Automatic Verification and Validation of a CAS Simulation of an Intensive Care Unit

Christopher N. Eichelberger, Mirsad Hadzikadic
The University of North Carolina at Charlotte
9201 University City Boulevard
Charlotte, NC 20223

Ognjen Gajic, Guangxi Li
The Mayo Clinic
200 First Street SW
Rochester, MN 55905

Abstract
Complex adaptive systems (CAS) promise to be useful in modeling and understanding real-world phenomena, but remain difficult to validate and verify (V&V). The authors present an adaptive, tool-chain-based approach to continuous V&V that allows the subject matter experts (SMEs) and modelers to interact in a useful manner. A CAS simulation of the ICU at the Mayo Clinic is used as a working example to illustrate the method and its benefits.

A complex adaptive system (CAS) often takes the form of an agent-based model in which the behavior of each agent is allowed to change over time in response to its local environment. The purpose of such a simulation is to emulate the complicated, non-linear, large-scale behaviors that are exhibited by real-world systems such as economies and societies.

Although verification and validation are difficult challenges for any simulation, they become even more problematic for a simulation in which the fundamental rules of agent interactions are encouraged to change over time.

For the remainder of this paper, we will focus on a CAS simulation constructed to recreate some of the key behaviors among patients and health-care providers within the intensive care unit (ICU) of the Mayo Clinic. Figure 1 shows some of the key entities and how data flows among them, and Figure 2 is a screen shot from the simulation itself. The principal purpose of building this simulation is to allow clinicians to understand current drivers, predict what might happen in response to change, and to identify circumstances that best improve patient health outcomes while minimizing costs. This simulation is currently being constructed, but it became obvious early on that a formal verification-and-validation process would be both crucial and exceedingly difficult if this project is to be successful. Key among our concerns are these:

- This relatively small simulation contains a large number of variables, so there is a risk of over-fitting the data obtained in the real ICU.
- It is unreasonable to evaluate the model based on the outcome of any single patient.
- Because the CAS simulation is stochastic, a single run is insufficient to estimate the true quality of any model parameters.
- There are two, interacting, types of model parameters: Surface-level parameters, such as how quality-of-life varies with age, and those that are deeper, such as how altruistic physicians are likely to behave. These different parameter types both need to be refined.
- The source data are messy, evincing no clear relationships among the variables, at least when considered in sets of two or three. Figure 3 illustrates one such example.

Our solution is to use a neural network metamodel over the CAS simulation that can adapt to explore new combinations of parameters that appear to be good candidates for reducing the divergence between the simulation and the real-world data across multiple measures.

Method
There are multiple parts to the method, each of which will be discussed separately:

1. How can the quality of a single set of simulation parameters be estimated?
2. How can multiple sets of simulation parameters (and their attending qualities) be used to explore promising portions of the search space?
3. How can this entire process be made more automatic?
Estimating quality of a single set of model parameters

A CAS simulation is essentially a stochastic function that accepts multiple input parameters, and produces multiple outputs. Each variable, whether input or output, requires its own metadata, including information about minimum values, maximum values, and type. Outputs – at least those we will use for training our simulation – will have observed values from the real world. Even knowing, though, that mortality will range from 0% to 100%, and is observed at 20% is not enough to know how good a simulated value of 30% is.

This problem is more easily considered in two cases: 1) in which we consider only a single dimension (output); and 2) in which we consider multiple dimensions simultaneously.

One dimension It is reasonably easy to describe the divergence between the observation of a dimension’s value in the real world and the simulated value for that dimension. Though absolute or mean-squared error may be used (dos Santos and dos Santos 2008), we chose an error fraction as described by (2), and illustrated in Figure 4 – has precisely this desirable quality.

\[Q = e^{-k\Delta} \]

(2)

\[k = -\frac{\ln Q}{\Delta_k}, \quad Q_k, \Delta_k > 0 \]

(3)

The constant, \(k \), is merely a way to control the speed of the decay. It is constrained by \(\Delta_k \) and \(Q_k \), essentially the point through which the quality curve must pass.

Multiple dimensions Metamodes commonly are used for only a single output (Reis Dos Santos and Porta Nova 1999), (Doebing et al. 2002).

To combine the quality estimates of multiple dimensions, it was important to us to emphasize the quality of all parts of the model simultaneously. In an additive model, in which the individual qualities are summed, excellent agreement in one or more dimensions can mask gross disagreement in another. To reduce this tendency, we adopted a multiplicative approach as described in (4).

\[Q = \prod_i \left(q_{\text{min}} + (1 - q_{\text{min}}) \cdot e^{-k_i \Delta_i} \right) \]

(4)

where \(q_{\text{min}} \) is a threshold value beneath which an individual assessment is not allowed to fall (to prevent discontinuities introduced by zeros), \(k_i \) is defined as 80% of the reciprocal range of the actual (observed) rate, and \(\Delta_i \) is defined as the absolute difference between the predicted rate and the actual (observed) rate.

It can be difficult to visualize this relationship. As an aid, consider that there are four principal dimensions against which to benchmark simulation performance: 1) the mortality rate; 2) the cost per patient; 3) the number of quality life years added (QALY); and 4) the cost per QALY. Allowing
Figure 4: Exponential decay. In this plot, the X-axis represents the percentage divergence between a real dimension and its simulated value. The Y-axis represents the quality estimate assigned to that percent divergence. The decay is constrained by the control point (100%, 0.5), highlighted by the red cross-hairs; the decay constant that satisfies this constraint is 0.6931.

these four dimensions to assume variance from 0% to 500% yields the overall quality estimates presented in Figure 5.

The figure shows that the majority of combinations of divergence across the dimensions map to relatively low estimates of overall quality. Only the combinations of uniformly low divergence map to medium and high levels of quality for the entire simulation. The purpose of this formulation is to encourage the metamodel to raise the quality of all of the constituent outputs in roughly equal measures.

As a practical example, we have also found that treating these dimensions as large, high-level aggregates is not very useful. When mortality is only considered (and controlled) for the entire population, it encourages the simulation to introduce odd behaviors within subgroups, such as having the mortality rate decrease with age. If the sole purpose of the simulation were to predict a single high-level aggregate property, internal inconsistencies might not matter, but because we wish to allow clinicians to use the model to explore ad hoc, these internal inconsistencies may become important. To minimize these variations, each of the four principal dimensions is sub-divided into partitions based on sex and age, and the total weights are apportioned among them. The table 1 illustrates an example of the metrics for which the original data from the Mayo Clinic contained enough cases to be reliable:

The example data presented here result in an overall quality measure of approximately 60% according to the scoring mechanism described previously.

Experiments

An important consideration for metamodels is how to select the evaluation points that will be used as the training cases (Wang 2005), (Kleijnen and Sargent 2000). For this project, we are using sequential blocks of metamodel-guided exploration. Starting with an initial sample of randomly-selected parameter combinations, the metamodel is trained, and asked to identify a single new point in the parameter space that the data suggest might correspond with a lower total error. This new point is the basis for a subsequent, relatively small, round of additional simulation rounds. The output of these additional simulations is added to the base data, and the metamodel is retrained. This process is repeated until appropriate stop conditions are met.

We built our test harness so that it could use two separate metamodels, each one method of training the CAS parameters: 1) using a traditional genetic algorithm (GA); 2) using a neural network. The metamodels were applied similarity, with accommodation made for their different requirements (such as data encoding).

The experiments were controlled so that both methods generated (and evaluated) the same number of candidates, using the exact same evaluation routine. The evaluation routine ran each set of parameters through the simulation multiple times, so as to try to get a more representative estimation of the output values than would result from any single run.

The purpose of the tests is to identify whether the block-sequential method of parameter-space exploration could be effective, and to determine whether there are any important differences in how the two metamodel paradigms respond.

Results and discussion

Figure 6 demonstrates the results of a single run of the system. The GA behaves consistently, exhibiting the expected pattern of punctuated equilibrium, while the neural network appears to do a better job of identifying single, best solu-
Table 1: An example of the metrics for which the original data from the Mayo Clinic contained enough cases to be reliable.

<table>
<thead>
<tr>
<th>metric</th>
<th>weight</th>
<th>actual</th>
<th>simulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>mortality, females, aged 65-74</td>
<td>0.020</td>
<td>0.1</td>
<td>0.28</td>
</tr>
<tr>
<td>mortality, females, aged 75-84</td>
<td>0.044</td>
<td>0.34</td>
<td>0.32</td>
</tr>
<tr>
<td>mortality, females, aged > =85</td>
<td>0.029</td>
<td>0.42</td>
<td>0.30</td>
</tr>
<tr>
<td>cost, females, aged 65-74</td>
<td>0.010</td>
<td>27952</td>
<td>43940</td>
</tr>
<tr>
<td>cost, females, aged 75-84</td>
<td>0.022</td>
<td>36532</td>
<td>43429</td>
</tr>
<tr>
<td>cost, females, aged > =85</td>
<td>0.015</td>
<td>22742</td>
<td>43611</td>
</tr>
<tr>
<td>QALY, females, aged 65-74</td>
<td>0.029</td>
<td>8.37</td>
<td>1.61</td>
</tr>
<tr>
<td>QALY, females, aged 75-84</td>
<td>0.066</td>
<td>2.66</td>
<td>1.00</td>
</tr>
<tr>
<td>QALY, females, aged > =85</td>
<td>0.044</td>
<td>1.34</td>
<td>0.41</td>
</tr>
<tr>
<td>$/QALY, females, aged 65-74</td>
<td>0.039</td>
<td>3338</td>
<td>32784</td>
</tr>
<tr>
<td>$/QALY, females, aged 75-84</td>
<td>0.088</td>
<td>13746</td>
<td>52297</td>
</tr>
<tr>
<td>$/QALY, females, aged > =85</td>
<td>0.058</td>
<td>16985</td>
<td>135203</td>
</tr>
<tr>
<td>mortality, males, aged 65-74</td>
<td>0.050</td>
<td>0.17</td>
<td>0.30</td>
</tr>
<tr>
<td>mortality, males, aged 75-84</td>
<td>0.036</td>
<td>0.31</td>
<td>0.29</td>
</tr>
<tr>
<td>mortality, males, aged > =85</td>
<td>0.022</td>
<td>0.43</td>
<td>0.30</td>
</tr>
<tr>
<td>cost, males, aged 65-74</td>
<td>0.025</td>
<td>30849</td>
<td>42365</td>
</tr>
<tr>
<td>cost, males, aged 75-84</td>
<td>0.018</td>
<td>38000</td>
<td>44645</td>
</tr>
<tr>
<td>cost, males, aged > =85</td>
<td>0.011</td>
<td>28304</td>
<td>42632</td>
</tr>
<tr>
<td>QALY, males, aged 65-74</td>
<td>0.074</td>
<td>8.18</td>
<td>1.34</td>
</tr>
<tr>
<td>QALY, males, aged 75-84</td>
<td>0.055</td>
<td>1.91</td>
<td>0.67</td>
</tr>
<tr>
<td>QALY, males, aged > =85</td>
<td>0.032</td>
<td>1.29</td>
<td>0.14</td>
</tr>
<tr>
<td>$/QALY, males, aged 65-74</td>
<td>0.099</td>
<td>3771</td>
<td>38418</td>
</tr>
<tr>
<td>$/QALY, males, aged 75-84</td>
<td>0.073</td>
<td>19878</td>
<td>81902</td>
</tr>
<tr>
<td>$/QALY, males, aged > =85</td>
<td>0.043</td>
<td>21884</td>
<td>407738</td>
</tr>
</tbody>
</table>

The tendency of both mean-error lines to increase between significant discoveries. If the metamodels are exploring effectively, then they should be conducting experiments on novel parameter combinations, most of which should perform relatively poorly, increasing the mean error over time, until a break-through parameter combination is encountered.

The metamodeling process also brought to light another minor finding, which is that the smoothness of the fitness function appears to be directly related to the progression of the error rates resulting from either metamodel. One of the key advantages to the formulation of both the individual and blended error rates may be the fact that they contain no sharp discontinuities, no matter how large or unrealistic the simulation errors become. This specific effect – unsurprising when one considers that both metamodels are rooted in gradient descent – needs to be characterized quantitatively.

Figure 7 is a visualization of the parameter exploration performed by the two metamodels. What the figure makes very clear is the greater variety exhibited by the neural network metamodel. Whether the greater range of parameter combinations is responsible for the neural network’s lower error rate is not yet established. Because time is not represented in this visualization, the specific progression of the exploration is lost.

The process described here is useful for much more than simple parameter fitting, in as much as some of the fitted parameter values brought to light shortcomings in the design of the underlying simulation. Quality of life (QoL) is a good example. The simulation contains an implicit model of how QoL varies as a function of age, presuming an absolute scale.

The trained version of the two QoL parameters – QoL.a and QoL.b – made it clear that the inferred model is wrong, and motivated additional discussions between the modelers and the clinicians. QoL is a relative, not absolute, scale, and the simulation will be modified to accommodate this change.

The sub-divided outcome metrics appear to be helping improve the deep quality of the simulation (as opposed to the shallow, aggregate-only quality). The advantage this provides is that it reduces rounds of testing and refinement between the subject-matter experts (SMEs, clinicians in this case) and the modelers. Automating these checks makes the entire, iterative process faster and more efficient.

References

