
3(4), 281–332.

Cowan, N. (2005). Working memory capacity. NY: Psychology
Press.

Daelemans, W., De Smedt, K. & Gazdar, G. (1992). “Inheritance
in Natural Language Processing”. Computational Linguistics Vol
19 (2), 205-218. Cambridge, MA: MIT Press.

Ericsson, K. & Kintsch, W. (1995). Long-term working memory.
Psychological Review, 201, 211-245.

Freiman, M. & Ball, J. (2010). Improving the Reading Rate of
Double-R-Language. In D. D. Salvucci & G. Gunzelmann (Eds.),
Proceedings of the 10th International Conference on Cognitive
Modeling (pp. 1-6). Philadelphia, PA: Drexel University.

Langacker, R. (1987/1991). Foundations of Cognitive Grammar,
Vols 1 &2. Stanford, CA: Stanford University Press.

Matuszek, C., Cabral, J., Witbrock, M. & DeOliveira, J. (2006).
An Introduction to the Syntax and Content of Cyc. In Proceedings
of the 2006 AAAI Spring Symposium on Formalizing and
Compiling Background Knowledge and Its Applications to
Knowledge Representation and Question Answering, Stanford,
CA, March 2006.

Prabhakaran, V., Narayanan, K., Zhao, Z. & Gabrielli, J. (2000).
Integration of diverse information in working memory in the
frontal lobe. Nature Neuroscience, 3, 85-90.

Rodgers, S., Myers, C., Ball, J. & Freiman, M. (2011). The
Situation Model in the Synthetic Teammate Project. Proceedings
of the 20th Annual Conference on Behavior Representation in
Modeling and Simulation.

Sag, I. (2007). Remarks on Locality. Proceedings of the HPSG07
Conference.

Sag, I. (2010). Sign-Based Construction Grammar: An informal
synopsis. In H. Boas & I. Sag (eds.). Sign-Based Construction
Grammar. Stanford, CA: CSLI.

Sag, I., Wasow, T. & Bender, E. (2003). Syntactic Theory: A
Formal Introduction. Stanford, CA: CSLI.

Vosse, T. & Kempen, G. (2000). Syntactic structure assembly in
human parsing: a computational model based on competitive
inhibition and a lexicalist grammar. Cognition, 75, 105-143.

17

