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Abstract 
Scone is a knowledge-base system developed specifically to 
support human-like common-sense reasoning and the 
understanding of human language.  One of the unusual 
features of Scone is its multiple-context system.  Each 
context represents a distinct world-model, but a context can 
inherit most of the knowledge of another context, explicitly 
representing just the differences.  We explore how this 
multiple-context mechanism can be used to emulate some 
aspects of human mental behavior that are difficult or 
impossible to emulate in other representational formalisms. 
These include reasoning about hypothetical or counter-
factual situations; understanding how the world model 
changes over time due to specific actions or spontaneous 
changes; and reasoning about the knowledge and beliefs of 
other agents, and how their mental state may affect the 
actions of those agents. 

The Scone Knowledge-Base System   
Scone is a knowledge representation and reasoning system 
– a knowledge-base system or KB system – that has been 
developed over the last few years by the author’s research 
group at Carnegie Mellon University (Fahlman 2006; see 
also www.cs.cmu.edu/~sef/scone/). Scone, by itself, is not 
a complete AI or decision-making system, and does not 
aspire to be; rather, it is a software component – a sort of 
smart active memory system – that is designed to be used 
in a wide range of software applications, both in AI and in 
other areas. Scone deals just with symbolic knowledge. 
Things like visualization, motor memory, and memory for 
sound sequences are also important for human-like AI, but 
we believe that those will have specialized representations 
of their own, linked in various ways to the symbolic 
memory. 

Scone has been used in a number of applications at 
Carnegie Mellon and with a few selected outside partners; 
we plan a general open-source release of Scone in the near 
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future, as soon as we can assemble the resources and 
infrastructure needed to support a larger external user 
community. 

Scone occupies a different part of the design space from 
other knowledge-base systems currently in use –
particularly systems such as OWL that are based on First-
Order Logic or Description Logic. Our goal in developing 
Scone has been to support common-sense reasoning and 
natural-language understanding, not theorem-proving and 
logic puzzles.  Therefore, we place primary emphasis on 
Scone's expressiveness, ease of use, and scalability. 

For human-like common-sense reasoning, we need 
expressiveness that is greater than that of first-order logic, 
not a less-expressive subset of FOL.  In particular, we need 
to use higher-order logical constructs and default reasoning 
with exceptions, as explained below.  We also need a 
system that can scale up to millions of entities and 
statements, and perhaps tens or hundreds of millions, while 
still delivering something like real-time performance. 

 To achieve those goals simultaneously, we must give up 
the constraint of using only logically complete reasoning 
methods applied to a provably consistent knowledge base.
Any system with the expressiveness we want can be 
proven to be intractable or undecidable. Logical proofs are 
a wonderful invention, but for a system with the goals of 
Scone, we can’t afford to deal in proofs and completeness.  
Instead, Scone uses more limited and local forms of 
inference that appear to provide the power and accuracy we 
need for human-like reasoning.  For a more thorough 
discussion of this trade-off, see (Fahlman 2008). 

Like other knowledge-base systems, Scone provides 
support for representing symbolic knowledge about the 
world: general common-sense knowledge, detailed 
knowledge about some specific application domain, or 
perhaps some of each.  Scone also provides efficient 
support for simple inference: inheritance of properties in a 
type hierarchy, following chains of transitive relations, 
detection of type mismatches (e.g. trying to assert that a 
male person is someone’s mother), and so on. Scone 
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supports flexible search within the knowledge base. For 
example, we can ask Scone to return all individuals or 
types in the KB that exhibit some set of properties, or we 
can ask for a best-match if no exact match is available. 

It is not the purpose of this paper to provide a tutorial on 
Scone, but we will briefly describe some of Scone’s more 
unusual features to provide the necessary background for 
our real topic: Scone’s multiple-context mechanism and its 
uses. 

Speed and scalability: Benchmark tests have shown 
that Scone can deliver real-time performance on a standard 
(~$1000) workstation, even as the KB grows to several 
million elements and statements.  Scone’s core search and 
inference capabilities (Fahlman, 2006) are based on 
marker-passing algorithms originally designed for a 
hypothetical massively parallel machine, the NETL 
machine (Fahlman, 1979). If we need more speed or a 
much larger KB, Scone’s current algorithms can easily be 
mapped to certain kinds of parallel architectures. 

Clean separation of conceptual vs. lexical or 
linguistic information: Scone may be viewed as a 
semantic network of nodes and links.  The nodes in Scone 
represent concepts, not words or phrases.  These nodes are 
generally written with curly braces, such as {elephant}, 
which represents the concept elephant and is tied to other 
concepts by relational links.  We refer to Scone’s nodes 
and links collectively as Scone elements. 

The names within the curly braces are arbitrary unique 
labels, but the concept {elephant} is tied to zero or more 
lexical items in English, and to additional lexical items in 
other languages.  The concepts themselves are mostly 
universal and language independent – the concept 
{elephant} is more or less the same in every culture that 
knows about elephants – but  Scone’s multiple-context 
mechanism can be used to represent concepts that exist in 
one culture but not in another, or that are significantly 
different in some cultures. 

Frame-like representation with virtual-copy 
semantics: In Scone and other frame-like KB systems,
there are arbitrarily complex structured descriptions 
(prototypes) for each type represented: elephant, family, 
contest, and so on.  These concept descriptions typically 
have many interrelated parts, attributes, and relations to 
other individuals and types.  Upon creating a subtype or 
instance, all of the structure of the prototype description is 
efficiently inherited.  In effect, the new subtype or instance 
becomes a virtual copy of the parent description; it can 
then be specialized by adding new information or by 
subtracting information that would otherwise be inherited. 

Default reasoning with exceptions: The virtual-copy 
mechanism described above is very powerful, but for real-
world domains this inheritance would be nearly useless 
without the ability to cancel or over-ride some of the 
information that would otherwise be inherited.  We want to 

say that a {bird} is a {flying thing} in general, but a 
{penguin} is a bird that can’t fly.  A {canary} is a normal 
bird – it is a {flying thing} – but some individual canaries 
cannot fly.  These exceptions are not rare anomalies: the 
more you know about the prototypical properties of a given 
type, the less likely you are to ever find an instance that 
matches that prototype in every respect.  The world is full 
of flightless birds, three-legged dogs, and even the 
occasional honest politician.  But most current KB systems 
exclude any sort of cancellation (non-monotonic 
reasoning) because that can create all sorts of problems for 
a system that is trying to be logically complete.  The ability 
to create exceptions and to explicitly over-ride some 
inherited information is a core capability of Scone, and is 
efficiently implemented in Scone’s inference algorithms.

Higher-order logic and meta-information: First-order 
logic lacks the ability to make statements about statements, 
to reason about this meta-information, and to use that to 
control which statements will participate in the system's 
reasoning.  In Scone, statements are treated like any other 
objects.  We can attach attributes (meta-information) to 
these statements, and that can be used to selectively 
activate and de-activate statements.  This is a form of 
higher-order logic, and it is used in Scone in a number of 
ways.  For example, we might assign a confidence value 
and some source information to each statement in some 
domain.  For some deductions, we might insist that only 
highly confident facts, or those from certain trusted 
sources, are to participate; the others are dormant.  Scone’s 
multiple-context system is essentially a convenient 
packaging of some of these higher-order capabilities. 

Again, this is not a rare anomaly that can easily be 
ignored.  Consider the following statement:  “John believes 
that Fred knows Mary’s phone number, but that’s not 
really true.”  This is inherently a higher-order statement.
And yet, without the ability to represent and reason about 
statements like this, we could not understand the plot of a 
typical sitcom, most of which involve misunderstandings 
and confusion, or (as we will see) the plot of a simple 
children’s story that involves some type of deception.

Multiple Contexts in Scone 
Perhaps the most unusual aspect of Scone is its multiple-

context mechanism.  In this section, I will describe what 
this is and how it works; in the remainder of the paper, I 
will describe how multiple contexts can be used to 
implement some aspects of human thought that are 
awkward or impossible for other knowledge-representation 
formalisms. 

A context is simply a node in Scone’s knowledge base 
that represents a distinct world model within the larger 
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Scone KB. There can be any number of these contexts 
within the Scone system. 

Every node N in Scone has a connection to some 
context-node C in which the entity represented by N exists.  
Every link L in Scone has a connection to a context node C 
within which the statement represented by L is valid. At 
any given time, one context node CACTIVE in the KB is said 
to be active, meaning that we are operating within the 
world-model that CACTIVE represents.  The nodes and links 
within CACTIVE are available to participate in the system’s 
reasoning; those not within CACTIVE are dormant, and do 
not participate in the system’s reasoning. New information 
added to the Scone KB is generally placed in the current 
CACTIVE. 

The Scone reasoning engine has efficient mechanisms to 
switch from one active context to another.  The reasoning 
engine will often switch contexts many times while 
working on a given task. A useful rule of thumb is that the 
English word “in” usually (but not always) signals a 
context-switch.  A context may represent a region of space 
(“in the UK…”); a region of time (“in the 1960s…”); an 
alternative reality (“in the fictional Harry Potter 
universe…”); a hypothetical state (“in the scenario where 
Sarah Palin is elected President…”); a mental state 
indicating the knowledge and beliefs of some person or 
other being (“in John’s opinion…”); or a combination of 
these (“in Paris in the spring…”).  There is a special large 
context {general} that holds – not surprisingly – things that 
are true “in general”.

It would be possible, but terribly inefficient, to 
implement each context or world model as a separate KB, 
with its own private copy of all its knowledge.  In most 
cases, one context will differ from another in only a few 
respects; the vast majority of their knowledge will be 
common to both of them.  So in Scone, contexts are 
hierarchical: a context C2 starts out as the clone of some 
existing parent context C1, inheriting all of C1’s 
knowledge; then we can customize C2 by adding some 
additional knowledge or by explicitly subtracting some 
knowledge that would otherwise be inherited. This 
inheritance is handled efficiently by Scone’s marker-
passing algorithms. 

An example:  Suppose we want to create new context 
representing the Harry Potter world.  Call this CHP.  To 
create CHP, we find some existing context that is close to 
what we want – in this case, “present day UK” or CUK.  We 
add the new CHP node to the knowledge base, along with a 
“clone-of” link (a kind of “is-a” link) from CHP to CUK.  
Anything that exists in CUK – houses, double-decker 
busses, London – now also exists in CHP.  Anything that 
we know to be true in CUK is also true in CHP: for example, 
people drive on the left side of the road.  So far, CHP is not 
very interesting, but now we can add some new entities –
Harry himself, Hogwarts School, dragons – and some new 

assertions – for example, “A broom is a vehicle”.  We can 
also explicitly cancel some things that would otherwise be 
inherited from CUK, such as “The primary purpose of a 
broom is cleaning.”  If we activate the CHP context, we see 
all this new information and can use it in reasoning, 
planning, or answering questions.  If we derive any new 
information while working in CHP, that is added to CHP. If
we activate CUK, these changes are all invisible; the 
information in CHP plays no part in any reasoning we 
might do in CUK. 

How is all this implemented for maximum efficiency in 
the Scone knowledge-base engine on a serial machine?  
Details and some benchmarks can be found in (Fahlman 
2006), but here is a very brief sketch:  To activate CHP, we 
put a special “active context” marker on the node 
representing CHP. We then propagate this marker upwards 
across “is-a” and “clone-of” links to mark all the nodes 
from which CHP is supposed to inherit information.  In this 
case, the marker will end up on the CUK node, the 
{general} node, and probably many others.  Our 
benchmark testing has shown that this context activation 
will typically take much less than a millisecond on a 
standard serial workstation. 

In all of our subsequent reasoning, whenever we are 
about to make use of a node or link, we first check whether 
the context-node it is tied to is marked with the activation 
marker – that is, we check whether the context is active.  If 
the mark is present, we proceed; if not, we ignore the 
presence of this node or link.  That check adds a small, 
constant extra cost to each reasoning step, but once we 
have accepted that cost, we can have as many nested 
contexts as we like.  The time required to switch contexts 
may go up as the number of contexts and their 
interconnections goes up, but there is no further slowdown 
of normal reasoning. 

The multiple-context system used in Scone is a direct 
descendant (though with some changes) of the multiple-
context system I proposed for the NETL knowledge-
representation system over thirty years ago (Fahlman 
1979).  That, in turn was influenced by the work of 
Quillian (1968) and the Conniver language (Sussman and 
McDermott 1972).  There have been many knowledge 
representation systems since then with multiple contexts or 
something similar, but I am not aware of any that are very 
similar to the system in Scone (or in NETL).  For example, 
the micro-theories in Cyc (Lenat et al. 1990) are oriented 
more toward packaging the knowledge into internally 
consistent sub-domains, not all of which have to be loaded 
at once, than Scone’s goal of easy movement between 
overlapping world-models (which may or may not be 
internally consistent). 

Because contexts are represented as nodes in the Scone 
KB – no different from the nodes representing other 
entities – the context node can serve as a convenient handle 
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to attach meta-information about the collection of 
information (the world model) that resides in that context.  
In any higher-order logic system, it is possible to make 
statements about other statements, but our mechanism 
makes it possible to make statements about packages of 
information.  For example, we might say that Fred believes 
that he can juggle five balls while walking on a tightrope 
during an earthquake.  This is more than a single simple 
statement.  It is represented by a collection of statements 
and entities in a context, pointed to collectively by a “Fred 
believes this” relation.  (There may be additional meta-
information stating that nobody else believes this.) 

We can also use this sort of meta-information to hold 
information that is of value to a planning program that 
makes use of Scone: For example, we might say that if a
situation resembles the world-model described in context 
C1, consider taking the action described in context C2. In 
making such meta-statements, we can use the full 
expressive power of Scone. 

Hypotheses and Counter-Factual Situations 
It is the mark of an educated mind to be able to 
entertain a thought without accepting it. – Aristotle 

An important survival skill for humans is the ability to 
represent and reason about counter-factual situations – that 
is, situations that differ in some respect from the current 
reality. “What would I do if a hungry bear appeared at the 
mouth of my cave during the night? I could throw rocks at 
it.  Maybe I should go collect some rocks now, while it’s 
safe to do so…” Even Aristotle, the inventor of formal 
logic, understood the importance of occasionally reasoning 
about situations that are not actually true in your current 
model of reality, though he seems to have believed that 
only educated people can do this – demonstrably untrue. 

Scone’s multiple-context mechanism makes it relatively 
straightforward to reason about counter-factuals and their 
consequences, without letting that exercise spill over into 
your current world-model.  We begin by creating a new 
context, CBEAR, which is initially a clone of CGENERAL,
inheriting all of its contents.  We then customize CBEAR,
which may involve adding new knowledge (“There’s a 
hungry bear outside”), cancelling some inherited 
knowledge (“It’s currently daytime”), or some of each. 

These changes affect only CBEAR.  They are not visible 
when CGENERAL is active. We can now do whatever 
reasoning or planning we want to do in CBEAR, resulting, 
perhaps, in the conclusion that we should have a supply of 
rocks on hand.  The planning process can write that goal 
back into CGENERAL with a link to the CBEAR context as the 
explanation: a bear might appear in the night. 

The general idea here is that the reasoning process can 
export some specific results of the reasoning back to the 
general context – in this case, advice to lay in a supply of 
rocks, without exporting everything – particularly the 
counter-factual statement that a bear is currently outside.  
But we can retain the CBEAR context, labeled in CGENERAL

with the meta-information that it is merely a hypothetical 
state, in case we want to refer again to CBEAR in the future. 

It should be obvious that the same approach can be used 
to entertain multiple, possibly inconsistent, hypotheses as 
we reason about the world or make plans: “Perhaps these 
droppings at the mouth of the cave are from a bear – what 
would be the consequences?  Or perhaps they are from a 
deer – different consequences altogether.”

It is possible to garbage-collect a hypothetical context, 
and all its contents, as soon as we are done with it, but it is 
also possible to keep any number of these contexts around 
indefinitely.  Perhaps we have chosen one of N possible 
interpretations of the mysterious droppings as most likely, 
but we want to retain the other possibilities and what we 
have deduced about their consequences, in case we get 
more evidence later. 

Temporal States, Actions, and Events 
Another essential human trait is our episodic memory: that 
is, our ability to represent and reason about events, actions, 
sequences of events or actions, plans, preconditions, and 
consequences.  This is a very complex business, since it 
involves both representation and planning.  (Since we are 
talking here about everyday human abilities, I will consider 
only “good enough” planning, not optimal planning.)  
Scone’s multiple-context mechanism gives us a good way 
to handle the representational part of this problem. 

In Scone, an event is just a description or frame with any 
number of type-restricted slots; an action is just an event 
with a special slot for the agent – the entity that caused the 
event to take place (whatever that means – questions of 
causality lead us into deep philosophical waters pretty 
quickly, but people seem to have a usable informal model 
of causality sufficient for most everyday problems). 

An event or action description has two additional 
important slots: the {before-context} and the {after-
context}. These are two distinct world-models that 
represent the state of the world before the event and the 
state of the world after the event. 

Consider the generic action {move}, in the sense of 
“move a physical object”.  The major slots in this 
description are the {agent}, the {object being moved}, 
{location-1}, {location-2}, and the {time of action}.  For a
given instance of {move} – call it {move-27} – all of these 
slots exist (directly or by inheritance), but we may or may 
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not have fillers for all of them.  For example, we may 
know who moved an object, but not when that occurred. 

In the {before-context} of any {move}, the {location} of 
the {object being moved} is {location-1}.  In the {after-
context}, it is {location-2}.  That’s the essence of what 
{move} does.  Both the {before-context} and the {after-
context} are complete world-models.  We can activate 
either of them and reason about what is true in that model.  
Perhaps location-2 is in the shade, so the object will cool 
down. 

The {before-context} of {move-27} is initially a clone 
of the surrounding context in which the move occurs, so all 
of that general knowledge is inherited.  The only thing we 
have to represent explicitly is the existence of the object 
and its location in this context.  The {after-context} of 
{move-27} begins as a clone of the {before-context}.  We 
just have to explicitly represent what has changed: the 
object’s presence at location-1 is cancelled, and its 
presence at location-2 is added. (In many ways, this model 
resembles the old STRIPS model of actions and planning 
(Fikes and Nilsson, 1971): the explicit contents of the 
{before-context} correspond to the pre-conditions of the 
action; the explicit contents of the {after-context} represent 
the post-conditions.) 

Actions and events may be strung together to form a 
sequence (or, more generally, a lattice), with the {after-
context} of one event being the {before-context} of the 
next one.  An event may be thought of (and represented in 
Scone) as atomic – an indivisible change-of-state that 
transforms one state into another.  Or it may have an 
{expansion} – a sequence of sub-events – that represent 
steps in the larger action. 

The Frame Problem: What Has Changed? 
In the description above, I said that the {after-context} 

of an action or event only has to represent explicitly what 
has changed relative to the {before-context}.  But things 
are not really that simple.  This touches upon some aspects 
of the famous Frame Problem (McCarthy and Hayes 
1969). This paper highlighted some of the problems that 
can occur in the representation of world-states that change 
over time, perhaps spontaneously.  There is now a very 
large literature on various aspects and manifestations of 
this problem. 

Here we will look at three aspects of the Frame Problem 
that relate to this discussion.  First, in some logical 
formalisms, it is difficult or impossible to say “World-
model T2 is the same as world-model T1, except for some 
specific differences that we will state explicitly.”  To 
handle this well requires default reasoning with exceptions, 
which many logical formalisms do not include.  As we 
have seen, Scone handles this in a very natural way. 

Second, there is the question of how many changes to 
deduce and to describe explicitly.  When I pick up a glass 
and move it to a new position, its location changes.  We 
certainly want to represent that change.  But I also may 
have left some fingerprints on the glass.  We normally 
would never think about that, but in certain contexts 
(murder mysteries) that could be very significant.  Also, 
that action perturbed very slightly the orbit of Jupiter.  
People who have studied classical physics know, or can 
deduce, that this is true, but it’s hard to think of a context 
in which this would be important.  This seems like an ideal 
candidate for lazy evaluation. 

In Scone, we could note in the generic {move} 
description that these kinds of consequences are possible, 
but mark them as lazy.  We would not work out the details 
in the specific {move-27} description until/unless we have 
some need for this information. Note that this annotation 
is a form of higher-order logic, and the decision not to 
deduce all the consequences that we could deduce is a 
violation of logically complete reasoning, so many logic-
based representations will have a problem with this. 

Finally, there is the issue of things that change 
spontaneously, or at least due to some action/event that is 
not explicitly represented in our model.  Ice melts 
(depending on the ambient temperature), food in the fridge 
goes bad (at a rate depending on the food and assorted 
other conditions).  A cigarette butt dropped on the sidewalk 
will probably still be there the next day, but a $100 bill left 
lying on the sidewalk probably will not be. The so-called 
Yale Shooting Problem (Hanks and McDermott 1987; see 
also http://www-formal.stanford.edu/leora/commonsense/)
is a good example of this phenomenon.  Again, the 
question is how many of the almost infinite set of possible 
deductions should we perform pro-actively, and how do we 
handle the cases where we did not consider some change 
that becomes important later. 

We have not yet attacked this genuinely hard problem 
using Scone.  Clearly, once again, some sort of lazy 
evaluation is called for, and once again that will cause 
problems for those who insist on logically complete 
methods.  One idea is to create phantom event-types for all 
the families of change that we might ever want to consider: 
ice “melts”, food “spoils”, and so on.  Then when we are 
interested in the possible consequent of such an event, we 
can consider whether this phantom event is likely to have 
occurred.  In any case, Scone will not complain about the 
logical incompleteness inherent in this style of reasoning. 

Reasoning About Differing Mental States 
We humans are able to model the mental state of other 
humans, and to reason about their plans and actions based 
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on this model.  For social animals like us, this is a very 
important capability. 

Consider what is required to really understand – well 
enough to answer questions or make predictions – the 
following fragment of a children’s story, easily 
understandable by an average human 4-year-old: 

The last little pig is safe in his brick house.  The wolf 
is outside, but the door is locked.  The wolf can’t get 
in as long as the door is locked.  The pig wants to go 
outside, but he knows the wolf is waiting outside, so 
he will not unlock the door. 

The wolf decides to trick the pig.  He stomps his feet 
on the ground hard, first one and then the other, and 
then stomps more and more softly, so it sounds like he 
has walked away.  The pig falls for the trick and
believes the wolf is gone.  He unlocks the door to go 
out. The wolf has pork chops for dinner that night.1
  

                                                
1This is a slight variation of the original Three Little Pigs story that I 
made up to emphasize the aspect of trickery or deception. The contention 
that most human four-year-olds would be able to understand this story 
was confirmed by Penelope C. Fahlman, who has 30+ years of experience 
in teaching children, ages 3-4.

There are a number of interesting issues here, such as the 
qualitative-physics reasoning (Forbus 1988) required to 
understand why a series of ever-softer footstep noises 
would suggest that the stepper is walking away.  But let’s 
leave those for another day – the narrator explains the 
purpose of the stomping, so we don’t have to figure that 
out.  Instead, let’s concentrate on the mental states in play 
here, and on how we can represent actions that manipulate 
mental states such as “trick” (in the sense of “deceive”).

In order to understand this story, it is necessary to 
represent the state of affairs in a number of different world 
models, without confusing the contents of one model with 
another.  In Scone, each of these models is represented by 
a distinct context, as shown in Figure 1.2

At the beginning, we have the system’s general 
knowledge context CGENERAL; the story-reality at this time 
(as described by the narrator) CSTORY1; the pig’s initial 
knowledge state CPIG1; and the wolf’s initial knowledge 
state CWOLF1. We also might need a context representing 
the wolf’s model of the pig’s current mental state CWP1. 

                                                
2 This kind of diagram shows only a single stack of superiors for each 
context.  Scone supports multiple inheritance for contexts, but this facility 
is not used in the example shown here. 

CGENERAL

CSTORY1
Reality at Time T1

Before-Context of the Trick
Wolf is Outside

CSTORY2
Reality at Time T2

After-Context of the Trick
Wolf is OutsideCPIG1

Pig’s Beliefs at Time T1
Wolf is Outside

CWOLF1
Wolf’s Beliefs at Time T1

Wolf is Outside

CWP1
Wolf’s Model of Pig’s Beliefs

Wolf is Outside

CGOAL
Desired Model of Pig’s Beliefs
Wolf is gone, Safe to unlock

CPIG2
Gullible Pig’s Beliefs at Time T2

Wolf is gone, safe to unlock

CPIG2-ALT
Less Gullible Pig’s Beliefs at Time T2

Wolf is outside, Wait

Figure 1:  Use of multiple mental-state contexts in the wolf/pig story.   Each context inherits by default the knowledge contained in 
the surrounding context, then can add or subtract some items.
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In CGENERAL, we have the system’s current view of 
reality, with lots of general knowledge: brick houses are 
sturdy, you can’t go through a locked door unless you 
unlock it or break it down, etc. 

All of this general knowledge is inherited (by default) by 
CSTORY1, which adds some new assertions and cancels some 
inherited ones to reflect a few key differences. First, this is 
a story, not a history – we’re not saying that these events 
really happened in the real world, and this information 
should not be added to Scone’s real-world model.  Second, 
the pigs and wolves in this world-model are 
anthropomorphic in many respects: they think like humans, 
the pig built a house from bricks, and so on.  But these 
animal characters also inherit some properties from their 
real-world models: wolves want to eat pigs; pigs want to 
stay alive; if the wolf has physical access to the pig, the pig 
is likely to lose the struggle; and so on.  The story doesn’t 
provide a lot of details about what other wolf or pig traits 
are inherited or over-ridden – do they walk on four legs, or 
upright as in the Disney cartoons? – so we just leave those 
things unspecified.  They are not important to this story. 

As for CPIG1, CWOLF1, and CWP1, they are potentially 
important, but are uninteresting here, since each is a simple 
clone of CSTORY1, adding or subtracting nothing that is of 
interest in this story.  In all four contexts, the wolf is 
waiting outside the house. 

If we want to build a system that understands this story, 
the system must be able to activate each of these contexts 
in turn and reason about the consequences of the 
knowledge it finds there.  In this case, in CPIG1 and CWP1,
the pig is able to deduce that it’s too dangerous to unlock 
the door right now – it would likely lead to his death – and 
that fear is stronger than his desire to go outside.  (If the 
pig were on the verge of starvation, the decision might go 
the other way.)  So, as things stand, the pig is going to keep 
the door locked as long as the wolf is outside (or at least 
for a long time), and the wolf knows that as well. 

Now we come to the trick or act of deception.  As 
described earlier, the generic {trick} concept is a frame 
structure in the Scone KB with a number of slots, each 
restricted to a certain kind of filler.  There is, at least, an 
{agent} slot, which must be filled by some animate being; 
the {victim} slot, an animate being with some cognitive 
capability; a specific {trick-action}, which can be any 
action taken by the agent, simple or complex (this itself 
may be a frame with many sub-actions); and a {time of 
action}, which must be a time-point or interval. 

When we read the story, we instantiate this frame and 
inherit (by default) its slots, restrictions, and other 
contents.  So the wolf is the {agent}, the pig is the 
{victim}, the business with the foot-stomping is the {trick-
action} and the exact time is unspecified – it is just a time-
interval contained within the larger time-interval spanned 
by this part of the story. 

Like all subtypes of {event}, the {trick} description also 
contains slots for the {before-context} and the {after-
context}.  In the before-context there is a context 
representing the victim’s mental state before the trick-
action occurs.  This corresponds to reality, at least in some 
important respect.  The goal of the trick-action is somehow 
to change this mental state to a different one that no longer 
corresponds to reality, but that is somehow more beneficial 
to the actor.  There are two possible outcomes of this 
action: either the trick succeeds, and the victim’s mental 
state becomes equivalent to the one that the actor desired, 
or the trick fails, and the victim’s mental state remains (in 
this respect) unchanged. 

So in this instance, the trick-action divides the reality of 
the story into two parts: the CSTORY1 context that we saw 
before, and the CSTORY2 context – story-reality after the 
trick occurs.  In addition, we have a new mental state for 
the pig, CPIG2, which lives in CSTORY2.  In CSTORY1, we have 
a new state, the wolf’s representation of the desired CPIG2,
which we will call CGOAL.  In CGOAL, the wolf is gone, and 
the pig will deduce that it is safe and desirable to unlock 
the door and go outside. 

Since the trick succeeded, CPIG2 is indeed the same as 
CGOAL. We readers can activate this CPIG2 and deduce that 
(in the absence of any surprise plot-twists) the wolf will be 
dining on pork tonight. The reasoning system could also 
represent and reason about an alternative ending, in which 
the pig is less gullible and still believes that the wolf is 
outside.  That is represented by CPIG2-ALT in the diagram.  
We can deduce that in this state the pig will remain inside 
(at least until he becomes very hungry), and will remain 
safe. 

Just to be clear: In the current Scone system, we do not 
have a general system for the understanding of human 
language.  We have built some small prototype English-to-
Scone systems based on construction grammars, but these 
are not yet capable of understanding the sort of language 
that we see in this story and others like it.  Nor do we have 
a general problem-solver capable of making all the kinds 
of deductions outlined above, though we can handle simple 
rule-chains such as “If a dangerous animal is outside your 
house, remain inside and keep the door locked”.

So Scone, by itself, is not able to understand this story in 
any general sense. My point here is simply that the 
manipulation and maintenance of all these mental states is 
a big part of this problem, or any problem involving 
trickery and deception, and that Scone’s multiple-context 
mechanism provides an efficient and relatively intuitive 
platform for representing and reasoning about these states.  
This representational capability is not a full solution to 
problems like this, but it is an important enabling 
condition.  

Of course, deception/trickery is not the only type of 
action whose goal is to alter someone’s mental state, or
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your own.  We need much the same machinery to represent 
and reason about distracting someone, forgetting and 
reminding, giving directions, taking action to learn 
something new, and so on.  Some of these additional areas 
are explored in (Chen and Fahlman 2008). 

Conclusions 
Based on the above account, I believe we can make the 
following claims: 
� The multiple-context mechanism in Scone provides an 

efficient, flexible, and easy-to-understand representation 
for a number of tasks that play an important role in 
human-like thought.  These include: 
o Reasoning about multiple hypotheses and counter-

factual situations, maintaining a distinct model of 
each, but with much shared knowledge;

o Planning and episodic memory, including some 
questions related to the frame problem; and 

o Modeling the mental states of multiple agents in a 
scenario, including both their beliefs and their 
knowledge, so that the system can reason about what 
actions are likely to be taken by the modeled agent. 

� This is not a full solution to any of these problems, nor is 
it meant to be.  This is an enabling technology.  Using a 
system like Scone avoids some of the difficulties we 
encounter when using less expressive representations, 
such as those based on First-Order Logic or Description 
Logic. 

� Our goal here is to model these mental phenomena in a
qualitative way; we are not trying to provide a neurally 
plausible implementation, nor is it a goal to model 
human-like timing constraints or other limitations. 
o Our descriptions of human performance come from 

easily observed human performance and perhaps a bit 
of introspection.  For our current goals, we believe 
this is adequate. 

o However, it would be very interesting to run carefully 
designed neural and cognitive experiments to see 
whether some of the mechanisms postulated here can 
be confirmed or refuted. 

� The multiple-context mechanism described here is not an 
isolated bit of machinery that can be grafted onto any 
reasoning system.  It depends on our decision to allow 
higher-order logic and default reasoning with exceptions 
in Scone. These capabilities are incompatible with 
guarantees of logical completeness or provable 
consistency of the KB. Of course, we could build a 
logical theorem prover on top of Scone for the times 
when we want to do that sort of reasoning and can afford 
to do that. 

� There is a trade-off here: If we want to perform the kinds 
of reasoning described in this paper – and certainly if we 
want to perform that reasoning in a way that can scale up 
to knowledge bases of human-like size – we must be 
willing to forego logical completeness and provable 
consistency of the entire KB, and focus instead on more 
limited and local forms of reasoning. 

� For a system like Scone, whose goal is to support natural 
language understanding and human-like, “common 
sense”, “good enough” reasoning, we think that this is a
reasonable trade-off, and probably a necessary one. 
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