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Abstract 
This paper explores the benefits and challenges of using the 
ACT-R cognitive architecture in the development of a large-
scale, functional, cognitively motivated language analysis 
model. The paper focuses on chunks, inheritance, production 
matching and memory, proposing extensions to ACT-R to 
support multiple inheritance and suggesting a mapping from 
the focus of attention, working memory and long-term 
memory to ACT-R buffers and declarative memory (DM).   

Introduction 
Our research team has been working on the development of 
a language analysis model (Ball, 2011; Ball, Heiberg & 
Silber, 2007) within the ACT-R cognitive architecture 
(Anderson, 2007) since 2002 (Ball, 2004). The focus is on 
development of a general-purpose, large-scale, functional 
model (Ball, 2008; Ball et al., 2010) that adheres to well 
established cognitive constraints on human language 
processing (HLP) as realized by ACT-R.  

This paper explores the benefits and challenges of using 
the ACT-R cognitive architecture in the development of the 
language analysis model. ACT-R is a hybrid symbolic, 
subsymbolic (or probabilistic) architecture which combines 
parallel, probabilistic mechanisms for declarative memory 
(DM) chunk activation and selection (i.e. retrieval), and a 
parallel, utility based production matching and selection 
mechanism, with a serial production execution mechanism. 
The production system is the central component of ACT-R. 
It interfaces to DM and other cognitive/perceptual modules 
(e.g. motor module, visual module) via a collection of 
module specific buffers which contain chunks that constitute 
the current context for production matching. Buffers are 
restricted to containing a single chunk at a time. The 
production with the highest utility which matches the 
current context is selected and executed. Execution of a 
production may effect an action resulting in a change to the 
current context (e.g. via retrieval of a DM chunk, or a shift 
in attention to a new visual object). The changed context 
determines which production next matches and executes. 

The paper focuses on declarative memory (DM) chunks 
and chunk types, inheritance, production matching and 
selection, and the mapping of ACT-R architectural features 

like buffers and DM to memory constructs like the focus of 
attention, working memory and long-term memory.  

To support the creation of integrated linguistic 
representations, the language analysis model uses a 
collection of buffers—an extension of the ACT-R
architecture—to retain the partial products of language 
analysis. These buffers are functionally needed to support 
language analysis. We view the collection of buffers, in 
combination with productions which match against them, as 
the ACT-R/language analysis model equivalent of 
Baddeley’s Episodic Buffer (Baddeley, 2000). According to 
Baddeley, “The episodic buffer is assumed to be a limited-
capacity temporary storage system that is capable of 
integrating information from a variety of sources…the 
buffer provides not only a mechanism for modeling the 
environment, but also for creating new cognitive 
representations” (ibid, p. 421). A key empirical result which 
motivated Baddeley to introduce the episodic buffer after 25 
years of working memory research is the prose recall effect. 
Subjects are capable of recalling greater than 16 words 
(without error) in the context of a text passage, whereas they 
are limited to recalling about 5 words (without error) in 
isolation. This prose recall capability greatly exceeds the 
capacity of the phonological loop and appears to be based 
on a chunking (or integration) mechanism. Evidence of a 
prose recall effect in patients with a severely degraded long-
term memory (LTM) capacity argues against an LTM 
explanation (LTM ~ DM in the ACT-R architecture). 
Ultimately, the empirical evidence led Baddeley to propose 
the addition of the episodic buffer to his model of working 
memory.  

Currently, the language analysis model comprises just 
under 60,000 declarative memory (DM) chunks (including 
59,000 lexical item chunks) and ~750 (grammatical) 
productions. The model is capable of processing a broad 
range of English language constructions (Ball, Heiberg & 
Silber, 2007; http://doublertheory.com/comp-
grammer/comp-grammar.htm). Our ultimate goal is to be 
able to handle unrestricted text at levels comparable to 
leading computational linguistic systems (cf. Collins, 2003)
without extensive training on any specific corpus—as is true 
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of humans, but not computational linguistic systems which 
require extensive training on specific, annotated corpora. In 
terms of processing speed, the model is capable of 
processing ~151 written words per minute (wpm) on a quad-
core, 64-bit machine running Windows 7 and Allegro 
Common Lisp (ACL) (64-bit software versions). In 
addition, ACT-R supports the measurement of cognitive 
processing time, and the model is capable of processing 
~150 wpm in ACT-R cognitive processing time. This 
compares to a cognitive processing range of between 200 
and 300 wpm for adult readers of English (for full 
comprehension). To bring the model into closer alignment 
with adult reading rates, we are working on reducing both 
the number of productions which must execute, and the 
number of DM elements which must be retrieved, during 
language analysis (Freiman & Ball, 2010). 

Chunks, Inheritance & Production Selection 
ACT-R provides support for a hierarchy of chunk types with 
a single inheritance mechanism. Default values can be set 
for the values of slots. These default values may be 
overridden in specific chunks. For example, in our model, a 
verb chunk type is defined that inherits from a word-pos 
chunk type (i.e. word form + part of speech).  The verb 
chunk type inherits word form slots from word-pos (e.g. 
letter and trigram slots) along with default values (all are set 
to “none” by default). The verb chunk type specifies a 
collection of slots that are common to all verbs which 
include “tense”, “aspect”, “voice”, and “verb-form”. The 
default values for these slots are also “none”. A specific
verb chunk overrides these default values to provide verb 
specific values. A sample chunk (present tense, base form of 
the verb “get”) is shown below:

get-verb-pres-base-wf-pos  
isa verb  
index get-indx  
word get-word  
word-form “get” 
word-symbol get-symb  
word-length three3  
letter-1 g  
letter-2 e  
letter -3 t 
trigram-1 wbge ;; wb = word boundary 
trigram-2 get  
trigram-3 etwb
parent “none” 
token “type” 
stem “get”
super-type verb  
type verb  
subtype trans-verb  
alt-subtype got-passive 
subj-agree plur  
verb-form v-base-fin 
tense pres tense-1 fin  

aspect “none” 
voice act 
gram-func-1 pred-head  
gram-func-2 “none” 
subj-agree-alt first-sing 

“Get-verb-pres-base-wf-pos” is the chunk name. “Isa verb” 
defines the chunk type. These entries are followed by a 
collection of slot name, slot value pairs. (There are actually 
12 letter and 6 trigram slots, but only 3 have values other 
than “none”.) For example, “index” is a slot name and “get-
indx” is the value of the slot. If the value of a slot is a 
symbol (i.e. the value is not a number or a quoted string), it 
corresponds to the name of an ACT-R chunk. “Get-indx” 
(which is not quoted above) corresponds to the name of an 
ACT-R chunk. It is a feature of ACT-R that only slot values 
which are chunks can spread activation (i.e. numbers and 
strings do not spread activation).  

We make extensive use of ACT-R’s single inheritance 
mechanism, both in the definition of our grammatical 
ontology and in the production matching and selection 
process. For example, the full hierarchy for defining parts of 
speech is shown below (note that word-pos is only one 
subtype of construction-with-head, not all parts of speech 
are shown, and it is actually word-pos-max-size that 
specifies the 12 letter and 6 trigram slots, not word-pos): 

In ACT-R, the production selection and execution process is 
based on the matching of the left hand side of productions 
against the chunks in buffers. These buffers provide the 
context for production selection. During the production 
selection process, ACT-R determines which productions 
currently match the buffer contents. The production with the 
highest utility which matches the current buffer contents is 
selected for execution. Productions may selectively match 
against any number of buffers, from 0 (in which case the 
production may always match) to all the buffers. 
Productions which match against a chunk in a buffer must 
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specify the type of the chunk being matched. The match to 
the type succeeds if the chunk in the buffer is of the 
specified type (e.g. isa verb in the production matches isa 
verb in the buffer) or the specified type is a super-type of 
the chunk in the buffer (e.g. isa word-pos in the production 
matches isa verb in the buffer). We use the capability to 
match to a type or super-type extensively. Specialized 
productions match to chunks in buffers of a very specific 
type (e.g. isa verb in the production), whereas a more 
general production may match the same chunk as a high 
level super-type (e.g. isa construction in the production). 
Specialized productions have higher utility than general 
productions since they are more likely to be useful in a 
matching context than the more general production. 
Productions which match chunks in buffers may also match 
the slot names and slot values of the chunks in the buffer—
where slot values may be chunk names, numbers or strings. 

The value of a slot may be the name of a chunk. The 
name functions like a pointer to the chunk. For example, the 
value “get-indx” for the slot “index” could be used to 
retrieve the DM chunk corresponding to the chunk name 
“get-indx”. Using the chunk name to retrieve a chunk is a 
highly constrained from of retrieval—there is only one 
chunk that can match the chunk name. It is important to note 
that the contents of a chunk are not directly available from 
the chunk name. Access to the contents of the chunk 
requires a chunk retrieval. In this respect, ACT-R has a 
highly constrained capability for accessing the contents of a 
chunk and its chunk descendents. The contents of the 
chunks which are the slot values of a chunk are not directly 
accessible without a retrieval. We refer to this constraint as 
local accessibility.

The language analysis model uses ACT-R productions to 
support language analysis. The production matching 
behavior of ACT-R can be compared to other approaches to 
language analysis. Within computational linguistics, there is 
an approach to language analysis which is based on the 
unification of attribute-value matrices. This approach is a 
key element of Head-Driven Phrase Structure Grammar 
(HPSG) (Sag, Wasow & Bender, 2003) and certain variants 
of Construction Grammar (e.g. Sign-Based Construction 
Grammar, Sag 2010). A key difference between such 
approaches and our ACT-R based language analysis model 
is that the value of an attribute (where attribute corresponds 
to a slot in ACT-R terms) is itself an attribute-value matrix. 
Instead of the attribute having a value which is the name of 
an attribute-value matrix, the matrix itself is the value of the 
attribute. By comparison, ACT-R introduces a level of 
indirection in that the value of a slot is the name of a chunk 
and not the chunk itself. Combining the direct integration of 
attribute-value matrices as the value of an attribute with the 
unification algorithm for matching attribute-value matrices 
provides a powerful language analysis capability. Unlike 
ACT-R’s limited local accessibility pattern matching 
capability, unification provides the capability to recursively 
unify arbitrarily complex attribute-value matrices. While 
this might appear to make approaches like HPSG preferable 

to our approach, I believe that this unification capability is 
too powerful to match human capabilities. In a similar vein, 
Vosse & Kempen (2000) limit the unification capabilities of 
their psychologically plausible language analysis system to 
a single level of recursion, comparable to the local 
accessibility of ACT-R. Further, there is an approach to 
formal semantic analysis called Minimal Recursion 
Semantics (Copestake et al., 2005) which has been used in 
combination with both HPSG and SBCG. Minimal 
Recursion Semantics limits the recursive capabilities of the 
semantic analysis component to a single level, using pointer 
variables within semantic representations to link to non-
atomic elements of the semantic representation (and
restricting the representations to be compliant with first 
order predicate logic in the process). In using pointer 
variables, the representations in Minimal Recursion 
Semantics are closer in form to the representations of our 
ACT-R based language analysis model than HPSG or 
SBCG. In addition, Sag (2007) introduces an explicit 
locality constraint into SBCG which limits grammatical 
schemas to accessing the content of the daughters of a 
phrase level representation, precluding access to lower 
levels of representation (i.e. daughters of the daughter). The 
introduction of locality constraints is a principle motivator 
of Sag’s shift from HPSG to SBCG: “This paper proposes a 
modification of HPSG theory – Sign-Based Construction 
Grammar – that incorporates a strong theory of both 
selectional and constructional locality” (Sag, 2007). 
Information that is needed at a particular level of 
representation must be passed up from lower levels to be 
locally accessible. The language analysis model adopts a 
similar approach. For example, grammatical features like 
tense and aspect are lexically realized by verbs. For these 
grammatical features to be accessible at the level of a 
clause, they must be passed up or projected from the level 
of the verb to the level of the clause. Whereas it is possible 
in HPSG, and possible but discouraged in SBCG to use 
unification to recursively descend to lower levels to match 
grammatical features without projecting them up, the 
constraints of ACT-R preclude this without explicitly 
retrieving the lower level chunks in order to access features 
that have not been projected.  

As noted above, the pattern matching capabilities of 
ACT-R’s production selection mechanism are limited to 
matching slot values (of chunks in buffers) which may 
contain the name of a chunk, strings or numbers, whereas 
the matching to chunk types uses ACT-R’s inheritance 
mechanism. There are cases where it is desirable to be able 
to match slot values in a hierarchical manner. For example, 
the language analysis model has an animacy feature of 
nouns and object referring expressions (or nominals) that 
has the possible values inanimate, animate and human
(where human is a subtype of animate). For generality, we 
would like a production to be able to match either the 
human or animate feature, when appropriate. For example, 
when incrementally identifying the indirect or direct object 
of a verb like “give” (e.g. “he gave the man…” vs. “he gave 
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the book…”), animacy is key, with the indirect object 
typically being human or animate, and the direct object 
typically being inanimate. We would like a single 
production to handle the indirect object case and a single 
production to handle the direct object case. If a test for 
animacy matched either animate or human (a subtype of 
animate), only a single production would be needed for the 
indirect object case. ACT-R does not support this. A less 
desirable workaround is to include a disjunctive match for 
either animate or human. ACT-R also does not support 
disjunctive matching. However, ACT-R does support 
conjunctive negative matches. For example, the direct object 
production could have separate tests for the animacy feature 
not being either animate or human (e.g. - animacy animate,
- animacy human, instead of animacy inanimate). In 
general, we avoid negative tests (and especially negative 
conjunctive tests) on plausibility grounds—resorting to such 
tests only to avoid a proliferation of productions with 
independent positive tests. More typically, we step outside 
the ACT-R architecture and add a function to the production 
(using ACT-R’s !eval! mechanism) which performs a 
disjunctive test using Lisp code.  

Multiple Inheritance 
For reasons that have not been make explicit, but are not 
likely to be theoretical in any case, ACT-R only supports 
single inheritance. The only reason I have been able to come 
up with, is, if you want multiple inheritance in ACT-R (or 
single inheritance for that matter), you should implement it 
in the production system itself. In fact, there is an ACT-R
tutorial unit which implements a semantic net and uses 
productions to provide an inheritance-like capability. 
However, implementing an inheritance capability within the 
production system would complicate model development, 
lead to an undesirable proliferation in the number of 
productions, and increase cognitive processing time.  

As an example of production proliferation, consider how 
production matching could be implemented without using 
ACT-R’s built-in single inheritance capability. Instead of a 
production matching on a super-type which encompasses a 
collection of types, a separate production could be created 
for each type. In the case of part of speech chunks, instead 
of a generic production that matches all word-pos chunks, 
one production could match verbs, another production could 
match nouns, a third production could match adjectives, etc. 
This collection of part of speech specific productions is the 
computational equivalent of a single production that 
matches the word-pos super-type. Note that there is no 
cognitive cost associated with this type matching capability 
since production selection occurs in parallel in ACT-R and 
incurs no time cost. At least for production matching and 
selection, using ACT-R’s single inheritance mechanism to 
match a super-type can be viewed as a computational short 
cut that reduces the number of productions. To implement 
production matching with multiple inheritance, additional 
productions are still needed. 

Besides having multiple productions for each type of a 
super-type, productions could be created to provide support 
for inferring a super-type or subtype from a type. ACT-R’s 
sample semantic memory model (unit 2 in the ACT-R 6 
tutorial) provides an example of a chain production for 
inferring the super-type of a type. However, each execution 
of this chain production requires 50 msec to execute, and 
ascending (or descending) our chunk hierarchy would 
increase the cognitive processing time of the model which is 
already slower than adult human reading rates. In addition, 
the empirical evidence for the time cost of inferring the 
super-types of a type is moot. Human memory does not 
appear to be organized into a neat hierarchy of super-types, 
types and subtypes (cf. Collins & Loftus, 1975). As an 
aside, the ACT-R semantic memory model is one of a few 
tutorial models which is not compared to human data. 

There are many examples of categories that are best 
viewed as inheriting from multiple super-types. A classic 
example is that of the “pet cat”. A “pet cat” is at once a pet 
and a cat. In a single inheritance system, a “pet cat” must be 
categorized as either a subtype of pet or a subtype of cat. If 
pet cats are categorized as cats, then for each pet cat, there 
will need to be a slot in the cat type to indicate that it is a 
“pet cat”. This approach misses the generalization that being 
a pet is a characteristic of all pets that could be inherited 
from a pet super-type, eliminating the need for a pet slot in 
the cat type.  

A good article with motivates the need for multiple 
inheritance in language analysis (along with default 
inheritance) is Daelemans, De Smedt & Gazdar (1992). In 
this article, the authors argue that the representation of verbs 
is best handled via multiple inheritance. For example, verbs 
can be subcategorized on the basis of their argument 
structure as intransitive (no object), transitive (1 object) and 
ditransitive (2 objects). However, they can also be 
subcategorized on the basis of tense and aspect as past tense 
(e.g. “went”), present tense (e.g. “go”, “goes”), present 
participle (e.g. “going”) and past participle (e.g. “gone”). A 
multiple inheritance hierarchy can capture these different 
categorizations efficiently. Without multiple inheritance, if 
argument structure is used to subcategorize verbs, then tense 
and aspect (i.e. the present participle expresses progressive 
aspect, and the past participle expresses perfect aspect) will 
have to be redundantly encoded for each type of verb, 
missing a generalization that applies to all verbs. 

Our model diverges from the analysis of Daelemans, De 
Smedt & Gazdar in that we do not treat either argument 
structure or tense and aspect as a basis for creating subtypes 
of verbs. From a representational perspective, 
subcategorizing on the basis of argument structure is 
incompatible with the basic division of parts of speech into 
categories like noun, verb, adjective and preposition, which 
we view as abstract semantic categories in agreement with 
Cognitive Grammar (Langacker, 1987/1991). Argument 
structure is a different dimension of meaning for 
categorizing verbs than that used to categorize nouns and 
verbs (i.e. object words vs. action words). A common 
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mistake in the creation of ontologies is to change the 
dimension of meaning which provides the basis for creating 
subtypes at different levels of the ontology. For example, 
categorizing my pet dog “Fido” as a subtype of dog, 
confuses types and instances. “Fido” is an instance of a 
dog—a particular dog—not a subtype or subclass of dog. 
The Cyc Knowledge Base (Matuszek et al., 2006) makes a 
clear ontological distinction between instances (#$isa) and 
collections or classes (#$genls). This confusion is less 
obvious in the treatment of intransitive verb as a subtype of 
verb. However, consider the possibility of creating subtypes 
of verb that correspond to action, event, process and state. 
This seems like a more reasonable subcategorization to me 
than a subcategorization based on the number of arguments. 
Of course, multiple inheritance would make it possible to 
have it both ways and would reduce the strength of this 
argument. Wherever multiple dimensions of meaning are 
involved in categorization (almost always the case), support 
for multiple inheritance is needed.  

As another example of where multiple inheritance would 
be useful, consider wh-words like “who” and “what”. These 
words are pronouns, but they are also wh-words. On the 
other hand, “where” and “why” are typically considered to 
be adverbs, not pronouns. Without multiple inheritance, we 
have defined the chunk types wh-pronoun and wh-adverb.
These chunk types inherit from wh-word, but not from 
pronoun or adverb. This means that they cannot inherit the 
features of pronouns and adverbs and they cannot be 
recognized as pronouns or adverbs when appropriate. The 
result is a loss of generalization which requires extra 
productions. There are productions which match against 
pronouns, and separate productions which match against 
wh-pronouns (which are wh-words, but not pronouns). 
There are also productions which match against adverbs,
and separate productions which match against wh-adverbs
(which are wh-words, but not adverbs). With multiple 
inheritance, fewer productions would be needed. 

Mapping ACT-R Buffers and DM into 
Memory Constructs 

ACT-R comes with a small collection of buffers that 
provide the interface between various modules (e.g. visual, 
manual, retrieval, imaginal, goal) and the production 
system. These buffers are limited to holding a single 
chunk—a very strong constraint! Recent research has 
provided neuro-scientific support (primarily fMRI based) 
for the existence of these buffers, demonstrating that 
specific regions of the brain are active when these buffers 
are being matched against productions. With the 
introduction of ACT-R 6, a capability to create new 
modules and buffers was added to ACT-R. There are now 
numerous ACT-R models that posit the existence of one or 
two new buffers, often providing neuro-scientific support 
for the buffers. Our language analysis model is unique in 
positing the existence of dozens of new buffers (where each 
buffer is limited by ACT-R to holding a single chunk). The 

existence of these buffers is motivated on functional 
grounds. I do not believe it is feasible to analyze language 
without retaining the partial products of that analysis in a 
directly accessible way that avoids the necessity of 
retrievals from DM. As the capabilities of our model have 
increased, we have needed to add buffers to retain more and 
more different types of information. We have limited the 
types of chunks that are retained in each buffer. The 
alternative of using a smaller set of general purpose buffers 
would create serious problems for production matching. 
With type specific buffers, productions know which buffers 
to match against (# of productions = # of types). With type 
general buffers, multiple productions would be needed to 
match against each type general buffer (# of productions = # 
of buffers times # of types). Without types (or super-types),
the number of productions is even larger (# of productions = 
# of buffers times # of subtypes). 

For an example of the need to retain the partial products 
of language analysis in directly accessible type specific 
buffers, consider the input 

� What did he eat?  

The wh-word “what” occurs at the beginning of the 
sentence, but it is also the understood object of “eat” (i.e. it 
is the object that was eaten that is being questioned by 
“what”). In order to bind “what” to the object of “eat”, 
“what” needs to be accessible at the time “eat” is processed. 
The simplest solution within the constraints of ACT-R is to 
have a buffer that contains the chunk for “what”. We call 
this buffer the wh-focus buffer. Do we think this buffer is 
innate? No. There are languages like Chinese which have in 
situ wh-words (i.e. the equivalent of “he ate what”). For 
such a language, a wh-focus buffer is not needed. This 
suggests that English speakers learn how to buffer wh-
words at the beginning of sentences, because they need to. 
Note that the distance between the wh-word and the binding 
site can be arbitrarily far:  

� What do you think he ate?  
� What do you think he wants to eat?  

What is not allowed is the occurrence of an intervening wh-
word:  

� *What do you think who wants to eat?  

This can be explained if there is only room for one wh-word 
in the wh-focus buffer. Note also that there can be more 
than one wh-word in a sentence:  

� Who wants what?  

So long as the wh-word in the wh-focus buffer doesn’t have 
to “hop over” another wh-word for binding purposes, it’s 
OK. (Of course there may be languages which allow wh-
words to be stacked in which case the language learner 
would need to learn how to retain multiple wh-words in 
buffers.) 

One might ask why not just retrieve the wh-word from 
memory when needed. Unless there’s some indication that a 
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wh-word has occurred, then there’s no reason the model 
would attempt to retrieve a wh-word. Having the wh-word 
in a buffer provides this indication, as well as avoiding the 
need for a retrieval. 

The occurrence of a wh-word at the beginning of a sentence 
which corresponds to an object of a subsequent verb is an 
example of a long-distance dependency. The representation 
and processing of long-distance dependencies is an 
important research topic in linguistics and computational 
linguistics. In a common variant of generative grammar, 
wh-words are moved from the object position to the fronted 
position and leave behind an indexed trace in the object 
position. In Generalized Phrase Structure Grammar (GPSG), 
a slash notation is used to indicate the fronting of a wh-
phrase (e.g. S\NP indicates the fronting of an NP at the level 
of the sentence, where wh-phrases are treated as NPs with a 
+wh feature). This slash is propagated down the syntax tree 
(thru the VP\NP node) until it is eliminated at the location 
of the missing verb object. In our language analysis model, 
we use the wh-focus buffer to retain the wh-word until it can 
be bound to the object slot in the transitive verb
construction projected by the verb “eat”. 

The originators of the ACT-R cognitive architecture do 
not provide a definitive mapping from commonly used 
memory constructs like focus of attention, working memory
and long-term memory to basic architectural features like 
buffers and declarative memory. I have not come across any 
suggested mapping of the focus of attention into ACT-R
architectural features. However, memory constructs have 
been addressed to some extent. Anderson (1980) explicitly 
rejects the notion of short-term memory as elaborated in the 
1960’s (Atkinson & Shiffrin, 1968), and there is some 
recognition of the need for an episodic memory capacity 
within the ACT-R community. 

In the absence of a definitive mapping, various proposals 
have been made. In the case of working memory, it has been 
suggested that the contents of the buffers constitute working 
memory (Glenn Gunzelmann, p.c.). An alternative proposal 
is that all chunks in DM whose activation exceeds the 
retrieval threshold constitute working memory (Christopher 
Myers, p.c.). Unfortunately, the first suggestion seems too 
constrained and the second proposal too unconstrained as a 
definition of working memory. The first suggestion would 
limit working memory to one chunk of a given type, since 
buffers are module, and presumably chunk type, specific,
and are limited to a single chunk. A capability to compare 
two chunks of a given type seems necessary for an adequate 
definition of working memory. (I should note that it is 
common practice in the ACT-R community to compare 
chunks across buffers, often enlisting the visual or imaginal 
buffer for comparison with a chunk in the retrieval buffer. I
consider this practice suspect under the assumption that 
modules and their associated buffers and chunks are 
specialized for the module. Can a chunk in the visual buffer 
really be compared to a chunk in the retrieval buffer?) For 
the second proposal, unless there is an associated 
assumption that only chunks that are receiving some amount 

of spreading activation from the context will exceed the 
retrieval threshold, then it is not clear what working memory
means in this case (i.e. all chunks with high base level 
activation will exceed the threshold despite the context).

Working memory may not, itself, be a unified construct. 
Ericsson & Kintsch (1995) introduce a distinction between 
short-term working memory (STWM) and long-term 
working memory (LTWM) which has not been adopted by 
the ACT-R community, but which I find attractive. LTWM 
is a construct which supports expertise, making potentially 
large amounts of contextual relevant knowledge highly 
accessible. How can this working memory distinction be 
folded into a mapping to ACT-R, along with a mapping to 
the focus on attention? 

Here are my suggestions. The focus of attention is 
extremely limited in capacity—estimates range between 1 
and 4 chunks (Cowan, 2005). I suggest that the focus of 
attention corresponds to the chunks in the buffers that have 
been matched by the currently executing production. 
Although there is no architectural limit on the number of 
buffers which can be matched by a production, I suspect that 
matching more than 4 buffers in a production is unlikely. 
Ericsson and Kintsch limit STWM to 1 or 2 chunks which 
suggests that STWM corresponds roughly to the focus of 
attention. In a variant of ACT-R which includes carryover 
activation and a resonance capability (see Ball, in 
preparation), LTWM may correspond to the contents of all 
buffers not in the focus of attention, plus the chunks in DM 
that are resonating. There's one complication—according to 
Ericsson and Kintsch, it takes time to access the contents of 
LTWM, but access to LTWM is much faster than access to 
long term memory (LTM) more generally (where DM ~ 
LTM less episodic memory ~ semantic memory). Access to 
ACT-R buffers is instantaneous, so there is a disconnect 
here if LTWM includes the contents of buffers not in the 
focus of attention as well as resonating chunks in DM,
unless LTWM access time is an average across 
instantaneous buffers and slower DM. It is also the case that 
Ericsson and Kintsch believe that LTWM is adaptive. 
Experts learn how to activate larger and larger quantities of 
contextually relevant knowledge in LTWM where it is 
readily accessible. I think this ability corresponds to an 
ability to learn how to buffer useful knowledge in ACT-R
via the creation of new buffers—although this capability to 
create new buffers doesn't currently exist in ACT-R. I 
believe this capability is chunk type specific. A learned 
buffer retains chunks of a particular type. I don't think 
Ericsson and Kintsch consider this in their description of 
LTWM, although it is clear that expert knowledge is 
domain, if not type, specific. In sum, allowing LTWM to 
map to a combination of learned buffers not in the focus of 
attention and resonating DM chunks appears to provide a 
good mapping, although neither of these are currently part 
of the ACT-R architecture. 

In an interesting article on working memory, Baddeley 
(2002) revises his 25-year old theory of working memory by 
adding an episodic buffer in addition to the phonological 
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loop and visualspatial sketchpad. The episodic buffer is a 
temporary storage system and differs from Tulving’s notion 
of episodic memory as a long-term memory construct in this 
respect. The need for this buffer is motivated, in part, by the 
relatively large number of words that can be accurately 
recalled in the context of a sentence (~16 words without 
error) compared to isolated words (~5 words without error). 
This same prose recall data was used by Ericsson & Kintsch 
to motivate their LTWM. Unlike ACT-R buffers which are 
limited to holding a single chunk, Baddeley’s episodic 
buffer is a complex system capable of holding an as yet 
undetermined number of multi-modal memory structures—
with initial estimates ranging between 5 and 10 words in the 
case of verbal information. The term episodic is used in the 
sense that “it is capable of binding together information 
from a number of different sources into chunks or episodes” 
(Baddeley, 2003, p. 203), and the term buffer is used in the 
sense of “providing a way of combining information from 
different modalities into a single multi-faceted code” (ibid.). 
Baddeley constrasts this episodic buffer, which is a distinct 
temporary storage system, with Ericsson & Kintsch’s 
LTWM, which corresponds to activated LTM (with pointers 
from STWM to support efficient, direct retrieval). Baddeley 
also provides neuro-scientific evidence for the episodic 
buffer, referencing the research of Prabhakaran et al. (2000) 
and providing the following quote from that research: “the 
present fMRI results provide evidence for another buffer, 
namely one that allows for temporary retention of integrated 
information” (p. 89). Even more striking, Baddeley 
discusses a subject studied by Endel Tulving who had 
seriously impaired LTM, but was nonetheless a good bridge 
player—which requires retention of considerable 
information. Apparently, this subject had learned how to 
buffer knowledge of bridge prior to suffering a LTM 
impairment, and retained the ability to play bridge despite 
the impairment. 

There is a more direct mapping from Baddeley’s complex 
(multi-chunk) episodic buffer to the collection of single 
chunk buffers used in the language analysis model, than 
from Ericsson & Kintsch’s LTWM when viewed as 
activated LTM. Chunks in buffers are treated as specific 
instances (i.e. episodic) rather than generic types (i.e. 
semantic) even though they are retrieved from ACT-R’s 
DM—which corresponds more closely to semantic memory
than episodic memory. It is unclear if LTWM is more 
semantic or episodic in nature. In addition, the contents of 
the episodic buffer are immediately accessible as are ACT-R
buffers, unlike LTWM.

To the extent that there is empirical support for constructs 
like the episodic buffer and LTWM, and, more generally, to 
the extent that there is empirical motivation for a larger 
working memory than provided by the built-in ACT-R
buffers, the collection of buffers used in the language 
analysis model is also supported. 

In a recent presentation by John Anderson (June 2011), 
he introduced a new collection of buffers to support 
metacognition in ACT-R. Metacognition occurs during the 

completion of complex tasks and encompasses processes 
like reflection, high-level reasoning and theory of mind.
Anderson provided fMRI evidence for these buffers based 
on the activation of several distinct brain regions during the 
performance of complex algebraic tasks. Anderson also 
noted that the performance of tasks which require a mapping 
from learned techniques for completing algebraic equations, 
to novel, but isomorphic, ways of representing algebraic 
tasks requires simultaneous maintenance of at least two 
chunks to perform the mapping from learned to novel 
representation. The introduction of these new buffers and 
the recognition of the need to maintain multiple chunks for 
comparison and analogy extends the capability of ACT-R
for modeling complex tasks, and begins to address some of 
the large areas of the brain for which ACT-R currently has 
little to say (including much of the pre-frontal cortex).  

In general, the introduction of new buffers in ACT-R is 
based on extensive empirical evidence on simple tasks. 
Across simple tasks, the same buffers are often reused—
obviating the need to expand the number of buffers. 
However, as more complex ACT-R models are developed, 
the attempt to reuse the small set of existing buffers can lead 
to severe interference within individual buffers as chunks 
override each other. This interference can take the form of 
thrashing of DM retrievals as one retrieval overrides a 
previous chunk that is still needed, necessitating its re-
retrieval, which overrides the current chunk that is also 
needed. The result is an inability to model human 
performance (i.e. too many retrievals are required which 
slows the model down to well below human performance). 
To perform complex tasks, more information is needed than 
can be maintained by the existing ACT-R buffers, given 
psychologically motivated chunk sizes. Either chunks must 
grow in size, or the number of buffers must be increased.  

In an earlier version of our synthetic teammate model 
(Ball et al., 2010), we incorporated what we called a 
“superchunk” that contained a large number of slots to 
retain the information needed to pilot an Unmanned Aerial 
Vehicle (UAV). This superchunk was stored in ACT-R’s 
imaginal buffer and allowed the model to function, but was 
representationally and cognitively problematic. We have 
since modified the model (Rodgers et al., 2011) to introduce 
a collection of buffers that contain chunks which are 
representationally more defensible, and I would argue 
cognitively more plausible. In complex systems, 
representations matter. Our chunks are still larger than 
standard psychological assumptions support (i.e. most 
psychological theories limit chunks to having 3 or 4 
elements), but Ball (2011, part 1) provides arguments for 
why the chunks are as large as they are given ACT-R
constraints on activation spread. 

Conclusions 
ACT-R’s constraints on production matching and the limits 
of single inheritance, combined with assumptions about 
chunk size and local access to chunk contents have created 
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opportunities and challenges in the development of a large-
scale functional language analysis model. The problems can 
be allayed to some extent by the addition of buffers to retain 
the partial products of language analysis and the creation of 
additional productions where multiple-inheritance is needed,
but not supported. Empirical support for the addition of 
these buffers is provided via association with Baddeley’s 
episodic buffer and, to some extent, with Ericsson & 
Kintsch’s LTWM.
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