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Abstract 
International networks, although highly efficient, may 
produce surprising threshold effects that shift costs to 
geographically distant locations. International utility, 
transportation, and information networks facilitate the 
efficient flow of information, energy, goods and people. 
These networks exhibit a scale-free network structure with a
few large “hubs”. Yet their efficiency belies their lack of 
robustness. Because such networks transcend national 
boundaries, furthermore, disruptions to the network in one 
geographic region may have profound economic and 
national security costs for countries in another region. To 
illustrate how complex networks may transmit costs among 
countries, this paper builds an agent-based model (ABM) of 
the international air transportation system. The ABM 
employs a genetic algorithm to identify “small” disruptions 
that produce cascading network failures. The study makes 
two contributions. First, it demonstrates how some complex 
networks evolve into network structures that trade off 
robustness for efficiency. Second, it illustrates how 
researchers can combine agent-based modeling, 
evolutionary computation, and network analysis to simulate 
differing failure modes for global networks. This 
convergence of simulation methodologies characterizes the 
emerging field of computational social science. 

Cascading Failures in Complex Networks
Global trade and commerce depends upon efficient 
transportation, information and utility networks. As these 
complex networks have evolved to meet the demands of 
consumers, however, they have assumed structures that are 
efficient but not very robust—that is, when they experience 
disruptions, they may take some time to resume their 
efficient operation. While such networks move people, 
information and goods, furthermore, they also transmit the 
costs of disruptions to geographically distant locations. The 
Northeast Blackout of 2003, triggered by erroneous power 
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readings in Indiana, caused power outages not only in the 
Midwest but also the Northeast as well as Ontario and 
Quebec in Canada, affecting 50 million people. In March 
2008, the government of Haiti increased inspections of 
cargo through its ports in part to fight corruption, and in 
part to interdict the transshipment of narcotics to the 
United States. The inspections led not only to rotting and 
putrid food shipments on docks in Port-Au-Prince, but also 
to a backlog of containers in the Port of Miami as shippers 
had nowhere to store goods in Haiti (Katz and Kay 2008). 
In another recent telling example, in September 2011 a 
utility worker at a power substation in Yuma, AZ removed 
a faulty piece of monitoring equipment. The resulting 
cascade of power outages blacked out electricity 
throughout San Diego and much of Baja Mexico, leaving 
ATMs, traffic lights, 911 call centers and the San Diego 
airport powerless (Watson 2011). These examples illustrate 
how global networks may generate threshold effects that 
shift disruptions to geographically distant locations. 
 To illustrate the dynamics of such cascading failures in 
global networks, this study uses an agent-based model of 
the United States air transportation network. Previous 
research has found that air transportation networks exhibit 
the properties of a small-world scale-free network (Amaral 
et al. 2000, Guimera et al. 2005). Because such networks 
tend to have a few large “hubs,” or nodes with a large 
number of links, they tend to be robust to random failures 
but sensitive to targeted disruptions such as a terrorist 
attack. To understand the failure modes of the U.S. air 
transportation network, this study uses a genetic algorithm 
to act as a “smart terrorist”—the GA learns which attack 
strategies produce the largest disruption in air 
transportation for the least amount of effort. The article 
proceeds as follows. First, it reviews prior research on 
network failures, differentiating between studies that 
examine static metrics of network structure and those that 
measure dynamic flows across networks. It argues that 
agent-based modeling offers a better simulation method for 
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studying complex dynamic networks. The paper then 
reviews the structure of the U.S. air transportation network, 
using data from the U.S. Department of Transportation’s 
Bureau of Transportation Statistics (BTS). This data 
confirms prior research that characterizes air transportation 
network as a small-world scale-free network. The study 
uses the BTS data to seed an agent-based model of the 
dynamic flow of passengers through the air transportation 
network. Given the large number of possible failure modes 
arising from the combinations of disrupted nodes, the study 
uses a genetic algorithm to explore the parameter space. It 
illustrates how a few apparently minor airports (such as 
Santiago, Chile) can nevertheless produce surprising 
backlogs in the flow of passengers in the United States. 
These findings illustrate how researchers can combine 
network analysis, evolutionary computation, and agent-
based modeling to study the dynamics of global networks. 
The paper concludes with a discussion of directions for 
future research. 

1. Methods of Analyzing Network Failure 
Prior research suggests that several properties of a network 
may affect its vulnerability to disruption. A “network” 
simply consists of a number n of nodes (vertices), each of 
which has k connections (edges) to some of the other 
nodes. Networks may be undirected (that is, the edges 
between nodes represent reciprocal relations) or directed 
(edges represent one-way relationships). The number of 
edges a given node has is its “degree”. One can 
characterize a network by its density D (the ratio of 
number of edges to the total number of possible edges, or 
D = ∑ k / n (n – 1); the distribution of k; and many other 
measures. Two important measures are a network’s 
clustering coefficient and its average path length 
(sometimes referred to as its geodesic distance). A “path 
length” between two nodes is the number of edges along 
the shortest route between them. The average path length 
thus measures the mean distance between nodes in a 
network. The clustering coefficient of a network is the 
probability that two nodes are connected given that both 
are connected to a common third node. In this respect, the 
clustering coefficient measures the tendency of nodes to 
cluster together (Watts and Strogatz 1998).  
 Though networks differ widely along these and other 
measures, researchers have proposed three cardinal types 
of networks. A random network is one in which a random 
process creates edges among vertices. In random networks, 
the degree distribution approximates the Poisson 
distribution. The random attachment rule generally creates 
a network with very low clustering and relatively short 
path lengths. A “scale free” network is one for which the 
degree follows a power law distribution. This distribution
arises because such networks grow through a process of 

preferential attachment, whereby the probability of new 
edges incident to a node increases as the node’s degree 
increases (Barabasi and Albert 1999). Scale-free networks 
are characterized by a few large “hubs,” or vertices with a 
large number of incident edges, but most vertices have just 
a few edges (Barabasi and Albert 1999, Barabasi and 
Bonabeau 2003).  For this reason, they tend to have lower 
clustering but higher average path lengths. By contrast,
“small world” networks have higher clustering coefficients 
but the shorter average path lengths (Watts and Strogatz 
1998; Watts 1999a, 1999b; Barrat et al. 2004).  

The first studies of network failure tended to use static 
analysis. By measuring a network’s degree distribution, 
density, and the size and number of its components (that is, 
a subset of the graph in which any vertex can reach another 
through some existing path), researchers can compare the 
structure of a network before and after the removal of a 
given vertex. In effect, this method allows researchers to 
compare how different networks “break apart.”  One such 
study compared random accidental failures of a node (as 
might occur in a power grid, for example) and attacks that 
targeted hub nodes. It found that in random networks, 
random failures tend to break the network into more, 
smaller components. By contrast, scale-free networks tend 
to be more robust to random failures but less so to attacks 
(Barabasi and Bonabeau 1999). 

One problem with the static analysis of networks is that 
it tends to ignore several important features of networks, 
not the least of which is the volume of flows across edges. 
These flows may vary both across pairs of vertices as well 
as over time between any two given vertices. To capture 
these features, dynamic network analysis recently has 
examined how flows fluctuate through a network. Research 
has shown that the small-world network structure allows 
for efficient, parallel transmission, including mechanisms 
of disruptions to other nodes. For example, one study 
found that small world social networks are particularly 
efficient at transmitting diseases (Watts 1999a). Another 
method of analyzing dynamics is to create weighted 
network models, in which the edges between notes are 
weighted by some measure of their traffic (Barrat et al. 
2004; Wang and Chen 2008; Yang and Li 2011). Many 
networks exhibit such heterogeneity across vertices and 
edges; transportation networks, information systems, and 
power grids all have edges with varying flows. Using 
Monte Carlo simulation, the study of weighted networks 
can estimate the probability of failures.  Several recent 
studies have used weighted network models to assess 
network robustness in general (Estrada 2006; Wang and 
Chen 2008); in transportation networks (Dall’Asta et al. 
2006; Li and Mao 2006; Nagurney and Qiang 2007); and 
on the internet and in power grids (Yang et al. 2009). 

It is useful to note that some complex global networks 
respond to geopolitical factors as well as technological and 
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economic ones. For example, one study found that the 
global air transportation network exhibits a surprising 
feature: the most connected cities in the network are not 
necessarily those that are the most “central” to the network 
(that is, that are on the shortest path length between other 
airports) (Guimera et al 2005). One consequence of this 
structure is that the smaller nodes may act as a bridge 
between different communities within the network, much 
as Anchorage is a critical bridge to the Alaskan air 
transportation subnetwork. These smaller bridge nodes 
may play a disproportionately large role in dynamic 
processes, whether the spread of infectious diseases or the 
transmissions of cascading failures. 

Policy makers have expressed their concern about the 
robustness of global networks, not only because failures 
are costly but also because network vulnerabilities may lie 
elsewhere outside their jurisdiction. For example, title X of 
the Implementing Recommendations of the 9/11 
Commission Act of 2007 (which became P.L. 110-53 with 
President Bush’s signature on August 3, 2007) calls for a 
national database on U.S. transportation assets whose loss 
“would have a negative or debilitating effect on the 
economic security, public health, or safety of the United 
States” (U.S. Public Law 110-53). Similarly, the U.S. 
National Infrastructure Protection Plan raises the prospect 
that transportation disruptions could generate cascading 
failures in the U.S. infrastructure (U.S. Department of 
Homeland Security 2006). Too often, however, policy 
makers have ignored the properties of networks that make 
these systems vulnerable. For example, a review of the 
Defense Critical Infrastructure Program Assessment 
Benchmarks for maritime transport focuses on physical 
security of specific ports, but does not address the 
networked characteristics that actually make the maritime 
shipping system vulnerable (US Department of Defense 
2005). 

One drawback of the analysis of weighted networks is 
that such models typically assume that the weights 
assigned to vertices or edges are constant. While this is a 
useful simplifying assumption, it is unrealistic: the demand 
for electricity is greater on hot days than moderate ones; 
the interstates on Thanksgiving tend to be more crowded 
than a Tuesday in October. For this reason, weighted 
network models may suffer from a lack of external 
validity. Another challenge for dynamic analysis is 
interaction effects among vertices; which combinations of 
failed nodes produce a greater likelihood of network 
fragmentation?  Agent-based modeling (ABM) offers a 
useful alternative method for analyzing these networks. 
ABM is an object-oriented modeling methodology that 
simulates interactions among autonomous actors. It is 
particularly useful for simulating systems characterized by 
a large number of actors who interact repeatedly over time, 
and have cause-effect relationships that exhibit nonlinear 

relationships due to feedback, exponential growth, and 
interaction among parameters. ABM also is a useful 
method for studying rare phenomena (Lustick, Miodownik 
and Eidelson 2004). Complex weighted networks exhibit 
all these properties. 

To illustrate how complex networks may transmit costs 
among countries, this study uses an ABM of the 
international air transportation system. Using data from the 
U.S. Department of Transportation’s Bureau of 
Transportation Statistics, the ABM simulates the 
movement of people on international flights to and from 
the United States. The ABM also employs a genetic 
algorithm to identify “small” disruptions that produce 
cascading network failures. Genetic algorithms are a 
particularly efficient method of searching large parameter 
spaces such as those characterizing network dynamics. The 
algorithm identifies conditions under which disruptions 
elsewhere in the international network produce large 
economic losses to the United States. 

2. Data 
The Bureau of Transportation Statistics (BTS) in the U.S. 
Department of Transportation collects monthly data on air 
transportation within the United States and between the 
U.S. and cities with direct service to American airports 
(U.S. Department of Transportation 2011). The data 
includes not only the names of the origin and destination 
airports of each route but also the airlines servicing the 
route; the available seats; the number of passengers flown; 
the amount of freight and mail flown; the distance and air 
time; and the load factor (the ratio of passenger miles to 
available seat miles). It is important to note that the BTS 
data records charter as well as regularly scheduled flights, 
so there likely is some small variation in the network 
structure from month to month. Nevertheless, the data is a 
reasonably valid representation of the contemporary U.S. 
air transport network. I used the data for February 2011 to 
construct a weighted network using the origin and 
destination airports as nodes and the passengers flown as 
weights for the edges. Table 1 summarizes the properties 

Measure Value
Nodes 797
Edges 12,745
Density 0.0201
Average Total Degree 36.88
Median Total Degree 12
Power Law Exponent 1.434
Average Path Length 3.093
Clustering Coefficient 0.652

Table 1: Summary statistics of the U.S. air route network.
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of the network. These data suggest the U.S. air transport 
network approximates the structure of a small-world scale-
free network. A number of airports in the dataset were 
“isolates,” or had no scheduled or charter flights in 
February 2011. Several other city-pairs were “pendants”—
that is, they were components unconnected to the rest of 
the network.  After removing these, the network consists of 
797 airports (nodes) and 12,745 “city pairs” or routes 
(edges).  The average number of in- and out-routes (i.e., 
total degree) is 36.88; the median total degree of 12 
suggests a skewed distribution that typifies a scale-free 
network. Figure 2 shows the log-log plot of the out degree 
distribution and is visually similar to the distribution of 
scale-free networks. Researchers disagree about how best 
to determine whether empirical data scales according to a 
power law (Clauset, Shalizzi and Newman 2009). I used 
the estimation technique proposed by Clauset, Shalizzi and 
Newman (2009) and found the U.S. air transport network’s 
scaling exponent γ is approximately 1.43. This estimate 
approximates the scaling exponent that other studies have 
found for the global air transportation network (γ ≈ 1) 

(Guimera and Amaral 2004); China’s network (γ ≈ 1.7) (Li 
and Cai 2004); and that of India (γ ≈ 2.2) (Bagler 2008). 
Each of the studies concludes these networks all exhibit 
scale-free small-world properties. I likewise conclude the 
BTS data suggests the U.S. air transportation network, 
along with its international city-pairs, also is a scale-free 
small-world network. 

3. The Model and Genetic Algorithm 
Using the BTS data, I created an agent-based model in 
which agents represent airports in the network. Each 
airport agent has a set of out links to the destination airport 
agents recorded in the BTS dataset. Each link has a weight 
w equal to the daily number of passengers who transited 
that route. Because the BTS data is aggregated by month, 
the weight equals 1 ⁄ 28 of the reported passengers on a 
given route in February 2011. The simulation gives each 
airport an initial endowment of passengers equal to the 
sum of the weights of its in in-links. At each step in 
simulated time (the time step is equivalent to one day in 
the real-world network) airports “send” a number of 

Figure 2: Log-log plot of the distribution of out degrees.
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passengers to their network neighbors equal to the weight 
of each out link. Airport agents keep track of the stock of 
agents at each step in simulated time: the stock S is equal 
to the difference of the summed in-link weights and out-
link weights: S = ∑wi − ∑wo. It is important to note that, in 
the simulation results presented here, the weights remain 
constant throughout the simulation. But there is no 
necessary reason for the ABM to have such a restriction. 
Indeed, one of the advantages of the model is that one can 
easily reprogram the simulation so that weights very 
stochastically according to a schedule (such as fluctuations 
in passenger volume weekly or seasonally) or by drawing 
from a known statistical distribution. 
 Each airport agent has a throughput capacity equal to 
1.25 times the sum of its in-link weights. This is equivalent 
to assuming each airport is operating at 80 percent of full 
capacity (1÷0.8=1.25). This capacity parameter gives 
airport agents some ability to send excess passengers to its 
network neighbors in the event of a backlog—that is, each 
out link from an airport has extra “seats” with which to 
move passengers if ∆S > 0. The capacity parameter is 
comparable to the average load factor of routes in February 
2011 (which was approximately 0.7). By assuming that 
airports are operating at less than capacity, the networks 
should exhibit some ability to recover from disruption as 
airport agents not directly affected by a disruption can use 
excess capacity to move a backlog of passengers.  
Conversely, as the capacity constraint grows toward 100 
percent, one expects backlogs will build. Although it 
would be interesting to simulate the effect of variations in 
capacity on network backlogs, to focus on disruptions the 
simulation keeps the capacity constraint constant across 
airport agents and across experiments. 
 To examine how disruptions affect flows on the 
simulated network, the model uses a genetic algorithm 
(GA) (Holland 1992, Miller 1998). Borrowing insights 
from natural selection, a GA is an evolutionary 
computation technique that efficiently explores very large 
parameter spaces. For simulations characterized by both 
large numbers of parameter combinations and interaction 
effects, factorial designs can be quite time-consuming. In 
the analysis of large complex networks, factorial designs 
can be prohibitively slow, particularly when one wishes to 
account for interaction effects among nodes. For example, 
when Chicago O’Hare Airport is snowed in, there likely 
will be a considerable backlog in the network; but when 
both Chicago and Atlanta Hartsfield Airport are closed, the 
backlogs may be exponentially larger. To generalize the 
example, a factorial design that wished to identify an 
optimal combination of two airport nodes to remove would 
have to test 797 × 796 = 634,412 combinations. To study a 
three-node combination, the number of experiments grows 
to 5 × 108. 

 GAs can search more efficiently. The algorithm acts as 
an “optimal terrorist” of sorts, exploring the system to 
discover which disruption strategies produce the largest 
backlog in the system. In each experiment, the GA 
optimizes against one of two fitness criteria: the average 
number of passengers backlogged at U.S. airports, and the 
total number of backlogged passengers in U.S. airports 
divided by the number of out links disabled by the GA’s 
disruption. It measures these criteria for 90 steps 
(simulated days) after a disruption.  The former fitness 
criterion measures macro-level effects across the entire 
network. The latter criterion by contrast encourages the 
GA to be efficient by finding the greatest backlog for the 
smallest attack—essentially a minimax strategy. In a sense, 
by penalizing the GA for picking the largest airports, this 
latter criterion is equivalent to looking to trigger for a 
network avalanche much like the shutdown of a power 
generation plant in suburban Cleveland triggered cascading 
failures in the Northeast power grid in 2003.  
 The GA starts with an initial set of 50 random 
strategies—a “strategy” is simply a list of airports to 
remove from the network, e.g. [Tegucigalpa, Tokyo, 
Toronto]. Because I am interested in how disruptions in 
geographically distant locations may affect the United 
States, the GA’s strategies consist only of airports outside 
of the United States (there are 207 such airports in the BTS 
data). The model runs the simulation once for each 
strategy, disabling the airports as well as their in- and out 
links.  It then measures that strategy’s performance using 
one of the two the fitness criteria. After testing all 50 initial 
strategies (a “generation”) the GA uses a selection 
procedure to populate 40 strategies for the next generation. 
In half of the experiments, the GA uses a simple 
tournament selection that compares the fitness of two 
randomly chosen strategies. In the other half, the GA uses 
a fitness proportionate selection rule, in which the 
probability of a strategy surviving to the next round is 
higher for better performing strategies. As the simulation 
evolves, the GA creates novel strategies in three ways. 
First, after every tournament selection the winning 
strategies cross over with a probability of .75. Second, at 
the end of every generation, after the algorithm selects its 
fittest strategies the GA mutates each allele on a fit strategy 
with a probability of .005. Finally, the selection 
tournament provides only 40 fit strategies for subsequent 
generations. The remaining 10 strategies are randomly 
generated ones, assuring that in each generation fit 
strategies compete against 20 percent new strategies. 
Figure 3 is a box plot of fitness by generation for one of 
the experiments; the hollow circles represent the median 
fitness for each generation. By the 22nd generation, the 
GA has found an optimal strategy that survives and 
becomes the median strategy by the end of the experiment. 
The figure also clearly shows how the median value 
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increases and the interquartile range grows with each 
passing generation. This is the value of a GA: it 
simultaneously improves strategies while exploring a range 
of alternative strategies. 

An experiment consists of the GA testing 50 generations 
of 50 strategies each, for a total of 2,500 simulations per 
experiment. To test for interaction effects, the GA ran 
experiments in which it selected a single node; two nodes; 
and three nodes for removal. I conducted twelve total 
experiments: three types of strategy (one, two or three 
airports attacked) × two fitness criteria (total backlog 
versus backlog / disabled node) × two selection rules 
(tournament versus fitness proportionate). For each 
experiment I recorded both the measures of network 
performance and the final generation of 50 strategies. 

4. Findings 
Table 4 reports the frequency with which airport nodes 
appeared in the final generation of the GA. Recall that each 
generation included 50 strategies, and that the twelve 

experiments varied disruption strategies from one to a 
combination of three airports. For this reason, the GA 
identifies an average of 100 optimal airport nodes in each 
experiment’s final generation, for a total of 1,200 selected 
nodes. For k successes in n trials with a probability of 
success of p, the binomial mass function is pk × (1−p)(n-k).
Because the GA selects from only the 207 non-U.S. 
airports, p = 1÷207 = .0048. Thus, the probability the GA 
of randomly selects an airport 13 times in 1,200 trials is 
about .006.  Table 4(a) reports the airports the GA selected 
with a frequency that is significantly greater than random 
selection at p < .01; only 11 airports appear with a 
frequency greater than 13. Table 4(b) reports the selected 
airports for the total backlog criterion, while 4(c) lists the 
airports when the GA sought to optimize the total backlog 
per disabled link. 
 The results illustrate how the GA found airports that can 
disrupt flows in the air transport network even though they 
are not central to the network. The airport with the highest 
betweenness centrality (that is, the probability that the 

Figure 3: Box plot of strategy fitness by GA generation.
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airport lies on the shortest path between all other vertices) 
is Toronto at .0045. This is an expected result: the BTS 
data reports only traffic to and from U.S. airports but not, 
for example, between Toronto and Vancouver. By 
construction, then, all non-U.S. airports in the simulation 
have low betweenness centrality.  Nonetheless, the results 
also show how relatively “small” these airports are in the 
network. Toronto has the greatest number of connections 
to the U.S. network with 72 out links; Cancun has 43 and 
Montego Bay 26. Santiago, Mumbai, Brisbane, 
Birmingham, Abu Dhabi and Santa Marta all have three or 
fewer out links to the United States. In terms of flows, 

Toronto sent an average of about 12,000 passengers to the 
United States per day in February 2011; Tokyo sent about 
10,000; and Cancun about 8,500. These are obviously 
rather small portions of the daily network flow of about 1.9 
million passengers. 
 A comparison of tables 4(b) and 4(c) illustrates how the 
GA found different strategies when optimizing different 
criteria. To create the greatest total backlog of passengers, 
the GA identified large foreign airports with both lots of 
connections to the United States and relatively large 
passenger flows. Tokyo’s Narita Airport and Inchon 
Airport in Seoul are important gateways from Asia to 
North America. Likewise, Toronto serves as a bridge 
between the Canadian and American air transportation 
networks. Surprisingly, the GA selected no European 
airports to disrupt. Equally surprising is its selection of 
Montego Bay and Cancun. Because the model uses BTS 
data from February 2011, the GA might be capturing 
winter travel to these vacation destinations. Yet their 
inclusion may also reveal some of the structural properties 
of the U.S. network. As Caribbean destinations, Cancun 
and Montego Bay form a cluster in the network because 
numerous large hubs in the U.S. are connected to both, 
including Atlanta, Dallas-Fort Worth, Newark, both New 
York airports, Chicago O’Hare and Miami. Indeed, the two 
airports share 23 U.S. destinations. This suggests that, 
although individually the Cancun and Montego Bay are 
relatively small, the interaction effect of a simultaneous 
disruption creates congestion in major hub airports in the 
United States.  
 Table 4(c) shows the GA results when it optimized a 
minimax criterion: the most disruption for the least number 
of disabled links. The results illustrate that, although large 
airports can create sizeable disruptions to passenger flows, 
such disruptions are relatively “costly” in the sense that 
they require disabling many links. When measured on a 
per-link basis, smaller airports may have a greater impact. 
Santiago, Chile is connected to only three U.S. airports; 
Brisbane and Abu Dhabi each are connected to only two. 
Yet because of the scale-free nature of the air 
transportation network, the hub structure allows relatively 
small nodes like Santiago to introduce perturbations that 
the hub then transmits through the network. 
 Although table 4 presents the frequency with which the 
GA selects specific airports to disrupt, it does not 
summarize the frequency with which the GA selects 
specific strategies. In eight of the twelve experiments, the 
GA combined the disruption of two or three airports 
outside the United States. An examination of these 
strategies should indicate whether the GA identified 
interaction effects among airports. Table 5 reports the most 
frequently selected strategies, and reveals a few surprises. 
Although Tokyo and Montego Bay may be geographically 
distant, their passenger flows intersect at a number of hub 

Node N Percent

(a) All Experiments

Tokyo (Narita) 193 16.08
Santiago, Chile 108 9.00
Toronto (Pearson) 74 6.17
Brisbane 48 4.00
Seoul (Inchon) 43 3.58
Birmingham, UK 38 3.17
Montego Bay 36 3.00
Abu Dhabi 34 2.83
Cancun 28 2.33
Mumbai 19 1.58
Santa Marta, Colombia 16 1.33

Total 1200 100.00

(b) Criterion = Total Passenger Backlog

Tokyo (Narita) 143 23.83
Toronto (Pearson) 74 12.33
Seoul (Inchon) 39 6.50
Montego Bay 36 6.00
Cancun 26 4.33

Subtotal 600 100.00

(c) Criterion = Backlog per Disabled Link

Santiago, Chile 108 18.00
Tokyo (Narita) 50 8.33
Brisbane 48 8.00
Birmingham, UK 37 6.17
Abu Dhabi 34 5.67

Subtotal 600 100.00

Table 4: Results of the GA experiments.
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airports including Atlanta, Chicago O’Hare, Dallas-Fort 
Worth, and Los Angeles. These hubs also connect Seoul, 
Tokyo and Toronto. More surprising is the strategy to 
disrupt both Aguascalientes, Mexico and San Salvador. 
Though quite small, both Latin American airports feed 
traffic through Atlanta and Dallas-Fort Worth. Similarly, 
Toronto and Santa Marta, Colombia are connected through 
Miami and JFK Airport in New York. All of these 
examples suggest that combinations of disruptions can 
produce nonlinear effects by pushing the passenger 
backlog of a U.S. hub airport above the capacity threshold.  
 Finally, it is interesting to note that although the 
combination of Brisbane and Santiago is the second most 
frequently selected strategy, they share no link neighbors. 
To fly from Brisbane to Santiago, a passenger would have 
to transit either LAX or JFK first, and then Miami, Atlanta, 
or Dallas-Fort Worth. The frequency with which the GA 
selected this strategy suggests the possibility of second-
order interaction effects. By simultaneously disrupting 
Santiago and Brisbane, the GA may induce backlogs that 
build first in one U.S. hub airport and then in another. In 
this respect, hub airports can act as multipliers for 
disruptions, magnifying the cascades of backlogged 
passengers. Anyone who has faced a “weather” delayed 
flight on a sunny day is familiar with these second-order 
effects. 

5. Future Research 
Although these findings are interesting, the simplifying 
assumptions of the simulation limit their generality. 
Foremost is the assumption that the U.S. air transportation 
system is a discrete network. Of course, it is merely a 
subnetwork of the global air transportation system. As the 
2010 eruption of the Eyjafjallokull volcano in Iceland 
demonstrated, delays in the European subnetwork can 
reverberate in the U.S. With data on both the structure of 
and traffic across the global air transportation network, the 
GA might identify other, more effective modes of 
disruption. Similarly, the simulation would benefit from 
finer-grained measures of the network’s dynamics. The 

simulation presented here used daily passenger flows to 
affix constant weights to links in the network. Likewise, it 
assumes a constant capacity constraint across airports and 
across time. Although the BTS aggregates data by month, 
it may be possible to measure the variation in passenger 
flows among airports in the system. Such data would allow 
the model to simulate daily and seasonal variations in 
passenger traffic, and by extension the variation in capacity 
constraints at airports. With such a refinement, the GA 
could search not only for optimal disruptions but also for 
an optimal time at and sequence in which to disrupt the 
airports. It is likely that the sequence and timing of 
disruptions is just as important as the nodes the GA 
disrupts. 
 What are the financial costs of the disruptions identified 
by the GA?  The results above do not quantify the backlog 
as a percentage of total throughput in the system, nor do 
they estimate the financial costs of such delays. It may be, 
for example, that although the GA has identified 
simultaneous disruptions of Brisbane and Santiago as an 
optimal disruption strategy, this may create backlogs of 
only a few hundred passengers per day. A more realistic 
simulation would measure the financial costs of 
disruptions. After all, airlines and regulators ultimately are 
more concerned about financial losses than the number of 
individuals who are inconvenienced. The costs may be 
considerable, furthermore. The Air Transport Association 
estimates that in 2009, a one-minute delay of a flight 
produces about $61 in direct costs to airlines plus another 
$0.62 in opportunity costs to passengers (Air 
Transportation Association 2011). To quantify this in terms 
of the simulation results presented above, one experiment 
in which the GA disabled Seoul, Tokyo and Toronto 
produced about 39,400 passenger delay days (i.e. one 
passenger delayed one day) or a daily average of about 438 
passengers. The costs to passengers alone would be about 
$391,000 per day. Using data like this, the GA could select 
among the most costly strategies rather than merely those 
that affect flows the most. 

Finally, the simulation would benefit from “smart” 
airport agents. In the current implementation of the 
simulation, an airport agent simply moves its passenger 
backlog to all its network neighbors—in effect, it assumes 
passengers are homogenous when, in the real world, they 
differ in their destinations. Obviously, this implementation 
is unrealistic: Chicago O’Hare cannot reroute a Des 
Moines passenger through South Bend because that 
passenger probably will end up back in Chicago. One 
useful extension of the model would be to endow airports 
with evolutionary learning as well, so that they can 
dynamically evolve strategies for dispensing with 
passenger backlogs. In effect, airport agents would co-
evolve strategies with the disruption strategies created by 
the optimal terrorist GA. 

Strategy N Percent

Montego Bay, Tokyo 36 9.00
Brisbane, Santiago 34 8.50
Seoul, Tokyo, Toronto 32 8.00
Abu Dhabi, Birmingham, Santiago 29 7.25
Aguascalientes, San Salvador 10 2.50
Santa Marta, Toronto 10 2.50

Total 400 100.00

Table 5: Most frequently selected strategy sets.
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6. Conclusions 
Weighted complex networks behave in surprising ways. 
When such networks span the borders of nation-states—
and many utility, information and transportation networks 
do—they may produce unintended costs that governments 
cannot control. While the static analysis of the structural 
properties of such networks can reveal subgraphs, bridging 
nodes, and other critical features, it tends to overlook 
dynamic flows through the network. To understand 
cascading failures, researchers need to conduct dynamic 
analysis of flows. Because many global complex weighted 
networks have evolved in response to market demands, 
furthermore, they have developed scale-free properties that 
are highly efficient for moving information, people, and 
goods, but that may not be very robust in the face of 
disruptions. For this reason, researchers and policy makers 
alike need methods to analyze how complex weighted 
networks respond to disruptions. Using the U.S. air 
transportation system as an example, this study illustrates 
how researchers can combine agent-based modeling, 
evolutionary computation, and network analysis to 
simulate differing failure modes for global networks. By 
focusing on disruptions at non-U.S. airports, the study 
demonstrates how disruptions may interrupt flows at points 
in the network that are geographically distant. This is not 
only costly to individual, firms, and governments, but it 
also demonstrates that individual governments cannot 
manage network effects on their own. The United States air 
transportation network relies upon efficient networks in 
Europe and Asia, just as those regions depend upon safe 
and efficient transportation in the United States. In the 
absence of international coordination in the management 
and security of complex networks, nasty surprises will 
inevitably occur.  

References 
Air Transport Association. Annual and Per-Minute Cost of 
Delays to U.S. Airlines. Online resource available at 
http://www.airlines.org/Economics/DataAnalysis/Pages/CostofDe
lays.aspx. Last accessed 9 September 2011. 
Amaral, L.A.N. et al. 2000. Classes of Small-World Networks. 
Proceedings of the National Academy of Sciences 97, 21: 11149-
11152. 
Bagler, G. 2008. Analysis of the airport network of India as a 
complex weighted network. Physica A 387, 12: 2972-2980. 
Barabasi, A.L. and Albert, R. 1999. Emergence of Scaling in 
Random Networks. Science 286, 5439: 509-512 
Barabasi, A.L. and Bonabeau, E. 2003. Scale-Free Networks. 
Scientific American 288, 5: 50-59.
Barrat, A.  et al. 2004. The architecture of complex weighted 
networks. Proceedings of the National Academy of Sciences 101, 
11: 3747-3752 

Clauset, A., Shalizzi, C. R. and Newman, M. E. J. 2009. Power-
Law Distributions in Empirical Data. SIAM Review 51, 4: 661-
703. 
Dall’Asta, L. et al. 2006. Vulnerability of weighted networks. 
Journal of Statistical Mechanics April: 1-12.  
Estrada, E. 2006. Network robustness to targeted attacks. The 
interplay of expansibility and degree distribution. The European 
Physical Journal B 52, 4: 563-74.
Guimera, R. and Amaral, L.A.N. 2004. Modeling the world-wide 
airport network. European Physical Journal B 38, 2: 381-385. 
Guimera, R. et al. 2005. The worldwide air transportation 
network: Anomalous centrality, community structure, and cities’ 
global role. Proceedings of the National Academy of Sciences
102, 22: 7794-7799. 
Holland, J. H. 1992. Genetic Algorithms. Scientific American
267: 66-73 and 114-116. 
Katz, J. M. and Kay, J. 2008. Red tape cutting off food. The 
Virginian-Pilot (March 7): A3. 
Li, K., Gao, Z., and Mao, Z. 2006. A Weighted Network Model 
for Railway Traffic. International Journal of Modern Physics C
17, 9: 1339-1347. 
Li, W. and Cai, X. 2004. Statistical analysis of airport network of 
China. Physical Review E 69, 4. 
Lustick, I., Miodownik, D. and Eidelson, R. J. 2004. 
Secessionism in Multicultural States: Does Sharing Power 
Prevent or Encourage It? American Political Science Review 98, 
2: 209-229. 
Miller, J. H. 1998. Active Nonlinear Tests (ANTs) of Complex 
Simulation Models. Management Science 44, 6: 820-830 
Nagurney, A. and Qiang, Q. 2007. A Transportation Network 
Efficiency Measure that Captures Flows, Behavior, and Costs 
with Applications to Network Component Importance 
Identification and Vulnerability. In Proceedings of the POMS 18th

Annual Conference. Miami, FL: Production and Operations 
Management Society. 
U.S. Department of Defense. Office of the Assistant Secretary of 
Defense for Homeland Defense. 2005. Defense Critical 
Infrastructure Program. Directive 3020.40. Washington, DC: U.S. 
GPO. 
U.S. Department of Homeland Security. 2006. National 
Infrastructure Protection Plan. Washington, DC: U.S. GPO. 
U.S. Department of Transportation. Bureau of Transportation 
Statistics. Air Carriers: T-100 International Market. Online 
resource available at http://www.transtats.bts.gov.  Last accessed 
9 September 2011
U.S. Public Law 110-53. 110th Cong., 1st sess., 2007. 
Implementing Recommendations of the 9/11 Commission Act of 
2007. 
Wang, W. and Chen, G. 2008. Universal robustness 
characteristics of weighted networks against cascading failures. 
Physical Review E 77, 2. 
Watson, J. 2011. Up to 5 Million Lose Power in Calif., Ariz., and 
Mexico. The Virginian-Pilot (September 9): 10. 
Watts, D. J. 1999a. Networks, Dynamics, and the Small World 
Phenomenon. American Journal of Sociology 105, 2: 493-527 
Watts, D. J. 1999b. Small Worlds: The Dynamics of Networks 
Between Order and Randomness. Princeton, NJ: Princeton 
University Press. 

42



Watts, D. J. and Strogatz, S. H. 1998. Collective Dynamics of 
‘Small World’ Networks. Nature 393: 409-410. 
Yang, R. et al. 2009. Optimal weighting scheme for suppressing 
cascades and traffic congestion in complex networks. Physical 
Review E 79, 2. 
Yang, Y. and Li, W. 2011. Comparative Analysis on Weighted 
Network Structure of Air Passenger Flow of China and US. 
Journal of Transportation Systems Engineering and Information 
Technology 11, 3: 156-162. 

43


