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Abstract

One approach to bridging the historic divide between ”sym-
bolic” and ”subsymbolic” AI is to incorporate a subsym-
bolic system and a symbolic system into a synergetic inte-
grative cognitive architecture. Here we consider various is-
sues related to incorporating (subsymbolic) compositional
spatiotemporal deep learning networks (CSDLNs, a term in-
troduced to denote the category including HTM, DeSTIN
and other similar systems) into an integrative cognitive ar-
chitecture including symbolic aspects. The core conclusion
is that for such integration to be meaningful, it must involve
dynamic and adaptive linkage and conversion between CS-
DLN attractors spanning sensory, motor and goal hierarchies,
and analogous representations in the remainder of the inte-
grative architecture. We suggest the mechanism of ”seman-
tic CSDLNs”, which maintain the general structure of CS-
DLNs but contain more abstract patterns, similar to those rep-
resented in more explicitly symbolic AI systems. This notion
is made concrete by describing a planned integration of the
DeSTIN CSDLN into the OpenCog integrative cognitive sys-
tem (which includes a probabilistic-logical symbolic compo-
nent).

Introduction

The AI field, since its early days, has been marked by a fairly
sharp divide between explicitly symbolic methods (e.g. logic
or production rules as typically used) and ”subsymbolic”
methods focused more on numerical pattern recognition
(e.g. neural nets as typically used). ”Neat versus scruffy”
was one attempt to capture this dichotomy; and the identi-
fication of ”soft computing” as distinct from symbolic AI
methods was another. This conceptual divide (however one
labels or formalizes it) has been bridged somewhat in re-
cent decades, e.g. by use of neural nets for symbol process-
ing, use of genetic programming to evolve logic expressions,
etc. But even today there is no single AI approach capable of
handling both symbol manipulation and scalable numerical
pattern recognition in a compelling way.

This situation inclines one toward an integrative approach,
but there also has been rather little work integrating sym-
bolic and symbolic systems in a deep way that plays to
both of their strengths. Work on neural-symbolic comput-
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ing (Hammer and Hitzler 2007) has mainly focused on us-
ing symbolic systems to manipulate patterns emergent from
neural nets, a valuable but limited approach. Here we sug-
gest a novel approach to integrating symbolic and subsym-
bolic AI, via describing a mechanism for linking a powerful
subsymbolic architecture (CSDLNs) into cognitive architec-
tures with significant symbolic components.

The term ”Compositional Spatiotemporal Deep Learning
Network” (CSDLN) is introduced here to refer to deep learn-
ing networks whose hierarchical structure directly mirrors
the hierarchical structure of spacetime. Current exemplifi-
cations of the CSDLN paradigm include Jeff Hawkins’ Nu-
menta ”HTM” system (Hawkins and Blakeslee 2006) 1, Ita-
mar Arel’s DeSTIN (Arel, Rose, and Coop 2009) and HDRN
2 systems, Dileep George’s spin-off from Numenta 3, and
work by Mohamad Tarifi (Tarifi, Sitharam, and Ho 2011),
Bundzel and Hashimoto (Bundzel and Hashimoto 2010),
and others. CSDLNs are reasonably well proven as an ap-
proach to intelligent sensory data processing, and have also
been hypothesized as a broader foundation for artificial gen-
eral intelligence (Goertzel and Pennachin 2005) at the hu-
man level and beyond (Hawkins and Blakeslee 2006) (Arel,
Rose, and Coop 2009).

The specific form of CSDLN we will pursue here goes
beyond perception processing, and involves the coupling of
three separate hierarchies, for perception, action and goal-
s/reinforcement (Goertzel et al. 2010). Abstract learning and
self-understanding are then hypothesized as related to sys-
tems of attractors emerging from the close dynamic coupling
of the upper levels of the three hierarchies.

CSDLNs embody a certain conceptual model of the na-
ture of intelligence, and to integrate them appropriately with
a broader architecture, one must perform the integration not
only on the level of software code but also on the level
of conceptual models. Here we focus here on the problem
of integrating an extended version of the DeSTIN CSDLN
system with the OpenCog integrative AGI (artificial gen-
eral intelligence) system. The crux of the issue here is how

1While the Numenta system is the best-known CSDLN archi-
tecture, other CSDLNs appear more impressively functional in var-
ious respects; and many CSDLN-related ideas existed in the litera-
ture well before Numenta’s advent.

2http:““binatix.com
3http:““vicarioussystems.com
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to map DeSTIN’s attractors into OpenCog’s more abstract,
probabilistic ”weighted, labeled hypergraph” representation
(called the Atomspace). The main conclusion reached is that
in order to perform this mapping in a conceptually satisfac-
tory way, a system of intermediary hierarchies is required.
The DeSTIN perceptual hierarchy is augmented by motor
and goal hierarchies, leading to a tripartite ”extended DeS-
TIN”; and then three ”semantic-perceptual” hierarchies are
proposed, corresponding to the three extended-DeSTIN CS-
DLN hierarchies and explicitly constituting an intermediate
level of representation between attractors in DeSTIN and
OpenCog Atoms and Atom-networks. For simple reference
we refer to this as the ”Semantic CSDLN” approach.

A ”tripartite semantic CSDLN” consisting of interlinked
semantic perceptual, motoric and goal hierarchies could be
coupled with DeSTIN or another CSDLN architecture to
form a novel AGI approach; or (our main focus here) it may
be used as a glue between an CSDLN and and a more ab-
stract semantic network such as OpenCog’s Atomspace, to
form an integrative AGI approach including CSDLN along
with other aspects.

The proposed ”tightly linked integration” approach has
significant implications in the context of the concept of
”cognitive synergy” (Goertzel 2009), which hypothesizes
particular properties that the interactions between compo-
nents in an integrated AGI system should display, in order
for the overall system to display significant general intelli-
gence using limited computational resources. Simply piping
output from an CSDLN to other components, and issuing
control signals from these components to the CSDLN, is
likely an inadequate mode of integration, incapable of lever-
aging the full potential of CSDLNs; what we are suggesting
here is a much tighter and more synergetic integration. A
previous paper (Goertzel and Duong 2009) explored inte-
gration of OpenCog with a neural net perception system; we
believe the present approach enables tighter integration with
more synergetic potential.

This is a conceptual paper and at time of writing (July
2011), most of the ideas described have not been imple-
mented yet. Among other applications, OpenCog is cur-
rently being used to control virtual agents in virtual worlds
(Goertzel et al. 2011), an application that does not require
the kind of fine-grained perception at which CSDLNs cur-
rently excel. DeSTIN has recently been ported to CUDA,
and is now being tried on robot vision data for the first time
(although HDRN, a somewhat similar proprietary system
built by Binatix Inc. has been used on such data for several
years already). Assuming funding and other logistics permit,
our intention is to pursue the hybridization discussed here in
steps, beginning with the semantic-perceptual CSDLN, after
we have made DeSTIN-CUDA more robust via enhancing
some of its learning and memory mechanisms. However, we
believe the ideas presented here have general value beyond
any specific implementation, and indeed beyond any partic-
ular CSDLN or integrative cognitive system.

DeSTIN

DeSTIN 4 is an CSDLN architecture, aimed ultimately at
human-level AGI. The general design has been described
as comprising three crosslinked hierarchies, handling per-
ception, action and reinforcement. However, so far only the
perceptual hierarchy (also called the ”spatiotemporal infer-
ence network”) has been implemented or described in detail
in publications. Here we will consider an ”extended DeS-
TIN” consisting of all three hierarchies, with the caveat that
our extension of DeSTIN to a tripartite system may differ
in detail from the tripartite version intended by DeSTIN’s
creators.

The hierarchical architecture of DeSTIN’s spatiotemporal
inference network comprises an arrangement into multiple
layers of “nodes” comprising multiple instantiations of an
identical processing unit. Each node corresponds to a par-
ticular spatiotemporal region, and uses a statistical learning
algorithm to characterize the sequences of patterns that are
presented to it by nodes in the layer beneath it. More specifi-
cally, at the very lowest layer of the hierarchy nodes receive
as input raw data (e.g. pixels of an image) and continuously
construct a belief state that attempts to characterize the se-
quences of patterns viewed. The second layer, and all those
above it, receive as input the belief states of nodes at their
corresponding lower layers, and attempt to construct belief
states that capture regularities in their inputs. Each node also
receives as input the belief state of the node above it in the
hierarchy (which constitutes “contextual” information).

The belief state is a probability mass function over the
sequences of stimuli that the nodes learns to represent. DeS-
TIN’s basic belief update rule governs the learning process
and is identical for every node in the architecture, and is
given in (Arel, Rose, and Coop 2009). Based on this rule, the
DeSTIN perceptual network serves the critical role of build-
ing and maintaining a model of the state of the world. In a vi-
sion processing context, for example, it allows for powerful
unsupervised classification. If shown a variety of real-world
scenes, it will automatically form internal structures corre-
sponding to the various natural categories of objects shown
in the scenes, such as trees, chairs, people, etc.; and also the
various natural categories of events it sees, such as reaching,
pointing, falling.

There are many possible ways to extend DeSTIN beyond
perception into a tripartite system; here I will present one
possibility that I call ”extended DeSTIN” 5.

One may envision an extended-DeSTIN action hierarchy
having a similar hierarchical structure to the perception hi-
erarchy, but where each node contains a probability mass
function over sequences of actions, rather than sequences of
observations. The actions in the bottom-level nodes corre-
spond to specific movements (e.g. in a robotics context, spe-
cific sequences of servomotor commands), and the actions
in a higher-level node correspond to serial and/or parallel
combinations of the actions in the child nodes. Rather than

4Some sentences in this section were pasted with minor modi-
fications from (Goertzel et al. 2010), coauthored by Ben Goertzel,
Itamar Arel and others

5barely resisting the urge to label it ”DeSTIN-E”!
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corresponding strictly to a partitioning of 2D or 3D space,
the nodes in the action hierarchy are best understood to cor-
respond to regions in configuration space (of the underlying
system controlled by DeSTIN, e.g. a robot), where the re-
gion of configuration space referred to by a child node is a
subspace of the region of configuration space referred to by
the parent node. For instance, a node containing sequences
of arm movements might have child nodes containing se-
quences of shoulder, elbow, wrist and finger movements re-
spectively.

Similarly, one may envision an extended DeSTIN goal hi-
erarchy, in which each node contains a cluster of sequences
of percepts and/or actions, where each sequence terminates
in a reward signal. Reward signals are percepts from the ex-
ternal world, or the system’s wired-in motivational structure
(e.g. the system could be intrinsically rewarded for learning
new information according to some mathematical measure,
or for keeping its robotic body’s electrical power within rea-
sonable bounds, etc.). Sequences in nodes below the top-
level will consist of relatively localized perceptions that,
when correlated with certain actions, have been found to
lead to reward. This is subtler than standard reinforcement-
learning hierarchies such as (Mehta et al. 2005) where each
node contains a reinforcement function that’s a linear com-
bination of the ones in its children.

The system’s overall activity is then governed by a tra-
ditional reinforcement learning approach, where the goal is
to maximize the weighted expected reward over the system’s
future. The hierarchical structure enables more sophisticated
subgoaling than in traditional RL architectures.

The obvious question that comes to mind, when consid-
ering an architecture like this as a general AGI architecture,
is how such phenomena as mathematical reasoning or recur-
sive phrase-structure grammar might emerge from the net-
work via the system’s world-interactions. The general an-
swer proposed for this is that it involves complex attractors
ensuing from the three-way interactions between the percep-
tual, motor and goal hierarchies. While this is a plausible
hypothesis, it is far from convincingly demonstrated. Fur-
ther, in spite of some of Hawkins’ (Hawkins and Blakeslee
2006) arguments, the analogy to neuroscience is not a strong
argument for the AGI potential of CSDLNs, because at best
CSDLNs are a model of a specific pattern of neural organiza-
tion that occurs only in a moderate-sized subset of the brain.
There is a fair analogy between CSDLN and the hierarchical
structure of the visual cortex, but many other portions of the
brain lack this marked hierarchy, and many portions of the
cognitive cortex owe as much to the primarily combinatory
connectivity pattern of olfactory cortex as to the predomi-
nantly hierarchical connectivity pattern of visual and audi-
tory cortex.

We agree that CSDLNs may be a viable route to human-
level AGI on their own, but presently are more concerned to
hybridize them with other AGI paradigms.

OpenCog

Now we briefly review OpenCog – an open-source AGI soft-
ware framework, which has been used for various practical
applications, and also for implementation of the OpenCog-

Prime design aimed ultimately toward AGI at the human
level and beyond. OpenCog has been used for commercial
applications in the area of natural language processing and
data mining; e.g. see (Goertzel et al. 2006). It has also been
used to control virtual agents in virtual worlds, at first using
an OpenCog variant called the OpenPetBrain (Goertzel and
Et Al 2008), and more recently in a more general way using
a Minecraft-like virtual environment (Goertzel et al. 2011).

Conceptually founded on the ”patternist” systems the-
ory of intelligence outlined in (Goertzel 2006), OpenCog-
Prime combines multiple AI paradigms such as uncer-
tain logic, computational linguistics, evolutionary program
learning and connectionist attention allocation in a unified
architecture. Cognitive processes embodying these differ-
ent paradigms interoperate together on a common neural-
symbolic knowledge store called the Atomspace. The inter-
action of these processes is designed to encourage the self-
organizing emergence of high-level network structures in the
Atomspace, including superposed hierarchical and heterar-
chical knowledge networks, and a self-model network en-
abling meta-knowledge and meta-learning.

OCP relies on multiple memory types (all intersecting via
the AtomSpace, even when also involving specialized rep-
resentations), including the declarative, procedural, sensory,
and episodic memory types that are widely discussed in cog-
nitive neuroscience (Tulving and Craik 2005), plus atten-
tional memory for allocating system resources generically,
and intentional memory for allocating system resources in
a goal-directed way. Declarative memory is addressed via
probabilistic inference; procedural memory via probabilistic
evolutionary program learning; episodic memory via simu-
lation; intentional memory via a largely declarative goal sys-
tem; attentional memory via an economics-based dynamical
system similar to an attractor neural network. Sensorimotor
memory is not handled thoroughly within OCP itself, part of
the reason for integrating an CSDLN into OpenCog.

The essence of the OCP design lies in the way the struc-
tures and processes associated with each type of memory are
designed to work together in a closely coupled way, the op-
erative hypothesis being that this will yield cooperative in-
telligence going beyond what could be achieved by an archi-
tecture merely containing the same structures and processes
in separate “black boxes.” That is, when a learning process
concerned centrally with one type of memory encounters a
situation where it learns very slowly, it can often resolve the
issue by converting some of the relevant knowledge into a
different type of memory: so-called cognitive synergy

OCP’s dynamics has both goal-oriented and “sponta-
neous” aspects; here for simplicity’s sake we will focus on
the goal-oriented ones. The basic goal-oriented dynamic of
the OCP system, within which the various types of memory
are utilized, is driven by “cognitive schematics”, which take
the form

Context ∧ Procedure → Goal < p >

(summarized C ∧ P → G). Semi-formally, this implica-
tion may interpreted to mean: “If the context C appears to
hold currently, then if I enact the procedure P , I can expect
to achieve the goal G with certainty p.” Cognitive synergy
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means that the learning processes corresponding to the dif-
ferent types of memory actively cooperate in figuring out
what procedures will achieve the system’s goals in the rel-
evant contexts within its environment. In a robot or virtual
”AGI school” context, for example, the top-level goals are
simple things such as pleasing the teacher, learning new in-
formation and skills, and protecting the agent’s body.

Integrating CSDLNs with Other AI

Frameworks

CSDLNs represent knowledge as attractor patterns spanning
multiple levels of hierarchical networks, supported by non-
linear dynamics and (at least in the case of the overall DeS-
TIN design) involving cooperative activity of perceptual,
motor and control networks. These attractors are learned and
adapted via a combination of methods including localized
pattern recognition algorithms and probabilistic inference.
Other AGI paradigms represent and learn knowledge in a
host of other ways. How then can CSDLNs be integrated
with these other paradigms?

A very simple form of integration, obviously, would be
to use an CSDLN as a sensorimotor cortex for another AI
system that’s focused on more abstract cognition. In this
approach, the CSDLN would stream state-vectors to the
abstract cognitive system, and the abstract cognitive sys-
tem would stream abstract cognitive inputs to the CSDLN
(which would then consider them together with its other in-
puts). One thing missing in this approach is the possibility
of the abstract cognitive system’s insights biasing the judg-
ments inside the CSDLN. Also, abstract cognition systems
aren’t usually well prepared to handle a stream of quanti-
tative state vectors (even ones representing intelligent com-
pressions of raw data).

An alternate approach is to build a richer intermediate
layer, which in effect translates between the internal lan-
guage of the CSDLN and the internal language of the other
AI system involved. The particulars, and the viability, of this
will depend on the particulars of the other AI system. What
we’ll consider here is the case where the other AI system
contains explicit symbolic representations of patterns (in-
cluding patterns abstracted from observations that may have
no relation to its prior knowledge or any linguistic terms). In
this case, we suggest, a viable approach may be to construct
a ”semantic CSDLN” to serve as an intermediary. The se-
mantic CSDLN has the same hierarchical structure as an CS-
DLN, but inside each node it contains abstract patterns rather
than numerical vectors. This approach has several potential
major advantages: the other AI system is not presented with
a large volume of numerical vectors (which it may be unpre-
pared to deal with effectively); the CSDLN can be guided
by the other AI system, without needing to understand sym-
bolic control signals; and the intermediary semantic CSDLN
can serve as a sort of ”blackboard” which the CSDLN and
the other AI system can update in parallel, and be guided by
in parallel, thus providing a platform encouraging ”cognitive
synergy”.

The remainder of this paper goes into more detail on the
concept of semantic CSDLNs. The discussion mainly con-

cerns the specific context of DeSTIN/OpenCog integration,
but the core ideas would apply to the integration of any
CSDLN architecture with any other AI architecture involv-
ing uncertain symbolic representations susceptible to online
learning.

Semantic CSDLN for Perception Processing

In the standard perceptual CSDLN hierarchy, a node N on
level k (considering level 1 as the bottom) corresponds to a
spatiotemporal region S with size sk (sk increasing mono-
tonically and usually exponentially with k); and, has chil-
dren on level k− 1 corresponding to spatiotemporal regions
that collectively partition S. For example, a node on level
3 might correspond to a 16x16 pixel region S of 2D space
over a time period of 10 seconds, and might have 4 level 2
children corresponding to disjoint 4x4 regions of 2D space
over 10 seconds, collectively composing S.

This kind of hierarchy is very effective for recognizing
certain types of visual patterns. However it is cumbersome
for recognizing some other types of patterns, e.g. the pattern
that a face typically contains two eyes beside each other, but
at variable distance from each other.

One way to remedy this deficiency is to extend the def-
inition of the hierarchy, so that nodes do not refer to fixed
spatial or temporal positions, but only to relative positions.
In this approach, the internals of a node are basically the
same as in an CSDLN, and the correspondence of the nodes
on level k with regions of size sk is retained, but the relation-
ships between the nodes are quite different. For instance, a
variable-position node of this sort could contain several pos-
sible 2D pictures of an eye, but be nonspecific about where
the eye is located in the 2D input image.

Figure 1 depicts this ”semantic-perceptual CSDLN” idea
heuristically, showing part of a semantic-perceptual CSDLN
indicating the parts of a face, and also the connections be-
tween the semantic-perceptual CSDLN, a standard percep-
tual CSDLN, and a higher-level cognitive semantic network
like OpenCog’s Atomspace. 6

More formally, in the suggested ”semantic-perceptual CS-
DLN” approach, a node N on level k, instead of point-
ing to a set of level k − 1 children, points to a small (but
not necessarily connected) semantic network , such that
the nodes of the semantic network are (variable-position)
level k − 1 nodes; and the edges of the semantic network
possess labels representing spatial or temporal relation-
ships, for example horizontally aligned, vertically aligned,

6The perceptual CSDLN shown is unrealistically small for
complex vision processing (only 4 layers), and only a fragment
of the semantic-perceptual CSDLN is shown (a node correspond-
ing to the category face, and then a child network containing nodes
corresponding to several components of a typical face). In a real
semantic-perceptual CSDLN, there would be many other nodes on
the same level as the face node, many other parts to the face sub-
network besides the eyes, nose and mouth depicted here; the eye,
nose and mouth nodes would also have child subnetworks; there
would be link from each semantic node to centroids within a large
number of perceptual nodes; and there would also be many nodes
not corresponding clearly to any single English language concept
like eye, nose, face, etc.
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right side, left side, above, behind, immediately right, im-
mediately left, immediately above, immediately below, af-
ter, immediately after. The edges may also be weighted ei-
ther with numbers or probability distributions, indicating the
quantitative weight of the relationship indicated by the label.

So for example, a level 3 node could have a child network
of the form horizontally aligned(N1, N2) where N1 and N2

are variable-position level 2 nodes. This would mean that N1

and N2 are along the same horizontal axis in the 2D input
but don’t need to be immediately next to each other. Or one
could say, e.g. on axis perpendicular to(N1, N2, N3, N4),
meaning that N1 and N2 are on an axis perpendicular to
the axis between N3 and N4. It may be that the latter sort of
relationship is fundamentally better in some cases, because
horizontally aligned is still tied to a specific orientation
in an absolute space, whereas on axis perpendicular to is
fully relative. But it may be that both sorts of relationship
are useful.

Next, development of learning algorithms for semantic
CSDLNs seems a tractable research area. First of all, it
would seem that, for instance, the DeSTIN learning algo-
rithms could straightforwardly be utilized in the semantic
CSDLN case, once the local semantic networks involved in
the network are known. So at least for some CSDLN de-
signs, the problem of learning the semantic networks may be
decoupled somewhat from the learning occurring inside the
nodes. DeSTIN nodes deal with clustering of their inputs,
and calculation of probabilities based on these clusters (and
based on the parent node states). The difference between the
semantic CSDLN and the traditional DeSTIN CSDLN has
to do with what the inputs are.

Regarding learning the local semantic networks, one rela-
tively straightforward approach would be to data mine them
from a standard CSDLN. That is, if one runs a standard CS-
DLN on a stream of inputs, one can then run a frequent pat-
tern mining algorithm to find semantic networks (using a
given vocabulary of semantic relationships) that occur fre-
quently in the CSDLN as it processes input. A subnetwork
that is identified via this sort of mining, can then be grouped
together in the semantic CSDLN, and a parent node can be
created and pointed to it.

Also, the standard CSDLN can be searched for frequent
patterns involving the clusters (referring to DeSTIN here,
where the nodes contain clusters of input sequences) inside
the nodes in the semantic CSDLN. Thus, in the ”semantic
DeSTIN” case, we have a feedback interaction wherein: 1)
the standard CSDLN is formed via processing input; 2) fre-
quent pattern mining on the standard CSDLN is used to cre-
ate subnetworks and corresponding parent nodes in the se-
mantic CSDLN; 3) the newly created nodes in the seman-
tic CSDLN get their internal clusters updated via standard
DeSTIN dynamics; 4) the clusters in the semantic nodes are
used as seeds for frequent pattern mining on the standard
CSDLN, returning us to Step 2 above.

After the semantic CSDLN is formed via mining the per-
ceptual CSDLN, it may be used to bias the further process-
ing of the perceptual CSDLN. For instance, in DeSTIN each
node carries out probabilistic calculations involving knowl-
edge of the prior probability of the ”observation” coming

into that node over a given interval of time. In the current
DeSTIN version, this prior probability is drawn from a uni-
form distribution, but it would be more effective to draw the
prior probability from the semantic network – observations
matching things represented in the semantic network would
get a higher prior probability. One could also use subtler
strategies such as using imprecise probabilities in DeSTIN
(Goertzel 2011), and assigning a greater confidence to prob-
abilities involving observations contained in the semantic
network.

Finally, we note that the nodes and networks in the se-
mantic CSDLN may naturally be linked into the nodes and
links in a semantic network such as OpenCog’s AtomSpace.
This allows us to think of the semantic CSDLN as a kind
of bridge between the standard CSDLN and the cognitive
layer of an AI system. In an advanced implementation, the
cognitive network may be used to suggest new relationships
between nodes in the semantic CSDLN, based on knowledge
gained via inference or language.

Semantic CSDLN for Motor and Sensorimotor

Processing

Next we consider a semantic CSDLN that focuses on move-
ment rather than sensation. In this case, rather than a 2D or
3D visual space, one is dealing with an n-dimensional con-
figuration space (C-space). This space has one dimension
for each degree of freedom of the agent in question. The
more joints with more freedom of movement an agent has,
the higher the dimensionality of its configuration space.

Using the notion of configuration space, one can con-
struct a semantic-motoric CSDLN hierarchy analogous to
the semantic-perceptual CSDLN hierarchy. However, the
curse of dimensionality demands a thoughtful approach
here. A square of side 2 can be tiled with 4 squares of side
1, but a 50-dimensional cube of side 2 can be tiled with 250

50-dimensional cubes of side 1. If one is to build a CSDLN
hierarchy in configuration space analogous to that in percep-
tual space, some sort of sparse hierarchy is necessary.

There are many ways to build a sparse hierarchy of this
nature, but one simple approach is to build a hierarchy where
the nodes on level k represent motions that combine the
motions represented by nodes on level k − 1. In this case
the most natural semantic label predicates would seem to
be things like simultaneously, after, immediately after, etc.
So a level k node represents a sort of ”motion plan” corre-
sponded by chaining together (serially and/or in parallel) the
motions encoded in level k − 1 nodes. Overlapping regions
of C-space correspond to different complex movements that
share some of the same component movements, e.g. if one
is trying to slap one person while elbowing another, or run
while kicking a soccer ball forwards. Also note, the seman-
tic CSDLN approach reveals perception and motor control to
have essentially similar hierarchical structures, more so than
with the traditional CSDLN approach and its fixed-position
perceptual nodes.

Just as the semantic-perceptual CSDLN is naturally
aligned with a traditional perceptual CSDLN, similarly a
semantic-motoric CSDLN may be naturally aligned with a
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Figure 1: Simplified depiction of the relationship between a semantic-perceptual CSDLN, a traditional perceptual CSDLN (like
DeSTIN), and a cognitive semantic network (like OpenCog’s AtomSpace).

”motor CSDLN”. A typical motoric hierarchy in robotics
might contain a node corresponding to a robot arm, with
children corresponding to the hand, upper arm and lower
arm; the hand node might then contain child nodes corre-
sponding to each finger, etc. This sort of hierarchy is in-
trinsically spatiotemporal because each individual action of
each joint of an actuator like an arm is intrinsically bounded
in space and time. Perhaps the most ambitious attempt
along these lines is (Albus and Meystel 2001), which shows
how perceptual and motoric hierarchies are constructed and
aligned in an architecture for intelligent automated vehicle
control.

Figure 2 gives a simplified illustration of the potential
alignment between a semantic-motoric CSDLN and a purely
motoric hierarchy (like the one posited above in the context
of extended DeSTIN). 7 In the figure, the motoric hierarchy

7In the figure, only a fragment of the semantic-motoric CSDLN
is shown (a node corresponding to the ”get object” action cate-
gory, and then a child network containing nodes corresponding to
several components of the action). In a real semantic-motoric CS-
DLN, there would be many other nodes on the same level as the
get-object node, many other parts to the get-object subnetwork be-
sides the ones depicted here; the subnetwork nodes would also have
child subnetworks; there would be link from each semantic node to
centroids within a large number of motoric nodes; and there might

is assumed to operate somewhat like DeSTIN, with nodes
corresponding to (at the lowest level) individual servomo-
tors, and (on higher levels) natural groupings of servomo-
tors. The node corresponding to a set of servos is assumed
to contain centroids of clusters of trajectories through con-
figuration space. The task of choosing an appropriate action
is then executed by finding the appropriate centroids for the
nodes. Note an asymmetry between perception and action
here. In perception the basic flow is bottom-up, with top-
down flow used for modulation and for ”imaginative” gener-
ation of percepts. In action, the basic flow is top-down, with
bottom-up flow used for modulation and for imaginative,
”fiddling around” style generation of actions. The semantic-
motoric hierarchy then contains abstractions of the C-space
centroids from the motoric hierarchy – i.e., actions that bind
together different C-space trajectories that correspond to the
same fundamental action carried out in different contexts
or under different constraints. Similarly to in the perceptual
case, the semantic hierarchy here serves as a glue between
lower-level function and higher-level cognitive semantics.

also be many nodes not corresponding clearly to any single English
language concept like ”grasp object” etc.
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Figure 2: Simplified depiction of the relationship between a semantic-motoric CSDLN, a motor control hierarchy (illustrated
by the hierarchy of servos associated with a robot arm), and a cognitive semantic network (like OpenCog’s AtomSpace).

Connecting the Perceptual and Motoric

Hierarchies with a Goal Hierarchy

One way to connect perceptual and motoric CSDLN hi-
erarchies is using a ”semantic-goal CSDLN” bridging the
semantic-perceptual and semantic-motoric CSDLNs. The
semantic-goal CSDLN would be a ”semantic CSDLN”
loosely analogous to the perceptual and motor semantic CS-
DLNs – and could optionally be linked into the reinforce-
ment hierarchy of a tripartite CSDLN like extended DeS-
TIN. Each node in the semantic-goal CSDLN would contain
implications of the form ”Context & Procedure → Goal”,
where Goal is one of the AI system’s overall goals or a sub-
goal thereof, and Context and Procedure refer to nodes in
the perceptual and motoric semantic CSDLNs respectively.

For instance, a semantic-goal CSDLN node might contain
an implication of the form ”I perceive my hand is near object
X & I grasp object X → I possess object X.” This would be
useful if ”I possess object X” were a subgoal of some higher-
level system goal, e.g. if X were a food object and the system
had the higher-level goal of obtaining food.

To the extent that the system’s goals can be decomposed
into hierarchies of progressively more and more spatiotem-
porally localized subgoals, this sort of hierarchy will make
sense, leading to a tripartite hierarchy as loosely depicted
in Figure 3. 8 One could attempt to construct an overall AGI

8The diagram is simplified in many ways, e.g. only a handful of

approach based on a tripartite hierarchy of this nature, count-
ing on the upper levels of the three hierarchies to come to-
gether dynamically to form an integrated cognitive network,
yielding abstract phenomena like language, self, reasoning
and mathematics. On the other hand, one may view this sort
of hierarchy as a portion of a larger integrative AGI archi-
tecture, containing a separate cognitive network, with a less
rigidly hierarchical structure and less of a tie to the spa-
tiotemporal structure of physical reality. The latter view is
the one we are primarily taking within the OpenCog AGI
approach, viewing perceptual, motoric and goal hierarchies
as ”lower level” subsystems connected to a ”higher level”
system based on the OpenCog AtomSpace and centered on
its abstract cognitive processes.

Learning of the subgoals and implications in the goal hier-
archy is of course a complex matter, which may be addressed
via a variety of algorithms, including online clustering (for
subgoals or implications) or supervised learning (for im-
plications, the ”supervision” being purely internal and pro-
vided by goal or subgoal achievement).

nodes in each hierarchy is shown (rather than the whole hierarchy),
and lines without arrows are used to indicate bidirectional arrows,
and nearly all links are omitted. The purpose is just to show the
general character of interaction between the components in a sim-
plified context.
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Figure 3: Simplified illustration of the proposed interoperation of perceptual, motoric and goal semantic CSDLNs.
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