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Abstract

Presumably any human-level cognitive system (HLCS)
must have the capacity to: maintain and learn new con-
cepts; believe propositions about its environment that
are constructed from these concepts, and from what it
perceives; reason over the propositions it believes, in
order to among other things manipulate its environment
and justify its significant decisions; and learn new con-
cepts. Given this list of desiderata, it’s hard to see how
any intelligent attempt to build or simulate a HLCS can
avoid falling under a neo-Piagetian approach to engi-
neering HLCSs. Unfortunately, such engineering has
been discursively declared by Jerry Fodor to be flat-out
impossible. After setting out Fodor’s challenges, we re-
fute them and, inspired by those refutations, sketch our
solutions on behalf of those wanting to computation-
ally model and construct HLCSs, under neo-Piagetian
assumptions.

Concepts appear to lie at the heart of human intelligence. Ev-
ery reader of the present sentence, for example, has and ex-
ploits the concept of a sentence, and every competent reader
of the previous sentence has at least some concept of intelli-
gence.

Given such truisms, it’s difficult to defend any approach to
creating a human-level intelligence (= a HLCS) that doesn’t
take some principled stance on both the nature of concepts
and how they are to be used by the HLCS in its reason-
ing and decision-making. Production-system-based systems
like ACT-R posit that at least some concepts are to be repre-
sented in logic-like fashion in declarative form.1 A Bayesian
approach needs concepts and propositions to associate prob-
abilities with. And finally, a connectionist system lacking at
the object level concepts that are naturally represented in a
logic (or some mathematical equivalent), but which treats
concepts as “emergent” features of its sub-symbolic opera-
tions still needs to explain how the ability of an HLCS to
consistently recognize, reason over, and communicate about
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1Which is why John Anderson could simply appropriate the
standard model theory for first-order logic to provide a semantics
for the current ACT-R’s precursors; see Chapter 7 of (Anderson
1976). See (Bringsjord 2008) for a demonstration that production
systems are simply elementary computational logics.

concepts arises—which would itself require a theory of con-
cepts, if such explanation is to abide by the concept- and
proposition-based canons of science and engineering.

From this it should follow that a deeper understanding
of concepts—what they are, how to define them, how they
work, what sort of computational mechanism is best to em-
ulate them, and so on—is and should be a primary focus of
human-level AI research. Unfortunately, it’s not unreason-
able to hold that standard AI research programs are too nar-
row in scope (the organizing theme of this symposium, for
example, seeks to address that issue), and may be missing
out on the larger picture produced by refusing take account
of the daunting sweep of human-level intelligence.

One suggestion for how to transcend narrow “tunnel-
vision” AI research is to frequently reevaluate and incor-
porate knowledge from related disciplines—cognitive sci-
ence, neuroscience, cognitive psychology, and philosophy of
mind, to name a few. Cognitive-architecture designers en-
joy a uniquely advantageous position among practitioners
in these fields in that they are able to exploit contributions
from various fields by eliminating ambiguities in specifica-
tion, turing vague ideas into concrete algorithmic interpreta-
tions.

Herein we present some of the assumptions underly-
ing one of the most important and influential comprehen-
sive theories of human-level intelligence: neo-Piagetianism.
After looking at some intimate connections between neo-
Piagetianism and HLCSs, it becomes clear that some of
these shared assumptions face direct challenges from Jerry
Fodor; challenges of sufficient power as to require that they
are made explicit and addressed. Accordingly, we show that
Fodor’s objections can be successfully rebutted from the
neo-Piagetian perspective.

We concede at the outset our passionate affirmation of
the methodological assumption that philosophical issues of
the sort that Fodor and Piaget (and critics of both) grapple
with can be entirely ignored by AI engineers. But if the his-
tory of AI has taught us anything since the brash predictions
made at and soon after AI’s dawn at Dartmouth in 1956, it
is that the pessimism of philosophers has prima facie plau-
sibility, while the we’ll-just-show-you-soon moxy of less
abstraction-oriented engineers can be unproductive.
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Neo-Piagetianism and Cognitive Systems

Since Jean Piaget revolutionized the study of cognitive de-
velopment with his theories (the core claims of which we
will refer to as Piagetianism), his ideas have faced a num-
ber of criticisms. Largely in response to these, a class of
theories we now refer to as neo-Piagetianism arose, which
mostly preserved and expanded Piaget’s original concep-
tions (Meadows 2006; Case 1992). It’s generally agreed that
neo-Piagetianism includes a set of postulates, among them:

• Knowledge is conceptually structured, and that structure is
important in determining the thoughts agents are capable of
having. We use concepts to perceive and understand the world,
and these concepts behave as if they have a structure, a postu-
late the neo-Piagetians have inherited from Piagetianism (Case
1992). Furthermore, this structure must have a certain produc-
tivity and systematicity in order to express and generate combi-
nations of concepts the agent may not have encountered before
(we elaborate below, when we discuss compositionality).

• Conceptual development involves a qualitative change in the
underlying structure of concepts (Case 1992). Development,
then, is more than mere acquisition of data; it is a qualitative
change in the structuring of that data. This is a difficult fea-
ture to model and understand, as computations are often defined
over symbols with a relatively stable structure. Shultz & Sirois
(2008), for example, draw distinctions between artificial neural
networks that are static (using back-propagation and quantita-
tive changes) as opposed to those that are constructive (using
cascade correlation and qualitative changes).

• Conceptual development fundamentally involves the agent.
Learning is not a result of a passive agent being exposed
to events. Rather, learning is an interactive process in which
the agent is actively involved. This process, which has been
described as an emerging approach among neo-Piagetians
(Demetriou and Raftopoulos 2004), involves responding to ob-
servation both by fitting the observed facts into existing struc-
tures (assimilation) and modifying existing structures to fit the
facts better (accommodation). This interaction between agent
and environment as a part of the learning process has for ex-
ample been mechanized and built into the CLARION cognitive
architecture (Sun 2002).

• There are limits to the expressivity of thought, which in-
creases with age, experience, and maturation; these limits
may be uneven across different domains of thought, and be-
tween individuals. Whereas the previous three postulates are
mostly restatements of Piaget’s original views, this claim is
the most characteristic of neo-Piagetian thought. Note that this
is not simply stating that children can communicate better or
think more efficiently as they age, which is obvious; instead,
the idea is that there are upper limits to the types of thoughts
children can think. Exactly how to define this upper bound
is an active area of research; many believe that it pertains to
working memory (Case 1992; Barrouillet and Gaillard 2011;
Meadows 2006).

• F: Humans, if neurobiologically normal, nurtured, and suffi-
ciently educated, naturally develop a context-free deductive
reasoning scheme at the level of elementary first-order logic
(Bringsjord, Noel, and Bringsjord 1998; Bringsjord et al. 2006).
Though F is directly reflective of Piaget’s position (e.g., for con-
firmation see (Inhelder and Piaget 1958)), F is not as uncontro-
versial as the preceding postulates, but it is important to include,
for reasons we discuss shortly.

There are many more, but they are not relevant to the
present discussion; see Case (1992) for a more thorough list.

Any cognitive architecture comes with assumptions about
how human thought works (Sun 2004; Ehman, Laird, and
Rosenbloom 2006), and the preceding paragraphs provide
examples of alignment with neo-Piagetianism. The preced-
ing list should sound very familiar to designers of cogni-
tive systems; indeed, whether done explicitly or not, many
cognitive systems work on some subset of neo-Piagetian as-
sumptions2. To make this connection even more explicit, let
us briefly analyze the current state of human-level cognitive
systems. We assert that:

At the very least, a human-level cognitive system can (again,
this we dub list L):

• maintain and learn new concepts;
• believe propositions about its environment that are con-

structed from these concepts, and out of what it perceives;
and

• reason over the propositions it believes, in order to, among
other things, manipulate its environment and justify its sig-
nificant decisions; and

• learn new concepts.

The claim (L) that an HLCS must have the capacities in
list L should be relatively uncontroversial, as its contents
directly follow from even a casual, honest glance at humans,
and from the justification of the centrality of concepts in the
approaches mentioned above.

Since in our view the acceptance of L is a bare minimum
for those aiming to build HLCSs, we argue that it would
be beneficial to encourage closer coöperation between the
engineering of such systems and neo-Piagetianism—for the
simple reason that Piaget and his intellectual descendants
have long been committed to modeling the list L in action,
in the human case. Of course, our view immediately takes
on the onus of defending at least the main neo-Piagetian
assumptions, and providing theories, formalisms, and algo-
rithms that will enable the implementation of the items in
L in artificial HLCSs. Given this, it’s crucial to acknowl-
edge that these assumptions have been attacked, most promi-
nently by Wason and Johnson-Laird on the one hand, and
Fodor on the other.3 In fact, according to Fodor, many of the
neo-Piagetian assumptions lead to conclusions inherently in-
compatible with a program devoted to engineering HLCSs
that instantiate L. It thus stands to reason that Fodor’s ar-
guments must be rebutted before any crossover from neo-
Piagetianism to the engineering of HLCSs can be sensibly
pursued. We turn now to Fodor’s objections.

2Drescher (1991) and Shultz (2004) each present architectures
which are explicitly inspired by Piagetianism, the former in the
symbolic approach and the latter in the connectionist (Drescher
1991; Shultz 2004)

3In the case of the former, the original attack on Piaget’s claim
that neurobiologically normal human beings develop into reasoners
competent at least at the level of first-order logic comes via what is
now known in countless books and articles at the ‘Wason selection
task;’ see (Wason 1966). As to the latter, see (Fodor 1980), and
most recently (Fodor 2008).
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Fodor’s Objections

It’s outside the scope of the present paper to provide a full
discussion of Fodor’s theory of concepts; for a more de-
tailed understanding, we recommend (Fodor 1998; 1980;
2008). We will try to limit the discussion of Fodor to those
parts directly relevant to neo-Piagetianism and HLCSs. To
understand this discussion, we first note that Fodor’s pro-
gram attempts to answer the deceptively simple question:
What exactly is a concept? Fodor first affirms three theses
that seem eminently accurate as applied to the human ver-
sion of HLCSs, to wit:

Representational Theory of Mind (Rep) Mental represen-
tations are composed of concepts, which can compose to
form complex thoughts.4

Computational Theory of Mind (Comp) All explicit
thoughts (and perhaps all thoughts, period) are computa-
tions defined over the syntax of mental representations.

Concept Atomism (Atom) All lexical concepts (roughly,
simple concepts corresponding to words like DOG or
CAT) are atomic; they are not constructs of epistemic
(experience-related) capacities, sensorimotor concepts,
canonical definitions, logical constructs, inferential roles,
etc.

Note that throughout this paper we will be using notation
similar to Fodor (2008), where entirely capitalized words re-
fer to concepts, and italicized words are those things in the
world to which concepts refer. To think the concept CAT is
to think about the class of objects in the world we call cats.
Single quotes refer to words. To make a statement includ-
ing ‘cats’ is to refer to cats (Fodor 2008). We put complex
concepts in parentheses; e.g. (BLACK CAT) is a complex
concept built out of the lexical concepts BLACK and CAT.

The three theses are agreeable to many, as they are im-
plicit assumptions in most attempts to engineer HLCSs. It
is these theses, however, that Fodor uses as a foundation for
objections to L. The first way he does this is by invoking
compositionality, an important restriction on theories of con-
cepts and the one emphasized in (Fodor 2008).

Compositionality

The principle of compositionality has been expressed in
many different forms (Fodor 1998; 2008; Robbins 2002;
Prinz 2002; Connolly et al. 2007); we use the version for-
mulated in (Robbins 2002):

Compositionality Constraint (Comp) The content of a
complex (NON-LEXICAL) concept is exhaustively deter-
mined by the contents of its constituent concepts and the
rules governing the combination of those constituents.

Comp is used as a convenient way to explain two other ap-
parent properties of thought: systematicity, and productiv-
ity (Fodor 2008; Robbins 2002; Prinz 2002; Connolly et al.
2007). For an example of productivity, consider that if agent
A can think of (represent mentally) concepts C1 and C2,
then A can think of a practically unlimited number of com-
plex concepts which are truth-functional combinations of the

4Fodor (1998) defines RTM more precisely in terms of inten-
tionality, but we leave this aside in favor of a simpler definition.

two; e.g., (C1 AND C2), (C1 OR C2), (C1 AND NOT C2
BUT IF NOT C1 THEN C2), etc. Similarly, due to system-
aticity, if A can represent a complex concept such as (IF C1
THEN C2), then A can also think (IF C2 THEN C1). Both
of these properties of thought can be explained by the com-
positionality constraint as side effects of the compositional
nature of concepts.

It’s important to understand both the distinction between
features we use when working with concepts, and what fea-
tures are constitutive of conceptual structure. While it’s un-
doubtedly true that we use our concepts in a variety of ways,
Fodor’s goal here is to figure out what the minimal condi-
tions are in order to possess a concept; he wants to know
what it means to be able to represent a concept and use it
productively and systematically. For example, associations
between concepts certainly exist, but the compositionality
has a premise that since associations between concepts do
not compose in a systematic fashion, they are not part of the
minimum conditions that need to be met in order to possess
a concept.

If one accepts the discussion so far, a problem arises:
feature emergence violates compositionality. Let us take a
brief look at stereotype theories of concepts, often suggested
as an alternative to Atom (Connolly et al. 2007). Whereas
Atom postulates that lexical concepts are fundamental and
not constructs of epistemological capacities, stereotype the-
ories propose that concepts are exemplar instances of a cer-
tain type, usually inferred through some statistical process
(Fodor 1998). For example, a stereotypical PET is a small,
benign animal which will not eventually grow past a certain
size, etc. Presumably, we can observe a certain number of
fish and obtain the stereotypical description of them through
a statistical average of their features. In the same way, a
stereotypical FISH is one that is usually eaten, can be caught
with worms at the end of a fishing hook, can be found in the
wild, etc. According to Comp, the content of the complex
concept (PET FISH) should be exhaustively determined by
the contents of PET and FISH. But there are some properties
emergent in the (PET FISH) stereotype that were not present
in either the PET or FISH stereotypes. A stereotypical (PET
FISH) is a goldfish, which is stereotypically of an orange
hue, an inch or two in length, etc. Neither of those prop-
erties were properties of the stereotypical PET (although a
goldfish is a type of pet, any sort of statistical average of all
pets would not yield the feature “orange hue”) or the stereo-
typical FISH. Even if one were to take the way the stereo-
types for PET and FISH combine to create (PET FISH) and
use that as a model for concept combination, it would not ap-
ply to other cases; (ENERGY DRINK) is an example. The
stereotype for a complex concept is not exhaustively deter-
mined through the stereotypes of its constituent concepts;
therefore, Fodor concludes, stereotypes are not concepts.

At this point, the hard-nosed scientist or engineer might
be tempted to dismiss this challenge by Fodor as legerde-
main far removed from providing any practical insight for
those trying to understand and engineer HLCSs. But this is
not how successful science and engineering work. Many car-
casses are littered along the road that the science and engi-
neering of human-level cognition has taken, depositing us at
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the present point. For instance, the rejection of behaviorism
in favor of an approach that steadfastly insists on specifying
the internal information-processing structure of HLCS was,
as we all know, catalyzed by philosophical argumentation
carried out by Chomsky. Fodor’s critique may well not be
similarly trenchant, but basic prudence, and an understand-
ing of intellectual history, generates an obligation to suitably
anaylze his critique.

Someone might specifically object: “What prevents an
agent from drawing on the non-compositional adjacent prop-
erties of a concept (for example, associations between DOG
and other concepts: Dogs usually have four legs, are hairy,
etc.) during the concept combination process?” One reason
is the productivity and systematicity of thought: If there is no
relatively systematic way to combine and produce new con-
cepts, how is it that one can form a complex sentence one
has never spoken before (e.g., “I read a green book about
a green alien while I was standing on one foot atop a two-
ton table.”), and communicate it to someone who has never
heard that complex sentence before, such that the semantics
of the sentence are clear to both speaker and hearer? Appli-
cations of Comp to theories of concepts is the sort of argu-
ment that pervades Fodor’s writings, with perhaps the most
prominent use of this constraint in (Fodor 2008).

From the vantage point we have arrived at, we can see
the challenge: Any HLCS should, as is reflected in L, be
able to reason about its propositions, which presumably
involves performing computations on the concepts out of
which those propositions are composed (assuming some-
thing like Comp). Among these computations are produc-
tivity and systematicity. Therefore, those pursuing HLCSs
must either accept compositionality and Atom, or explain
productivity and systematicity in a way that avoids relying
on compositionality.

Responding to Compositionality Recall that Comp is
proposed as a way to explain the apparent systematicity and
productivity of thought. However, if one can explain sys-
tematicity and productivity without requiring that concepts
are totally compositional, then perhaps stereotype theories
of concepts can be valid after all. Such an approach is inter-
esting to examine, since it can help to refine both cognitive
systems and neo-Piagetian theories.

We start by weakening Comp. As Prinz (2002) observed,
“it is one thing to say that concepts must be compositional,
and another to say that they must be capable of composi-
tional combination [emphasis added]” (Prinz 2002). This is
similar to the distinction of strong vs. weak compositional-
ity observed by (Robbins 2002). Essentially, we abandon the
idea that there is only one way that concepts can compose.
Instead, concepts can be combined in a way that generates
a range of possible interpretations for the ideal representa-
tion of the complex concept (hypotheses), which are then
narrowed down by the agent.

How does this explain emergent properties in complex
concepts like PET FISH? The properties of a stereotypical
fish could be extracted from experiences with pet fishes,
and consistency checks could be performed. For example,
if when thinking of a pet fish one constructs a representation

in which a boy has a shark tank in his room, some of the con-
sequences of this representation would have to be evaluated.
How would he afford taking care of the shark? Where would
he have the space to store it? — and so on. The challenge for
implementations of HLCSs here would be how to generate
and answer such questions in reasonable time. The problem
then reduces to explaining systematicity and productivity in
a way that can replicate human-level performance.

Space does not allow us to give a full summary of the
debate on compositionality; for more information see (Rob-
bins 2002; Prinz 2002; Patterson 2005; Fodor 1998; 2000;
Weiskopf 2009; Fodor 2008). For now, we can be reason-
ably satisfied with the assumption that a HLCS could use a
consistency check, a search with the agent’s existing knowl-
edge base/schema to find contradictions, and use the result
of that check to evaluate the plausibility of the potential
interpretations. This is a back-and-forth, interactive learn-
ing process characteristic of neo-Piagetianism; hence ap-
peal to such a process highlights common ground between
neo-Piagetianism and work on HLCSs. Also, it’s important
to note that such a process of “consistency-checking” may
imply the existence of some innate, sufficiently expressive
logic-based mechanism to do the checking (we explore this
shortly).

This approach is not revolutionary. Because of the central
role of concepts in cognitive systems, their designers must
specify the detailed mechanism by which concepts are gen-
erated and manipulated. But this is an example of a way in
which work on cognitive systems and neo-Piagetianism can
be mutually beneficial. Neo-Piagetianism postulates struc-
tured concepts, making it a prime target for Fodorian com-
positionality attacks. As we have stated, a detailed descrip-
tion of a process which would yield sufficient productivity
and systematicity should be enough to escape this challenge.
However, like classic Piagetianism, neo-Piagetianism tends
to suffer from underspecification of the details of the mech-
anisms by which concepts combine and develop (Meadows
2006). It is this problem that cognitive-systems research can
solve.

For example, Bello, Bignoli, & Cassimatis (2007) ap-
plied the Polyscheme (Cassimatis 2006) framework to the
false-belief task, which is traditionally believed to demon-
strate that the ability for a child to represent the beliefs
of others (sometimes called ‘second-order’ beliefs) doesn’t
fully develop until around age 4 (Meadows 2006). Instead,
Polyscheme was able to emulate the emergence of what ap-
peared to be second-order beliefs by simply being made to
shift its “cognitive focus of attention when asked to make
predictions about the actions of others” (Bello, Bignoli, and
Cassimatis 2007). In this way, cognitive systems appro-
priately focused on demonstrating the plausibility of neo-
Piagetian cognitive structures in a real-time environment,
keeping in mind the restrictions required by productivity
and compositionality, can advance, refine, or refute neo-
Piagetian theories. A similar benefit from HLCS-oriented
modeling and simulation of the false-belief task is provided
by Arkoudas & Bringsjord (Arkoudas and Bringsjord 2009).
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The Circularity Objection to Concept Acquisition

However, the neo-Piagetian explanation faces another Fodo-
rian objection: the claim that circularity infects accounts of
concept possession. Consider the evaluation of a potential
interpretation i. At some level, a mental representation must
be constructed (a hypothesis) with i as a constituent part in
order for the evaluative computation (which, remember, is
defined over representations) to work. Since the process of
hypothesis construction requires the ability to represent i, it
cannot be the process by which the agent acquires the abil-
ity to represent i. If learning the concept i is the acquisition
of the ability to represent i, then this cannot be the process
by which i is learned, nor can it be any inferential process
that presupposes the ability to represent i. Therefore, all con-
cepts are unlearned; all concepts must apparently be innate!
(Fodor 1980; 2008).

This circularity objection appears to threaten the acqui-
sition of simple concepts, leading to the (in)famous Fodor-
ian conclusion that “[t]he only coherent sense to be made of
such learning models as are currently available is one which
presupposes a very extreme nativism” (Fodor 2008). Before
we sketch out our solution, let us take a step back and sum-
marize the thinking that implies circularity:

1. Thoughts are computations defined over mental representations.

2. Mental representations are built out of mental concepts.

3. An agent possesses a mental concept C iff that agent can build
mental representations using C.

4. An inferential process of concept acquisition requires the ability
to represent the acquired concept, and therefore the process is
viciously circular.

5. ∴ Concepts cannot be acquired through inferential processes.

Clearly, the conclusion, 5., is incompatible with the as-
sumptions in L: this is what has been referred to as FP,
“Fodor’s Paradox” (Quartz 1993; Shultz 2004; Carey 2009;
Margolis and Laurence 1999).5 The ability to understand a
concept involves the ability to represent that concept men-
tally (assuming Rep), and acquiring the ability to do so,
according to most accounts of learning, involves a pro-
cess of evaluating potential representations (hypotheses) and
matching them up with available evidence. The process is
then often repeated until a hypothesis sufficiently matches
whatever criteria is set by the agent. But this hypothesis test-
ing presupposes the ability to represent the concept, and so
all accounts of concept learning are are apparently viciously
circular.

Why must we assume that concept possession is a bi-
nary property? Isn’t it possible to encounter a concept, and
through normal interactions with it slowly obtain a partial
understanding of how to mentally represent it? Certainly
the neo-Piagetian/Pragmatist idea of “knowing how” before
“knowing what” is consistent with such an approach (Fodor
2008). But if concept acquisition is a process of discrete
steps, where an inferential process takes each intermediate
step to the next, resulting in a more accurate representation

5Although Carey (2009) formulates the paradox similarly, FP
as formulated here tries to focus more on its non-lexical role.

of the target concept, clearly Fodor’s Paradox as described
here still rears its ugly head. Each iteration in the envis-
aged step-by-step process is after all hypothesis formation
and testing on a small scale.

Alternatively, a dispositional theory might then be sug-
gested, where by some automatic means one learns to be-
have in accordance with a rule rather than having that rule
as the subject of an intentional state. At first glance, it looks
like this may avoid the circularity involved in hypothesis for-
mation, but Fodor argues that this dispositional account of
rule-following will not work. Given a rule R:

an account of rule-following that invokes behavioral inten-
tions needs a story about what’s going on when an intention
to behave in accordance with R is (part of) what explains be-
havior that does accord with R. Well, if the working commit-
ment to RTM and CTM still holds, then what distinguishes
following R from mere action in accordance with R is that in
the former case R is mentally represented (‘in the intention
box’, as one says) and the mental representation of R is im-
plicated in the etiology of the behavior that accords with R.
But if that’s right, then only someone who is already able to
mentally represent conjunction can intend to follow the rules
that constitute the definition-in-use of AND. (Fodor 2008)

The entire class of Piagetian and neo-Piagetian theories
relies on the belief that external behavior can be learned
pre-symbolically and then turned into a concept or declar-
ative symbol. Similar processes have been called “bottom-
up learning” (Sun 2004), M-Sorting to I-Sorting (Weiskopf
and Bechtel 2004), and Piaget’s semiotic function (Piattelli-
Palmarini 1980). Fodor argues that this resulting symbol
must then be subject to compositionality, and since the only
way to explain the process by which a disposition can map
to a compositional symbol is one which presupposes the ex-
istence of the symbol, all such symbols must be innate. But,
as we have mentioned, a process which produces interpreta-
tions of complex symbols in a systematic way which draws
on whatever it knows about the concept should demonstrate
a consistency that can be empirically compared to human in-
terpretation of the same complex symbols, and would need
to do so in order to satisfy the productivity and systematicity
constraints.

The objection, then, assumes that the ability to represent
a concept when properly activated is innate. If the ability
to represent a concept C depends on the level of develop-
ment of an agent’s relevant conceptual structures, then the
neo-Piagetian response still looks valid: The reason children
can’t represent most adult concepts or act in accordance with
complex rules of behavior is because their conceptual struc-
tures (schemas) have not yet developed to a degree sufficient
to represent these rules. If we stick with the neo-Piagetian
assumption that development involves an increasing com-
plexity of these structures, then we may be able to safely
straddle two extremes: that all concepts are necessarily in-
nate, and that all (declarative) thought is simply emergent
from lower-level, sub-symbolic processes. Unsurprisingly,
Fodor has another circularity argument which challenges
this possibility as well.
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The Circularity Objection to Bootstrapping

The objection can be understood in terms of expressibility. If
thought is structured in such a way that it can be represented
using symbols, and those symbols follow certain inference
rules, then it’s an undeniable mathematical fact that those
symbols have a certain expressibility whose upper bound is
equal to that of a formal logic L. If L has a certain express-
ibility, then by definition the concepts bounded by L cannot
combine in any way to express concepts with complexity
greater than L. For example, propositional logic cannot ex-
press certain statements in first-order logic (FOL), and de-
terministic finite automata (which are after all in correspon-
dence to a formal logic whose expressibility is below that of
FOL) cannot recognize all the languages a Turing machine
can.6

This problem, that of explaining the emergence of higher-
level logics spontaneously out of lower-level logics, has
been called the “bootstrapping problem” (Carey 2004; Rips,
Asmuth, and Bloomfield 2006), and appears in other areas
of conceptual development. Susan Carey attempted to ex-
plain how children learn the natural numbers using a boot-
strapping process (Carey 2004), but was challenged by Rips
et al. (2006) , who used a circularity argument similar to
the Fodorian ones we encapsulated above. Whereas Carey
supposed that children infer the inductive property of natu-
ral numbers from the memorization of a sequence of names
(one, two, three...) and the ability to make analogies, Rips
et al. note that given only that evidence, the standard natu-
ral number assumption is ambiguous with other possible hy-
potheses (such as counting modulo 10), and therefore there
must be some sort of bias that prefers the inductive prop-
erty as an explanation of the natural numbers. But if this
is the case, then the bootstrapping process is unnecessary
(Rips, Asmuth, and Bloomfield 2006); indeed, it begins to
look more like a Fodorian (2008) explanation: that there is
an innate concept of natural numbers and it is merely “acti-
vated” with experience.

But the Rips paper gave an example of a child who
grew up in an environment where malicious aliens willingly
taught the child the wrong numbering system (they only
taught her how to count modulo 10), and this is a key point.
Children do not learn in an isolated environment where they
are left to work out each potential hypothesis, as if they
were machines fed input and expected to output the correct
answer. Instead, it is an interactive process where they test
each hypothesis, by observing the behavior of parents who
correct or reward them based on the accuracy of each hy-
pothesis. Again, neo-Piagetianism provides an escape from
the absurd conclusion of extreme nativism.

The idea that concepts develop by increasing in complex-
ity, however, can mean something like the ability to repre-
sent more variables at once, a possibility which brings to
mind the current research on the role of working memory in
cognition (Barrouillet and Gaillard 2011). The expressibility

6Fodor leaves aside the logico-mathematics of the relationships
and processes that can hold between logics, but this topic is outside
the scope of the present paper. For an introduction in the context of
robotics HLCSs, see (Bringsjord et al. forthcoming).

of concepts whose complexity is bounded by the availabil-
ity of working memory is a different type of limit. However,
even in that case, the problem remains: How to explain the
origin of logical expressibility?

It seems that only two solutions are possible. Either the
child, in the beginning, already has concepts with express-
ibility equivalent to the maximum expressibility that humans
can think, or the developmental process which modifies the
conceptual structures has this same maximum expressibility.

Logic and neo-Piagetianism

Many of the criticisms of Piaget’s original theory centered
on his usage of formal logic to describe thinking of children
at different stages (Meadows 2006), attacks which led to the
currently popular view that Piaget was wrong to do so (Case
1992; Meadows 2006). The most successful of these attacks
have been studies showing that some thought does not con-
form to the Piagetian logical model as neatly as Piaget and
Inhelder (at least initially) believed.7 As a result, many neo-
Piagetians prefer to describe the qualitative features of the
cognitive structures themselves as opposed to using formal
symbols (Case 1992).

But we should not throw out the usefulness of formal logic
to model and analyze mature human cognition just yet. A
strong case can be made at least for the following:

F Humans, if neurobiologically normal, nurtured, and
sufficiently educated, naturally develop a context-
free deductive reasoning scheme at the level of el-
ementary first-order logic.

See (Bringsjord, Noel, and Bringsjord 1998; Bringsjord
et al. 2006) for a defense of F, the details of which we will
not repeat here. Note that F does not necessarily imply an
automatic emergence of FOL, as this would run contrary to
empirical evidence; nor does it predict flawless performance
among adults on FOL-level word problems. Rather, we de-
fend a version tied to education. In true neo-Piagetian fash-
ion, it may not be the case that minimal education in formal
logic would nonetheless suffice to give the learner a level
of intelligence sufficient to solve difficult problems that re-
quire hypothesis formation and testing via dedution, as sug-
gested in Piaget & Inhelder (1958). But clearly serious and
sustained training in formal logic can produce capacities in
HLCSs in line with those ascribed by Piaget and Inhelder
to those humans who are only minimally educated. In short,
any researcher in the area of HLCSs who has mastered a
comprehensive AI textbook like (Russell and Norvig 2002),
which provides extensive coverage of formal logic, would
be precisely the kind of cognizer Piaget and Inhelder in too-
sanguine fashion took almost all humans to be.

However, recall we earlier mentioned that the functional-
invariant processes that govern the modification of concep-
tual structures must have the expressivity of at least first-
order logic in order to know how to construct structures
capable of representing statements in FOL, else they face
charges of circularity à la Fodor. This seems unavoidable;
whether concepts originate through inductive processes or

7See Meadows (2006) for a thorough summary.
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emerge from something like a connectionist architecture, the
expressive power to understand and systematically produce
them must come from somewhere.

Anderson (1976), for example, found it important to
demonstrate that his production rules had an expressibility
at least equal to that of FOL, and carefully established this
(Anderson 1976, Ch. 7). Such expressibility is more difficult
to prove in systems where it’s claimed to be emergent out of
more basic processes (such as a simple neural network), and
easier to prove in systems where inferential ability is ex-
plicit (e.g., the ICARUS cognitive architecture makes use of
conceptual inference as its most basic activity (Langley and
Choi 2006)). However, any information-processing device
whatsoever that operates at or below the level of a Turing
machine is provably doing no more than processing infor-
mation by classical deduction in a first-order theory.

Drescher (1991), however, references this issue, but
quickly brushes the issue aside. Any modern computer is
technically only a deterministic finite automaton (or at most
a linear bounded automaton), yet we consider it Turing-
complete for many purposes (Drescher 1991). In the same
way, a mind that lacks the expressive power of FOL may
conceivably learn to behave in a manner resembling FOL
thought; yet it is difficult to imagine such thought developing
as quickly as it does in (properly educated) children without
a preexisting ability to generate hypotheses with FOL’s ex-
pressivity. Because of this reason, it may not be a good idea
to quickly dismiss the logical bootstrapping objection.

Conclusion: Lessons for neo-Piagetians and AI

Researchers

In this short and non-technical paper, we make no claim
to have carried out an in-depth analysis of Fodor’s cri-
tique of the current understanding of concepts, nor to have
provided a thorough account of all possible similarities
and differences between cognitive systems theory and neo-
Piagetianism. Such a task would be impossible in the scope
of this paper, and is the topic of our ongoing research.

Yet here are some key and perhaps not insignificant points
to leave with. The first is that neo-Piagetianism and cogni-
tive systems theory have a lot in common, and both stand
to benefit from the other. Implementing psychological theo-
ries force them to come to terms with real-world limitations
and to refine or abandon unworkable ideas (Shultz and Sirois
2008), and cognitive systems can borrow fresh ideas from a
class of theories it already shares much in common with. The
second point is that neo-Piagetians (and the HLCSs which
share their assumptions) must accept a version of Piaget’s
F as we have formulated it, or they risk succumbing to the
Fodorian paradoxes. We believe that both of these points
represent new approaches to both the theory behind, and the
implementation of, human-level cognitive systems.

A few more points to summarize in closing:

• The process of concept acquisition must be more closely ana-
lyzed, and both researchers in HLCSs and neo-Piagetians are
obliged to define it in a way that avoids the circularity objection,
while preserving sufficient compositionality.

• Any HLCS will need to reflect a careful definition of compo-
sitionality. If Comp is accepted by the designers of a HLCS,
how does the designer avoid Fodor’s Paradox and an appeal
to complete (and therefore completely untenable) nativism?
If accepting a weaker version of compositionality, the de-
signer must describe a process for understanding never-before-
encountered complex concepts, and this process must not be so
non-deterministic as to generate hypotheses that would not be
encountered by a reasonable human being. The distribution and
nature of these hypotheses can presumably be empirically veri-
fied by comparing to human-generated hypotheses.

• Those seeking to engineer artificial HLCSs cannot commit,
whether premeditately or unwittingly, to allowing a HLCS to
spontaneously generate a more expressive logic (or, generally,
a less expressive system for concepts and representations of a
declarative nature, such as is seen in ACT-R and other such sys-
tems) from a less expressive one. The process that secures the
gain in expressivity must be defined in a way that does not lead
to a homuncular regress.

It appears that nobody has attempted to build a Fodorian
artificial HLCS, and for good reason. If Atom is compat-
ible with Comp, then it presumably explains deterministi-
cally the process by which two concepts combine to form a
(possibly unfamiliar-to-the-thinker) complex concept C. (It
would be interesting to see if a system that came with a large
repertoire of pre-defined concepts, and which then learned
using an analogical mechanism, could demonstrate general
intelligence.) If a concept is atomic, and not at least partially
composed of some subset of inferential properties or facts
connected to other concepts, then what is left? What is the
point of a concept that one can think about, but not know
how to exploit for some behavior, not know how to draw in-
ferences about, and not associate with any other concepts?
Fodor’s reductionist program may have oversimplified via
too strong a version of compositionality.

Yet, the Comp requirement cannot be ignored. It is
the systematicity and productivity of thought which Fodor
wants to explain, and he correctly brings attention to the
details of the fundamental structure of concepts as con-
taining the key to understanding them. We feel that neo-
Piagetianism and the work done under this banner offers in-
sight into these structures—insight that should be harvested
by those building HLCSs.
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