
Using Scone's Multiple-Context Mechanism
to Emulate Human-Like Reasoning

Scott E. Fahlman
Carnegie Mellon University, Language Technologies Institute

sef@cs.cmu.edu

Abstract
Scone is a knowledge-base system developed specifically to
support human-like common-sense reasoning and the
understanding of human language. One of the unusual
features of Scone is its multiple-context system. Each
context represents a distinct world-model, but a context can
inherit most of the knowledge of another context, explicitly
representing just the differences. We explore how this
multiple-context mechanism can be used to emulate some
aspects of human mental behavior that are difficult or
impossible to emulate in other representational formalisms.
These include reasoning about hypothetical or counter-
factual situations; understanding how the world model
changes over time due to specific actions or spontaneous
changes; and reasoning about the knowledge and beliefs of
other agents, and how their mental state may affect the
actions of those agents.

The Scone Knowledge-Base System
Scone is a knowledge representation and reasoning system
– a knowledge-base system or KB system – that has been
developed over the last few years by the author’s research
group at Carnegie Mellon University (Fahlman 2006; see
also www.cs.cmu.edu/~sef/scone/). Scone, by itself, is not
a complete AI or decision-making system, and does not
aspire to be; rather, it is a software component – a sort of
smart active memory system – that is designed to be used
in a wide range of software applications, both in AI and in
other areas. Scone deals just with symbolic knowledge.
Things like visualization, motor memory, and memory for
sound sequences are also important for human-like AI, but
we believe that those will have specialized representations
of their own, linked in various ways to the symbolic
memory.

Scone has been used in a number of applications at
Carnegie Mellon and with a few selected outside partners;
we plan a general open-source release of Scone in the near

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

future, as soon as we can assemble the resources and
infrastructure needed to support a larger external user
community.

Scone occupies a different part of the design space from
other knowledge-base systems currently in use –
particularly systems such as OWL that are based on First-
Order Logic or Description Logic. Our goal in developing
Scone has been to support common-sense reasoning and
natural-language understanding, not theorem-proving and
logic puzzles. Therefore, we place primary emphasis on
Scone's expressiveness, ease of use, and scalability.

For human-like common-sense reasoning, we need
expressiveness that is greater than that of first-order logic,
not a less-expressive subset of FOL. In particular, we need
to use higher-order logical constructs and default reasoning
with exceptions, as explained below. We also need a
system that can scale up to millions of entities and
statements, and perhaps tens or hundreds of millions, while
still delivering something like real-time performance.

 To achieve those goals simultaneously, we must give up
the constraint of using only logically complete reasoning
methods applied to a provably consistent knowledge base.
Any system with the expressiveness we want can be
proven to be intractable or undecidable. Logical proofs are
a wonderful invention, but for a system with the goals of
Scone, we can’t afford to deal in proofs and completeness.
Instead, Scone uses more limited and local forms of
inference that appear to provide the power and accuracy we
need for human-like reasoning. For a more thorough
discussion of this trade-off, see (Fahlman 2008).

Like other knowledge-base systems, Scone provides
support for representing symbolic knowledge about the
world: general common-sense knowledge, detailed
knowledge about some specific application domain, or
perhaps some of each. Scone also provides efficient
support for simple inference: inheritance of properties in a
type hierarchy, following chains of transitive relations,
detection of type mismatches (e.g. trying to assert that a
male person is someone’s mother), and so on. Scone

Advances in Cognitive Systems: Papers from the 2011 AAAI Fall Symposium (FS-11-01)

98

supports flexible search within the knowledge base. For
example, we can ask Scone to return all individuals or
types in the KB that exhibit some set of properties, or we
can ask for a best-match if no exact match is available.

It is not the purpose of this paper to provide a tutorial on
Scone, but we will briefly describe some of Scone’s more
unusual features to provide the necessary background for
our real topic: Scone’s multiple-context mechanism and its
uses.

Speed and scalability: Benchmark tests have shown
that Scone can deliver real-time performance on a standard
(~$1000) workstation, even as the KB grows to several
million elements and statements. Scone’s core search and
inference capabilities (Fahlman, 2006) are based on
marker-passing algorithms originally designed for a
hypothetical massively parallel machine, the NETL
machine (Fahlman, 1979). If we need more speed or a
much larger KB, Scone’s current algorithms can easily be
mapped to certain kinds of parallel architectures.

Clean separation of conceptual vs. lexical or
linguistic information: Scone may be viewed as a
semantic network of nodes and links. The nodes in Scone
represent concepts, not words or phrases. These nodes are
generally written with curly braces, such as {elephant},
which represents the concept elephant and is tied to other
concepts by relational links. We refer to Scone’s nodes
and links collectively as Scone elements.

The names within the curly braces are arbitrary unique
labels, but the concept {elephant} is tied to zero or more
lexical items in English, and to additional lexical items in
other languages. The concepts themselves are mostly
universal and language independent – the concept
{elephant} is more or less the same in every culture that
knows about elephants – but Scone’s multiple-context
mechanism can be used to represent concepts that exist in
one culture but not in another, or that are significantly
different in some cultures.

Frame-like representation with virtual-copy
semantics: In Scone and other frame-like KB systems,
there are arbitrarily complex structured descriptions
(prototypes) for each type represented: elephant, family,
contest, and so on. These concept descriptions typically
have many interrelated parts, attributes, and relations to
other individuals and types. Upon creating a subtype or
instance, all of the structure of the prototype description is
efficiently inherited. In effect, the new subtype or instance
becomes a virtual copy of the parent description; it can
then be specialized by adding new information or by
subtracting information that would otherwise be inherited.

Default reasoning with exceptions: The virtual-copy
mechanism described above is very powerful, but for real-
world domains this inheritance would be nearly useless
without the ability to cancel or over-ride some of the
information that would otherwise be inherited. We want to

say that a {bird} is a {flying thing} in general, but a
{penguin} is a bird that can’t fly. A {canary} is a normal
bird – it is a {flying thing} – but some individual canaries
cannot fly. These exceptions are not rare anomalies: the
more you know about the prototypical properties of a given
type, the less likely you are to ever find an instance that
matches that prototype in every respect. The world is full
of flightless birds, three-legged dogs, and even the
occasional honest politician. But most current KB systems
exclude any sort of cancellation (non-monotonic
reasoning) because that can create all sorts of problems for
a system that is trying to be logically complete. The ability
to create exceptions and to explicitly over-ride some
inherited information is a core capability of Scone, and is
efficiently implemented in Scone’s inference algorithms.

Higher-order logic and meta-information: First-order
logic lacks the ability to make statements about statements,
to reason about this meta-information, and to use that to
control which statements will participate in the system's
reasoning. In Scone, statements are treated like any other
objects. We can attach attributes (meta-information) to
these statements, and that can be used to selectively
activate and de-activate statements. This is a form of
higher-order logic, and it is used in Scone in a number of
ways. For example, we might assign a confidence value
and some source information to each statement in some
domain. For some deductions, we might insist that only
highly confident facts, or those from certain trusted
sources, are to participate; the others are dormant. Scone’s
multiple-context system is essentially a convenient
packaging of some of these higher-order capabilities.

Again, this is not a rare anomaly that can easily be
ignored. Consider the following statement: “John believes
that Fred knows Mary’s phone number, but that’s not
really true.” This is inherently a higher-order statement.
And yet, without the ability to represent and reason about
statements like this, we could not understand the plot of a
typical sitcom, most of which involve misunderstandings
and confusion, or (as we will see) the plot of a simple
children’s story that involves some type of deception.

Multiple Contexts in Scone
Perhaps the most unusual aspect of Scone is its multiple-

context mechanism. In this section, I will describe what
this is and how it works; in the remainder of the paper, I
will describe how multiple contexts can be used to
implement some aspects of human thought that are
awkward or impossible for other knowledge-representation
formalisms.

A context is simply a node in Scone’s knowledge base
that represents a distinct world model within the larger

99

Scone KB. There can be any number of these contexts
within the Scone system.

Every node N in Scone has a connection to some
context-node C in which the entity represented by N exists.
Every link L in Scone has a connection to a context node C
within which the statement represented by L is valid. At
any given time, one context node CACTIVE in the KB is said
to be active, meaning that we are operating within the
world-model that CACTIVE represents. The nodes and links
within CACTIVE are available to participate in the system’s
reasoning; those not within CACTIVE are dormant, and do
not participate in the system’s reasoning. New information
added to the Scone KB is generally placed in the current
CACTIVE.

The Scone reasoning engine has efficient mechanisms to
switch from one active context to another. The reasoning
engine will often switch contexts many times while
working on a given task. A useful rule of thumb is that the
English word “in” usually (but not always) signals a
context-switch. A context may represent a region of space
(“in the UK…”); a region of time (“in the 1960s…”); an
alternative reality (“in the fictional Harry Potter
universe…”); a hypothetical state (“in the scenario where
Sarah Palin is elected President…”); a mental state
indicating the knowledge and beliefs of some person or
other being (“in John’s opinion…”); or a combination of
these (“in Paris in the spring…”). There is a special large
context {general} that holds – not surprisingly – things that
are true “in general”.

It would be possible, but terribly inefficient, to
implement each context or world model as a separate KB,
with its own private copy of all its knowledge. In most
cases, one context will differ from another in only a few
respects; the vast majority of their knowledge will be
common to both of them. So in Scone, contexts are
hierarchical: a context C2 starts out as the clone of some
existing parent context C1, inheriting all of C1’s
knowledge; then we can customize C2 by adding some
additional knowledge or by explicitly subtracting some
knowledge that would otherwise be inherited. This
inheritance is handled efficiently by Scone’s marker-
passing algorithms.

An example: Suppose we want to create new context
representing the Harry Potter world. Call this CHP. To
create CHP, we find some existing context that is close to
what we want – in this case, “present day UK” or CUK. We
add the new CHP node to the knowledge base, along with a
“clone-of” link (a kind of “is-a” link) from CHP to CUK.
Anything that exists in CUK – houses, double-decker
busses, London – now also exists in CHP. Anything that
we know to be true in CUK is also true in CHP: for example,
people drive on the left side of the road. So far, CHP is not
very interesting, but now we can add some new entities –
Harry himself, Hogwarts School, dragons – and some new

assertions – for example, “A broom is a vehicle”. We can
also explicitly cancel some things that would otherwise be
inherited from CUK, such as “The primary purpose of a
broom is cleaning.” If we activate the CHP context, we see
all this new information and can use it in reasoning,
planning, or answering questions. If we derive any new
information while working in CHP, that is added to CHP. If
we activate CUK, these changes are all invisible; the
information in CHP plays no part in any reasoning we
might do in CUK.

How is all this implemented for maximum efficiency in
the Scone knowledge-base engine on a serial machine?
Details and some benchmarks can be found in (Fahlman
2006), but here is a very brief sketch: To activate CHP, we
put a special “active context” marker on the node
representing CHP. We then propagate this marker upwards
across “is-a” and “clone-of” links to mark all the nodes
from which CHP is supposed to inherit information. In this
case, the marker will end up on the CUK node, the
{general} node, and probably many others. Our
benchmark testing has shown that this context activation
will typically take much less than a millisecond on a
standard serial workstation.

In all of our subsequent reasoning, whenever we are
about to make use of a node or link, we first check whether
the context-node it is tied to is marked with the activation
marker – that is, we check whether the context is active. If
the mark is present, we proceed; if not, we ignore the
presence of this node or link. That check adds a small,
constant extra cost to each reasoning step, but once we
have accepted that cost, we can have as many nested
contexts as we like. The time required to switch contexts
may go up as the number of contexts and their
interconnections goes up, but there is no further slowdown
of normal reasoning.

The multiple-context system used in Scone is a direct
descendant (though with some changes) of the multiple-
context system I proposed for the NETL knowledge-
representation system over thirty years ago (Fahlman
1979). That, in turn was influenced by the work of
Quillian (1968) and the Conniver language (Sussman and
McDermott 1972). There have been many knowledge
representation systems since then with multiple contexts or
something similar, but I am not aware of any that are very
similar to the system in Scone (or in NETL). For example,
the micro-theories in Cyc (Lenat et al. 1990) are oriented
more toward packaging the knowledge into internally
consistent sub-domains, not all of which have to be loaded
at once, than Scone’s goal of easy movement between
overlapping world-models (which may or may not be
internally consistent).

Because contexts are represented as nodes in the Scone
KB – no different from the nodes representing other
entities – the context node can serve as a convenient handle

100

to attach meta-information about the collection of
information (the world model) that resides in that context.
In any higher-order logic system, it is possible to make
statements about other statements, but our mechanism
makes it possible to make statements about packages of
information. For example, we might say that Fred believes
that he can juggle five balls while walking on a tightrope
during an earthquake. This is more than a single simple
statement. It is represented by a collection of statements
and entities in a context, pointed to collectively by a “Fred
believes this” relation. (There may be additional meta-
information stating that nobody else believes this.)

We can also use this sort of meta-information to hold
information that is of value to a planning program that
makes use of Scone: For example, we might say that if a
situation resembles the world-model described in context
C1, consider taking the action described in context C2. In
making such meta-statements, we can use the full
expressive power of Scone.

Hypotheses and Counter-Factual Situations
It is the mark of an educated mind to be able to
entertain a thought without accepting it. – Aristotle

An important survival skill for humans is the ability to
represent and reason about counter-factual situations – that
is, situations that differ in some respect from the current
reality. “What would I do if a hungry bear appeared at the
mouth of my cave during the night? I could throw rocks at
it. Maybe I should go collect some rocks now, while it’s
safe to do so…” Even Aristotle, the inventor of formal
logic, understood the importance of occasionally reasoning
about situations that are not actually true in your current
model of reality, though he seems to have believed that
only educated people can do this – demonstrably untrue.

Scone’s multiple-context mechanism makes it relatively
straightforward to reason about counter-factuals and their
consequences, without letting that exercise spill over into
your current world-model. We begin by creating a new
context, CBEAR, which is initially a clone of CGENERAL,
inheriting all of its contents. We then customize CBEAR,
which may involve adding new knowledge (“There’s a
hungry bear outside”), cancelling some inherited
knowledge (“It’s currently daytime”), or some of each.

These changes affect only CBEAR. They are not visible
when CGENERAL is active. We can now do whatever
reasoning or planning we want to do in CBEAR, resulting,
perhaps, in the conclusion that we should have a supply of
rocks on hand. The planning process can write that goal
back into CGENERAL with a link to the CBEAR context as the
explanation: a bear might appear in the night.

The general idea here is that the reasoning process can
export some specific results of the reasoning back to the
general context – in this case, advice to lay in a supply of
rocks, without exporting everything – particularly the
counter-factual statement that a bear is currently outside.
But we can retain the CBEAR context, labeled in CGENERAL

with the meta-information that it is merely a hypothetical
state, in case we want to refer again to CBEAR in the future.

It should be obvious that the same approach can be used
to entertain multiple, possibly inconsistent, hypotheses as
we reason about the world or make plans: “Perhaps these
droppings at the mouth of the cave are from a bear – what
would be the consequences? Or perhaps they are from a
deer – different consequences altogether.”

It is possible to garbage-collect a hypothetical context,
and all its contents, as soon as we are done with it, but it is
also possible to keep any number of these contexts around
indefinitely. Perhaps we have chosen one of N possible
interpretations of the mysterious droppings as most likely,
but we want to retain the other possibilities and what we
have deduced about their consequences, in case we get
more evidence later.

Temporal States, Actions, and Events
Another essential human trait is our episodic memory: that
is, our ability to represent and reason about events, actions,
sequences of events or actions, plans, preconditions, and
consequences. This is a very complex business, since it
involves both representation and planning. (Since we are
talking here about everyday human abilities, I will consider
only “good enough” planning, not optimal planning.)
Scone’s multiple-context mechanism gives us a good way
to handle the representational part of this problem.

In Scone, an event is just a description or frame with any
number of type-restricted slots; an action is just an event
with a special slot for the agent – the entity that caused the
event to take place (whatever that means – questions of
causality lead us into deep philosophical waters pretty
quickly, but people seem to have a usable informal model
of causality sufficient for most everyday problems).

An event or action description has two additional
important slots: the {before-context} and the {after-
context}. These are two distinct world-models that
represent the state of the world before the event and the
state of the world after the event.

Consider the generic action {move}, in the sense of
“move a physical object”. The major slots in this
description are the {agent}, the {object being moved},
{location-1}, {location-2}, and the {time of action}. For a
given instance of {move} – call it {move-27} – all of these
slots exist (directly or by inheritance), but we may or may

101

not have fillers for all of them. For example, we may
know who moved an object, but not when that occurred.

In the {before-context} of any {move}, the {location} of
the {object being moved} is {location-1}. In the {after-
context}, it is {location-2}. That’s the essence of what
{move} does. Both the {before-context} and the {after-
context} are complete world-models. We can activate
either of them and reason about what is true in that model.
Perhaps location-2 is in the shade, so the object will cool
down.

The {before-context} of {move-27} is initially a clone
of the surrounding context in which the move occurs, so all
of that general knowledge is inherited. The only thing we
have to represent explicitly is the existence of the object
and its location in this context. The {after-context} of
{move-27} begins as a clone of the {before-context}. We
just have to explicitly represent what has changed: the
object’s presence at location-1 is cancelled, and its
presence at location-2 is added. (In many ways, this model
resembles the old STRIPS model of actions and planning
(Fikes and Nilsson, 1971): the explicit contents of the
{before-context} correspond to the pre-conditions of the
action; the explicit contents of the {after-context} represent
the post-conditions.)

Actions and events may be strung together to form a
sequence (or, more generally, a lattice), with the {after-
context} of one event being the {before-context} of the
next one. An event may be thought of (and represented in
Scone) as atomic – an indivisible change-of-state that
transforms one state into another. Or it may have an
{expansion} – a sequence of sub-events – that represent
steps in the larger action.

The Frame Problem: What Has Changed?
In the description above, I said that the {after-context}

of an action or event only has to represent explicitly what
has changed relative to the {before-context}. But things
are not really that simple. This touches upon some aspects
of the famous Frame Problem (McCarthy and Hayes
1969). This paper highlighted some of the problems that
can occur in the representation of world-states that change
over time, perhaps spontaneously. There is now a very
large literature on various aspects and manifestations of
this problem.

Here we will look at three aspects of the Frame Problem
that relate to this discussion. First, in some logical
formalisms, it is difficult or impossible to say “World-
model T2 is the same as world-model T1, except for some
specific differences that we will state explicitly.” To
handle this well requires default reasoning with exceptions,
which many logical formalisms do not include. As we
have seen, Scone handles this in a very natural way.

Second, there is the question of how many changes to
deduce and to describe explicitly. When I pick up a glass
and move it to a new position, its location changes. We
certainly want to represent that change. But I also may
have left some fingerprints on the glass. We normally
would never think about that, but in certain contexts
(murder mysteries) that could be very significant. Also,
that action perturbed very slightly the orbit of Jupiter.
People who have studied classical physics know, or can
deduce, that this is true, but it’s hard to think of a context
in which this would be important. This seems like an ideal
candidate for lazy evaluation.

In Scone, we could note in the generic {move}
description that these kinds of consequences are possible,
but mark them as lazy. We would not work out the details
in the specific {move-27} description until/unless we have
some need for this information. Note that this annotation
is a form of higher-order logic, and the decision not to
deduce all the consequences that we could deduce is a
violation of logically complete reasoning, so many logic-
based representations will have a problem with this.

Finally, there is the issue of things that change
spontaneously, or at least due to some action/event that is
not explicitly represented in our model. Ice melts
(depending on the ambient temperature), food in the fridge
goes bad (at a rate depending on the food and assorted
other conditions). A cigarette butt dropped on the sidewalk
will probably still be there the next day, but a $100 bill left
lying on the sidewalk probably will not be. The so-called
Yale Shooting Problem (Hanks and McDermott 1987; see
also http://www-formal.stanford.edu/leora/commonsense/)
is a good example of this phenomenon. Again, the
question is how many of the almost infinite set of possible
deductions should we perform pro-actively, and how do we
handle the cases where we did not consider some change
that becomes important later.

We have not yet attacked this genuinely hard problem
using Scone. Clearly, once again, some sort of lazy
evaluation is called for, and once again that will cause
problems for those who insist on logically complete
methods. One idea is to create phantom event-types for all
the families of change that we might ever want to consider:
ice “melts”, food “spoils”, and so on. Then when we are
interested in the possible consequent of such an event, we
can consider whether this phantom event is likely to have
occurred. In any case, Scone will not complain about the
logical incompleteness inherent in this style of reasoning.

Reasoning About Differing Mental States
We humans are able to model the mental state of other
humans, and to reason about their plans and actions based

102

on this model. For social animals like us, this is a very
important capability.

Consider what is required to really understand – well
enough to answer questions or make predictions – the
following fragment of a children’s story, easily
understandable by an average human 4-year-old:

The last little pig is safe in his brick house. The wolf
is outside, but the door is locked. The wolf can’t get
in as long as the door is locked. The pig wants to go
outside, but he knows the wolf is waiting outside, so
he will not unlock the door.

The wolf decides to trick the pig. He stomps his feet
on the ground hard, first one and then the other, and
then stomps more and more softly, so it sounds like he
has walked away. The pig falls for the trick and
believes the wolf is gone. He unlocks the door to go
out. The wolf has pork chops for dinner that night.1

1This is a slight variation of the original Three Little Pigs story that I
made up to emphasize the aspect of trickery or deception. The contention
that most human four-year-olds would be able to understand this story
was confirmed by Penelope C. Fahlman, who has 30+ years of experience
in teaching children, ages 3-4.

There are a number of interesting issues here, such as the
qualitative-physics reasoning (Forbus 1988) required to
understand why a series of ever-softer footstep noises
would suggest that the stepper is walking away. But let’s
leave those for another day – the narrator explains the
purpose of the stomping, so we don’t have to figure that
out. Instead, let’s concentrate on the mental states in play
here, and on how we can represent actions that manipulate
mental states such as “trick” (in the sense of “deceive”).

In order to understand this story, it is necessary to
represent the state of affairs in a number of different world
models, without confusing the contents of one model with
another. In Scone, each of these models is represented by
a distinct context, as shown in Figure 1.2

At the beginning, we have the system’s general
knowledge context CGENERAL; the story-reality at this time
(as described by the narrator) CSTORY1; the pig’s initial
knowledge state CPIG1; and the wolf’s initial knowledge
state CWOLF1. We also might need a context representing
the wolf’s model of the pig’s current mental state CWP1.

2 This kind of diagram shows only a single stack of superiors for each
context. Scone supports multiple inheritance for contexts, but this facility
is not used in the example shown here.

CGENERAL

CSTORY1
Reality at Time T1

Before-Context of the Trick
Wolf is Outside

CSTORY2
Reality at Time T2

After-Context of the Trick
Wolf is OutsideCPIG1

Pig’s Beliefs at Time T1
Wolf is Outside

CWOLF1
Wolf’s Beliefs at Time T1

Wolf is Outside

CWP1
Wolf’s Model of Pig’s Beliefs

Wolf is Outside

CGOAL
Desired Model of Pig’s Beliefs
Wolf is gone, Safe to unlock

CPIG2
Gullible Pig’s Beliefs at Time T2

Wolf is gone, safe to unlock

CPIG2-ALT
Less Gullible Pig’s Beliefs at Time T2

Wolf is outside, Wait

Figure 1: Use of multiple mental-state contexts in the wolf/pig story. Each context inherits by default the knowledge contained in
the surrounding context, then can add or subtract some items.

103

In CGENERAL, we have the system’s current view of
reality, with lots of general knowledge: brick houses are
sturdy, you can’t go through a locked door unless you
unlock it or break it down, etc.

All of this general knowledge is inherited (by default) by
CSTORY1, which adds some new assertions and cancels some
inherited ones to reflect a few key differences. First, this is
a story, not a history – we’re not saying that these events
really happened in the real world, and this information
should not be added to Scone’s real-world model. Second,
the pigs and wolves in this world-model are
anthropomorphic in many respects: they think like humans,
the pig built a house from bricks, and so on. But these
animal characters also inherit some properties from their
real-world models: wolves want to eat pigs; pigs want to
stay alive; if the wolf has physical access to the pig, the pig
is likely to lose the struggle; and so on. The story doesn’t
provide a lot of details about what other wolf or pig traits
are inherited or over-ridden – do they walk on four legs, or
upright as in the Disney cartoons? – so we just leave those
things unspecified. They are not important to this story.

As for CPIG1, CWOLF1, and CWP1, they are potentially
important, but are uninteresting here, since each is a simple
clone of CSTORY1, adding or subtracting nothing that is of
interest in this story. In all four contexts, the wolf is
waiting outside the house.

If we want to build a system that understands this story,
the system must be able to activate each of these contexts
in turn and reason about the consequences of the
knowledge it finds there. In this case, in CPIG1 and CWP1,
the pig is able to deduce that it’s too dangerous to unlock
the door right now – it would likely lead to his death – and
that fear is stronger than his desire to go outside. (If the
pig were on the verge of starvation, the decision might go
the other way.) So, as things stand, the pig is going to keep
the door locked as long as the wolf is outside (or at least
for a long time), and the wolf knows that as well.

Now we come to the trick or act of deception. As
described earlier, the generic {trick} concept is a frame
structure in the Scone KB with a number of slots, each
restricted to a certain kind of filler. There is, at least, an
{agent} slot, which must be filled by some animate being;
the {victim} slot, an animate being with some cognitive
capability; a specific {trick-action}, which can be any
action taken by the agent, simple or complex (this itself
may be a frame with many sub-actions); and a {time of
action}, which must be a time-point or interval.

When we read the story, we instantiate this frame and
inherit (by default) its slots, restrictions, and other
contents. So the wolf is the {agent}, the pig is the
{victim}, the business with the foot-stomping is the {trick-
action} and the exact time is unspecified – it is just a time-
interval contained within the larger time-interval spanned
by this part of the story.

Like all subtypes of {event}, the {trick} description also
contains slots for the {before-context} and the {after-
context}. In the before-context there is a context
representing the victim’s mental state before the trick-
action occurs. This corresponds to reality, at least in some
important respect. The goal of the trick-action is somehow
to change this mental state to a different one that no longer
corresponds to reality, but that is somehow more beneficial
to the actor. There are two possible outcomes of this
action: either the trick succeeds, and the victim’s mental
state becomes equivalent to the one that the actor desired,
or the trick fails, and the victim’s mental state remains (in
this respect) unchanged.

So in this instance, the trick-action divides the reality of
the story into two parts: the CSTORY1 context that we saw
before, and the CSTORY2 context – story-reality after the
trick occurs. In addition, we have a new mental state for
the pig, CPIG2, which lives in CSTORY2. In CSTORY1, we have
a new state, the wolf’s representation of the desired CPIG2,
which we will call CGOAL. In CGOAL, the wolf is gone, and
the pig will deduce that it is safe and desirable to unlock
the door and go outside.

Since the trick succeeded, CPIG2 is indeed the same as
CGOAL. We readers can activate this CPIG2 and deduce that
(in the absence of any surprise plot-twists) the wolf will be
dining on pork tonight. The reasoning system could also
represent and reason about an alternative ending, in which
the pig is less gullible and still believes that the wolf is
outside. That is represented by CPIG2-ALT in the diagram.
We can deduce that in this state the pig will remain inside
(at least until he becomes very hungry), and will remain
safe.

Just to be clear: In the current Scone system, we do not
have a general system for the understanding of human
language. We have built some small prototype English-to-
Scone systems based on construction grammars, but these
are not yet capable of understanding the sort of language
that we see in this story and others like it. Nor do we have
a general problem-solver capable of making all the kinds
of deductions outlined above, though we can handle simple
rule-chains such as “If a dangerous animal is outside your
house, remain inside and keep the door locked”.

So Scone, by itself, is not able to understand this story in
any general sense. My point here is simply that the
manipulation and maintenance of all these mental states is
a big part of this problem, or any problem involving
trickery and deception, and that Scone’s multiple-context
mechanism provides an efficient and relatively intuitive
platform for representing and reasoning about these states.
This representational capability is not a full solution to
problems like this, but it is an important enabling
condition.

Of course, deception/trickery is not the only type of
action whose goal is to alter someone’s mental state, or

104

your own. We need much the same machinery to represent
and reason about distracting someone, forgetting and
reminding, giving directions, taking action to learn
something new, and so on. Some of these additional areas
are explored in (Chen and Fahlman 2008).

Conclusions
Based on the above account, I believe we can make the
following claims:
� The multiple-context mechanism in Scone provides an

efficient, flexible, and easy-to-understand representation
for a number of tasks that play an important role in
human-like thought. These include:
o Reasoning about multiple hypotheses and counter-

factual situations, maintaining a distinct model of
each, but with much shared knowledge;

o Planning and episodic memory, including some
questions related to the frame problem; and

o Modeling the mental states of multiple agents in a
scenario, including both their beliefs and their
knowledge, so that the system can reason about what
actions are likely to be taken by the modeled agent.

� This is not a full solution to any of these problems, nor is
it meant to be. This is an enabling technology. Using a
system like Scone avoids some of the difficulties we
encounter when using less expressive representations,
such as those based on First-Order Logic or Description
Logic.

� Our goal here is to model these mental phenomena in a
qualitative way; we are not trying to provide a neurally
plausible implementation, nor is it a goal to model
human-like timing constraints or other limitations.
o Our descriptions of human performance come from

easily observed human performance and perhaps a bit
of introspection. For our current goals, we believe
this is adequate.

o However, it would be very interesting to run carefully
designed neural and cognitive experiments to see
whether some of the mechanisms postulated here can
be confirmed or refuted.

� The multiple-context mechanism described here is not an
isolated bit of machinery that can be grafted onto any
reasoning system. It depends on our decision to allow
higher-order logic and default reasoning with exceptions
in Scone. These capabilities are incompatible with
guarantees of logical completeness or provable
consistency of the KB. Of course, we could build a
logical theorem prover on top of Scone for the times
when we want to do that sort of reasoning and can afford
to do that.

� There is a trade-off here: If we want to perform the kinds
of reasoning described in this paper – and certainly if we
want to perform that reasoning in a way that can scale up
to knowledge bases of human-like size – we must be
willing to forego logical completeness and provable
consistency of the entire KB, and focus instead on more
limited and local forms of reasoning.

� For a system like Scone, whose goal is to support natural
language understanding and human-like, “common
sense”, “good enough” reasoning, we think that this is a
reasonable trade-off, and probably a necessary one.

References
Chen, W. and Fahlman, S. E. 2008. Modeling Mental Contexts
and Their Interactions. AAAI 2008 Fall Symposium on
Biologically Inspired Cognitive Architectures.

Fahlman, S. E. 1979. NETL: A System for Representing and
Using Real-World Knowledge. MIT Press. Available online at
ftp://publications.ai mit.edu/ai-publications/pdf/AITR-450.pdf.

Fahlman, S. E. 2006. "Marker-Passing Inference in
the Scone Knowledge-Base System", in proceedings of the First
International Conference on Knowledge Science, Engineering
and Management (KSEM'06). Springer-Verlag (Lecture Notes in
AI).

Fahlman, S.E. 2008. In Defense of Incomplete Inference. In the
Knowledge Nuggets blog: http://cs.cmu.edu/~nuggets/?p=34

Fikes, R. E. and Nilsson, N. J. 1971. STRIPS: a new approach to
the application of theorem proving to problem solving. Artificial
Intelligence, 2:189-208.

Forbus, K. D. 1988. Qualitative Physics: Past, present, and
Future. In Exploring Artificial Intelligence, Shrobe, H. ed.,
Morgan Kaufmann.

Hanks, S. and McDermott, D. V. 1987. Nonmonotonic logic and
temporal projection. Artificial Intelligence 33(3):379-412.

Lenat, D.B.; Guha, R.; Pittman, K.; Pratt, D.; and Shepherd, M.
1990. Cyc: toward programs with common sense. CACM v30,
n8, pp. 30-51.

McCarthy, J. and Hayes, P. J. 1969. Some philosophical problems
from the standpoint of artificial intelligence. In Machine
Intelligence 4: 463–502. Edinburgh University Press.

Quillian, M. R. 1968. Semantic Memory. In Semantic
Information Processing, Minsky, M. (ed.) MIT Press, pp 227-
270.

Sussman, G. J. and McDermott, D.V. 1972. From PLANNER to
CONNIVER: a genetic approach, Proceedings of the 1972 AFIPS
Fall Joint Computer Conference, Part 2.

105

