
Interoperating Learning Mechanisms in a Cognitive Architecture

Dongkyu Choi and Stellan Ohlsson
Department of Psychology

University of Illinois at Chicago
1007 W Harrison Street (M/C 285), Chicago, IL 60607

{dongkyuc, stellan}@uic.edu

Abstract

People acquire new knowledge in various ways and this
helps them to adapt to changing environment properly.
In this paper, we investigate the interoperation of mul-
tiple learning mechanisms within a single system. We
extend a cognitive architecture, ICARUS, to have three
different modes of learning. Through experiments in a
modified Blocks World and a route generation domain,
we test and demonstrate the system’s ability to get syn-
ergistic effects from these learning mechanisms.

Introduction
Human learning involves a variety of ways to acquire new
knowledge. People learn from both positive and negative ex-
periences. They also learn from both explicit and implicit
instructions or demonstrations. This variety gives people
the flexibility they need to adapt to changing environments,
which has a direct impact on survival. Ohlsson (2011) ar-
gues that there are nine different modes of learning and em-
phasizes that the interoperation of such modes is the key to
human success in this world.

However, most research in cognitive architectures dealt
with each learning mode individually, focusing on the repre-
sentational and the operational aspects of a learning mech-
anism and its benefits (e.g., Langley and Choi, 2006; Laird,
Rosenbloom, and Newell, 1986). In contrast, our ongo-
ing work (Choi and Ohlsson, 2010a; 2010b; 2011) con-
cerns multiple learning mechanisms that interoperate within
a single system. We started with a cognitive architecture,
ICARUS, that has the built-in ability to learn from positive
problem solving experiences. The system uses a version of
means-ends problem solver to generate solution traces for
its goals, from which it learns new procedural knowledge
for the goals.

We then extended the architecture with two new mecha-
nisms for learning from observations and learning from fail-
ures. The former augments ICARUS’s bottom-up belief in-
ference by providing a way to retain previous beliefs about
the surroundings until they are proven to be false. This is
useful when an ICARUS agent operates in a partially ob-
servable environment, since it allows retaining relevant pre-

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

vious beliefs even if the current sensory data does not in-
clude their perceptual supports. Hence, the system can make
better-informed decisions with previous observations that
are still reasonable in addition to the limited set of currently
perceived information.

The second mechanism involves learning from failures
(Ohlsson, 1996). It enables ICARUS to revise its procedu-
ral knowledge based on the observed or expected violations
of constraints. When a constraint ICARUS cares about gets
violated (or is expected to get violated at the next step), the
architecture invokes the learning mechanism that adds extra
preconditions to its procedure that caused (or would cause)
the violation. The system distinguishes two different types
of violations and revise procedures accordingly.

With the addition of these two learning modes, the ex-
tended ICARUS possesses three different modes of learning
and it can support our research on the interoperation of mul-
tiple learning mechanisms. In this paper, we present some
preliminary results from our efforts in this direction. We use
a modified Blocks World and a route generation domain for
examples. In the following sections, we first introduce the
two domains briefly and review some basic assumptions of
ICARUS. Then we describe the three learning mechanisms
in some detail and present experimental results that show
the interoperation of learning mechanisms and the synergis-
tic effects among them. We also discuss related and future
work before we conclude.

Illustrative Domains
In this work, we use two domains to test and demonstrate
our system. The first one is a modified Blocks World, where
the blocks have some additional features like color and size.
This domain provides fully observable states and, therefore,
ICARUS can perceive all the features of all the blocks that
exist on table at any given time. As with the classic imple-
mentation of the domain, the ICARUS agent has available ac-
tions like grasping and ungrasping a block and moving the
gripper in horizontal or vertical direction.

We also added several constraints, some of which ICARUS
should consider at any given run. These include: the color
constraint that requires stacked blocks to have the same
color; the top-block constraint that forces certain blocks to
not have anything on them; and the tower constraint that re-

Advances in Cognitive Systems: Papers from the 2011 AAAI Fall Symposium (FS-11-01)

66

quires the blocks above to be smaller than the blocks below
in a stack. In our experiments, the number of constraints an
agent should consider is a measure of the complexity of the
task, along with the total number of blocks.

The second domain we use is a route generation domain.
This includes fixed start and end locations with waypoints
between them. Figure 1 shows an example setting in this
domain. This domain features the partial observability and,
at any given location, the agent can perceive only its cur-
rent location and the neighboring locations. There are more
than one routes available, giving the ICARUS agent multi-
ple options to choose from. The only available action is to
move from one location to a neighboring, connected loca-
tion. Each location can be either dangerous or not, and we
have only one constraint in this domain, which requires the
agent to not be in a dangerous location.

�� ��
�

��

�

��

�

��

�

	�

�

�

�

��

�

��

�

�

�

��

Figure 1: An example setting in the route generation domain.
Locations A and B are the start and end locations, respec-
tively, while W1 through W9 are waypoints.

In the route generation domain, we vary the complexity
of the task by increasing the length of the shortest route be-
tween the start and end locations, which, in turn, increases
the number of possible routes. The example shown in Fig-
ure 1 corresponds to the complexity level 1 we will discuss
later in the experiments section. Next, we review some basic
assumptions of ICARUS.

ICARUS Review
As with other cognitive architectures (Laird, Rosenbloom,
and Newell, 1986; Anderson, 1993), ICARUS makes com-
mitments to a specific way to represent knowledge, infer be-
liefs, perform execution and learn new knowledge. In this
section, we review ICARUS’s basic assumptions before pre-
senting the details of its learning mechanisms.

Representation and Memories
ICARUS makes distinctions in two separate dimensions.
The first exists between concepts and skills. Concepts give
ICARUS a language to describe its surroundings by enabling
the system to infer beliefs about the current state of the
world. Skills, on the other hand, are procedures that ICARUS
believes to achieve certain concept instances. The second

distinction lies between long-term knowledge and short-
term structures. Long-term concepts and skills are general
descriptions of situations and procedures, and ICARUS in-
stantiates them for a particular situation at hand. Instantiated
concepts and skills are short-term structures, in that they are
constantly created and destroyed as the situation changes.
These two distinctions result in four separate memories in
ICARUS.

In its long-term conceptual memory, the architecture en-
codes concept definitions that are similar to Horn clauses
(Horn, 1951). As shown in Table 1, concepts include a
head and a body that includes perceptual matching con-
ditions or references to other concepts. The first concept
with the head, (at ?location), matches against an
object of type, self, and its attribute, location, in
its :percepts field. The second concept, (connected
?from ?to), matches against an additional object of type,
location, and tests if its accessible attribute is not
null and the two locations, ?from and ?to, are different.
These two concepts do not have any reference to other con-
cepts in their definitions, so they are primitive concepts.
On the other hand, the third concept, (not-dead-end
?location), matches against a location object and
refers to two subconcepts in addition to a test. This makes
the last concept a non-primitive one. This way, ICARUS
builds a hierarchy of concepts that provides multiple levels
of abstraction.

Another long-term memory stores ICARUS’s skills that
resemble STRIPS operators (Fikes and Nilsson, 1971). The
head of each skill is the predicate it is known to achieve,
making all skills indexed by their respective goals. Each
skill has a body that includes perceptual matching condi-
tions, some preconditions, and either direct actions to the
world or a subgoal decomposition. Skills with no references
to subgoals are primitive, while the ones with subgoals are
non-primitive. Table 2 shows some sample ICARUS skills.
The first skill that achieves (at ?location) has two
preconditions, (at ?from) and (connected ?from
?location), in its :start field and an action in its
:actions field. Without any reference to subgoals, this
skill is primitive. The second skill, however, is a non-
primitive one that provides a subgoal decomposition to
achieve (at B). Namely, this skill instructs ICARUS to
consider two ordered subgoals, (at W6) and (at B), to
achieve the eventual goal.

In addition, ICARUS has two short-term memories to store
instantiated concepts and skills. While a short-term con-
ceptual memory holds the current beliefs of the system, its
short-term skill memory stores the selected skill instances
indexed by their corresponding goals or subgoals. When
ICARUS works on complex problems, information on goals
and subgoals tends to dominate the short-term skill memory
since it also serves as the goal stack for the system. Next, we
explain the processes that generate contents of these short-
term memories from their long-term counterparts.

Inference and Execution
ICARUS operates in cycles. On each cycle, it performs a se-
ries of processes as shown in Fig 2. The system first instan-

67

Table 1: Some sample ICARUS concepts for the route gener-
ation domain. Question marks denote variables.

((at ?location)

:percepts ((self ?self location ?location)))

((connected ?from ?to)

:percepts ((self ?self location ?from)

(location ?to accessible ?access))

:tests ((not (equal ?from ?to))

(not (null ?access))))

((not-dead-end ?location)

:percepts ((location ?location))

:relations ((connected ?location ?to1)

(connected ?location ?to2))

:tests ((not (equal ?to1 ?to2))))

Table 2: Some sample ICARUS skills for the route generation
domain. Question marks denote variables. The second skill
is a part of a specific route that is learned.

((at ?location)

:start ((at ?from)

(connected ?from ?location))

:actions ((*move-to ?location)))

((at B)

:subgoals ((at W6) (at B)))

tiates its long-term concepts based on the data from its sen-
sors. The bottom-up inference of concepts creates beliefs in
the form of instantiated conceptual predicates. The inference
process starts with the perceptual information about objects
in the world. The system attempts to match its concept def-
initions to the perceptual information and, when there is a
match, it instantiates the head of the definitions to compute
its current beliefs.

����������

�������������

������������

������������

��������������

�����������������

	� ���������

�������!�"���

����#���������

������������ ���

������	$���"���

������"���

����������

�����������������

���������� ����

�������������������

Figure 2: ICARUS’s memories and the processes that work
over them.

Once the architecture computes all its beliefs, it starts
the skill retrieval and execution process. ICARUS’s goals
guide this process, and the system retrieves relevant long-
term skills based on the current beliefs. When it finds an
executable path through its skill hierarchy, from its goal at
the top to actions at the bottom, ICARUS executes the ac-
tions specified at the leaf node of the path. This execution,
in turn, changes the environment, and the system starts an-
other cycle by inferring beliefs from new data received from
the environment.

Learning Mechanisms

The original ICARUS includes a single learning mechanism
that acquires new skills from successful problem solving
traces (Langley and Choi, 2006). It uses a version of means-
ends problem solver to decompose its goals into subgoals
and generate a solution trace. The system then uses it to
compose a new skill for each subgoal. To study the interop-
eration of multiple learning mechanisms, we needed at least
one more learning mechanism in the architecture.

While searching for possible candidate mechanisms, we
noticed that the original architecture’s problem solver im-
plicitly assumes fully observable domains. For the means-
ends problem solving to work, the system should have
enough knowledge to chain backward from its goal to the
current state, and this means the domain should be fully ob-
servable from the outset. To move away from this assump-
tion, we added a new mechanism for learning from obser-
vations, which allows retaining previous beliefs as long as
they do not contradict the current observations. This exten-
sion enables ICARUS to gradually accumulate its knowledge
about the surroundings as it explores.

As part of our ongoing work, we added another mecha-
nism for learning from failures using a new constraint lan-
guage (Choi and Ohlsson, 2010b). Given constraints that are
expressed as relevance–satisfaction condition pairs, the sys-
tem revises its skills that cause violations of such constraints
by adding new preconditions to them. In this section, we ex-
plain these three learning mechanisms in more detail.

Learning from Problem Solving

When ICARUS hits an impasse with no executable skills for
the current goal, it invokes its means-ends problem solver to
find a solution. As shown in Figure 3, the system has two op-
tions, either using a skill definition to propose an unsatisfied
precondition as the next subgoal (skill chaining), or using a
concept definition to decompose the current goal into sub-
goals (concept chaining). By default, ICARUS gives priority
to the former and proceeds to the latter only when there is
no skill chains available.

The architecture applies problem solving chains recur-
sively until it finds a subgoal for which it can execute im-
mediately. When such a subgoal is found, ICARUS proceeds
with the execution to achieve it. Once the system satisfies
the subgoal in the world, it learns a new skill from this expe-
rience by generalizing the situation and the procedures used.

68

������

�����	
��
���
���	
�� �
���

�
���

����
���

����
���

����
���

�
�����

�����	
��

��������	�
�

��
������	�
�

������
��
���	����	���������
����
���	����	���

Figure 3: Two types of problem solving chains in ICARUS.
For a skill chain, the system uses a skill definition to push
the unsatisfied precondition as subgoal, while in a concept
chain it uses a concept definition to decompose a goal into
subgoals.

Learning from Observations
This learning mechanism outputs a different kind of knowl-
edge. Instead of creating new skills, it retains certain beliefs
of the ICARUS agent even after their perceptual supports
disappear. The original architecture performs bottom-up in-
ference of its beliefs from scratch on every cycle, but the
extended system carries over some of the previous beliefs
while it still infers new ones based on the updated percep-
tual information on a cycle.

This process happens in a straightforward fashion.
ICARUS first performs the bottom-up inference with updates
from the environment. It then compares this belief state to
the previous one and finds conflicting beliefs in the previous
state that get removed. The rest of the previous beliefs get
added to the current belief state. What is crucial in this pro-
cess is the mechanism for removing conflicting beliefs from
the previous state. ICARUS uses negations in the definitions
of concepts to find the beliefs that are, in some sense, op-
posed to new beliefs in the current state. However, this is
not enough to find all conflicts, and it causes a catastrophic
expansion of beliefs when it operates alone.

Therefore, the latest extension also includes a new field
:delete in concept definitions that stores what is similar
to a delete list. Since not all conflicting relations are explic-
itly expressed in the form of negated subconcepts, develop-
ers can manually add such relations in concept definitions.
This is particularly useful to ensure uniqueness of some con-
cept instances like an agent’s current location. For example,
in the definition of (at ?location) that shows the cur-
rent location of the ICARUS agent in a route generation do-
main (see the first concept in Table 1), we can guarantee that
only one instance of this concept exists in the belief state on
a given cycle by including (at ?other) in the delete list

for this concept. This process is shown in Figure 4.

����������	��
����	�

��������������	����

��

����������	��
����	���

��������������	�����

��

���������������������

�	�����������	������

��������	��
����	�

�������

���		������������

���		������������

��

��������	��
����	���

��������

���		�������������

���		����������%��

��

���		������������

���		������������

�����&��������������&���������

Figure 4: After inferring the current beliefs from the percep-
tual information on cycle n+1, ICARUS combines this result
with previous beliefs that are both not in conflict with the
current ones and not removed while processing the delete
lists. In this example, only static beliefs for connectivity are
maintained in the belief state for cycle n+1.

Learning from Constraint Violations
The extended ICARUS has the notion of constraints, ex-
pressed as pairs of relevance and satisfaction condition
adopted from Ohlsson (1996). On every cycle, the system
checks if the relevance conditions of each constraint is true
in its belief state, and if so, it also checks the satisfaction
conditions. When a constraint is violated, namely, when it
is relevant but not satisfied, ICARUS invokes its constraint-
based specialization mechanism to revise skills that caused
the violation.

There are two different cases of violations. One is when a
constraint has been irrelevant but it becomes relevant and not
satisfied, and the other is when a constraint has been relevant
and satisfied but it becomes unsatisfied. The system treats
the two cases differently, using two distinct rules as shown
in Table 3 to compute additional preconditions it adds to the
corresponding skills. See Ohlsson (2011) for a more detailed
description of this learning mechanism.

Table 3: Added preconditions computed differently based on
the type of the constraint violation. Cr, Cs, Oa, and Od de-
note relevance conditions, satisfaction conditions, add list,
and delete list, respectively.

Type \ Revision 1 2

A ¬(Cr −Oa) (Cr −Oa) ∪ (Cs −Oa)
B ¬Cr Cr ∪ ¬(Cs ∩Od)

69

Experiments
To prove the synergistic effect of having multiple learning
mechanisms, we performed experiments in both the modi-
fied Blocks World and the route generation domain we have
reviewed earlier. But we focus on the result from the latter
in this paper, since this is where ICARUS requires one of
the new learning mechanisms, namely, learning from obser-
vations due to the partial observability. In this section, we
describe our experimental setup and the results from our ex-
periments in this domain.

Experimental Setup

In our route generation domain, the agent starts at a location
on one side, and it has the goal to get to a target location on
the other side. Using the connectivity information between
various neighboring locations, an agent should traverse from
its origin to the target. Although there are multiple possible
routes in the environment, some of the routes might become
unavailable for travel due to various reasons such as criminal
activity or damage to a bridge. When this happens, the agent
can encounter situations where it is unable to use routes it
has learned before, requiring it to adapt to the new situation.

The domain is modified from its original form to give par-
tial knowledge of the environment to ICARUS agents, re-
stricting the available connectivity information to the visi-
ble ones from the agent’s current location. We give only the
basic concept and skill sets to the system at the beginning,
along with a constraint. This means that the system knows
how to operate in the world, but not at the level of expertise
that enables it to satisfy the constraint at all times.

A typical run in this domain goes as follows. We give the
system a goal to get to a target location, B, starting from
the initial location, A. The two locations are connected by
two alternate routes using waypoints W1 and W2, respec-
tively. From the location A, the agent sees connections to the
neighboring locations, W1 and W2. Without a complete con-
nectivity information from the current location to the target,
both execution and problem solving fails, and the system
falls back to random exploration. This gets the agent to a
waypoint, W1. From this location, the agent can see a direct
connection to its target, which it takes by executing its skill
for moving between neighboring locations (the first skill in
Table 2).

Once the agent reaches the target, it is transported back to
its origin for repeated trials. During the first trial, the system
has remembered all the connectivity information it saw us-
ing declarative learning. Therefore, on the second trial, the
problem solver can generate the route, A - W1 - B, from the
beginning. It then takes the route by executing its skill twice
for the two segments and achieves its goal. From this suc-
cessful problem solving, the agent learns the route as spe-
cific skills like the second one in Table 2.

Before continuing subsequent trials, we designate the
waypoint W1 as dangerous. This causes a violation of the
constraint ICARUS is given, namely:

(at ?location)→ (not (dangerous ?location))

which simply says that it should not be at a location that
is dangerous. During the next trial, the system attempts to
use the known route, A - W1 - B, but it realizes that taking
this route would cause a constraint violation. ICARUS learns
from this expected violation by revising its skill to include
an additional precondition, which ensures that the location
the skill takes it to is not dangerous. Then again, there is no
executable skill from A, and the system finds an alternate
route A - W2 - B through problem solving and learns a spe-
cific skill for this route. Starting from the next trial, the agent
can simply execute its specific route skills to get to the target
without any problem solving.

Evidence of Interoperation
While running the experiments, we sampled some runs un-
der various conditions to investigate the interoperation of the
three learning mechanisms in ICARUS. Our findings indicate
that each learning mode takes the result of another as its in-
put and other mechanisms use the outputs as part of their
inputs. More specifically, we found the interoperational pat-
tern shown in Figure 5.

��������	
���	

����������	

��������	
���	

�������	�������	

��������	
���	

����������	���������	

 ! ����������	�

���	����	� ���	���	����	�

Figure 5: The interoperational pattern in the current setup of
the learning mechanisms.

A typical example of this interoperation is as follows
(see Figure 1). Initially, the ICARUS agent is at A and it
perceives only three connections, (connected A W1),
(connected A W4), and (connected A W7). Since
these are not sufficient for the problem solver to generate a
chain from the goal, (at B), the system falls back to ran-
dom exploration and the agent moves to W4. From this lo-
cation, the agent sees two more connections, (connected
W4 A) and (connected W4 W8), but the five connec-
tions so far are still not enough to generate a problem solving
chain. Therefore, ICARUS executes at random and this con-
tinues until cycle 14, on which the agent has wandered to
W3 and it has 19 connection information accumulated. The
problem solver is able to generate the trivial route, W3–B, at
this point.

On the next trial, ICARUS invokes its problem solver im-
mediately, using the previously accumulated information. It
finds the route, A–W1–W2–W3–B, and learns this route as
new skills. Later at the fifth trial, we introduce dangerous
locations, W1 and W2. This renders the previously learned
route obsolete, and it causes the system to revise its skill
for moves to consider this constraint properly. Once again,

70

the system uses previously accumulated connection infor-
mation to generate an alternate route. But this time, the re-
vised skill rejects any moves into the dangerous locations,
and forces ICARUS to find the new route, A–W7–W8–W6–B,
and learns it as new skills. From the next trial, the system
uses the new route and achieves its goal through straight-
forward execution until the environment changes yet again.
Next, we present some quantitative results from our experi-
ments in this domain.

Experimental Results
We ran similar experiments at three different levels of com-
plexity, with 100 simulated subjects for each. There are six
waypoints and four different routes between the origin and
the target at the first level, while there are nine waypoints and
four possible routes at the second level and 12 waypoints and
eight possible routes at the third level. We performed exper-
iments in four different conditions, in which 1) we turn on
all learning modes, 2) turn off learning from constraint vio-
lations, 3) turn off learning from problem solving, or 4) turn
off both of these learning modes. Since turning off learning
from observations causes the system to fall back to explo-
ration all the time, we did not include any conditions that
involve turning off this learning mode.

Figure 6 summarizes main findings. The measure of com-
putational effort is the total number of cycles per trial. The
first four trials show the initial learning of a route to target.
After the fourth trial, the learned route was declared out of
bounds by marking some waypoints on that route to have
become dangerous. The fifth trial is thus the one in which
ICARUS discovers this change and faces the challenge of
adapting to it. The subsequent trials trace the discovery and
learning of a novel route. The figure shows four curves for
each complexity level, corresponding to the four learning
conditions outlined above.

The curve at the top of each graph on the later trials
(marked with ‘x’) shows the result for the fourth condition
where only learning from observations is active. After the
first trial where the system can do nothing but randomly ex-
ploring, the system shows no change in effort from the sec-
ond trial to the fourth. This is because it has accumulated
enough connection information during the successful explo-
ration on the first trial and invokes problem solving from the
second trial. However, without learning from problem solv-
ing under this condition, ICARUS cannot take advantage of
prior efforts and the performance on the second, third, and
fourth trials are virtually equivalent. Once the environment
is changed between the fourth and the fifth trials, the system
should perform search to find a path around the dangerous
waypoints, so computational effort is higher on the fifth trial
than the prior ones and then it stays high because the system
does not acquire new skills from its experience.

The next curve marked with triangular shapes is for the
third condition, in which learning from constraint violations
is active along with learning from observations. Since the
system still does not learn any specific routes under this con-
dition, there is no noticeable difference from the above con-
dition on the first four trials. However, after the environment
is changed (and therefore a constraint comes into play), the

��

��

��

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��� ��� ���

�
�
�
��
�
�
	�
�
�
�
�
�	
�

	
�
�
	�
�
�	

����	

��������	�������	

����������	��	

���������������	�
����

��������	�
�����

�������	����

��������	�
�����

�����������	�
�

�����	�
�����

�����������������

��

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��� ��� ���

�
�
�
��
�
�
	�
�
�
�
�
�	
�

	
�
�
	�
�
�	

����	

��������	�������	

����������	��	

���������������	�
����

��������	�
�����

�������	����

��������	�
�����

�����������	�
�

�����	�
�����

�����������������

��

���

���

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��� ��� ���

�
�
�
��
�
�
	�
�
�
�
�
�	
�

	
�
�
	�
�
�	

����	

��������	�������	

����������	��	

���������������	�
����

��������	�
�����

�������	����

��������	�
�����

�����������	�
�

�����	�
�����

�����������������

Figure 6: Number of cycles taken to reach the target location
in situations with three different levels of complexity. Four
conditions are shown in different shapes and colors consis-
tently throughout the three graphs.

system revises its skill for moving to a neighboring location
based on the constraint violation it detects when attempt-
ing to move to a dangerous location. After this learning, the
problem solver finds a route without ever incurring any con-
straint violations. For this reason, the system performs no-
ticeably better than the above condition from the sixth trial
and on. But the learning does not happen for free, and the
overhead causes worse performance than the last condition
on the fifth trial.

In the other two conditions where learning from problem
solving is active, the system rapidly learns an initial route
during the first four trials. There is no measurable differ-

71

ence between the two conditions with respect to the system’s
ability to learn an initial path, and the number of cycles re-
quired to traverse the landscape decreases significantly from
the first trial to the fourth, for about 14% in the first complex-
ity level and about 50% in the other levels. After the peaks at
their fifth trials, however, the two conditions start to diverge.
As complexity increases, the gap between the first and the
second conditions widens. This shows the benefit of revis-
ing skills through learning from constraint violations, which
reduces the system’s problem solving efforts by making it
impossible to cause violations during the process. From the
sixth trial, the performance gap between the two conditions
decreases gradually, but the system without learning from
constraint violations does not recover completely even on
the last trial where it seems to have reached the steady state.

Another interesting finding in higher-complexity cases
is that, on the fifth trial, the system adapts quicker to the
changed environment when it runs with all three learning
than when either learning from problem solving or learn-
ing from constraint violations is turned off. As shown in
Figure 7, the synergy is substantial: the number of cycles
is 17 compared to 19 for learning from constraint viola-
tions at complexity level 1 and the difference increases to
20 versus 26 at complexity level 2. These represents savings
of 10% and 22%, respectively. When compared to learning
from problem solving, the savings are even higher at 17%
and 32%.

��

��

���

���

 ��

 ��

!��

!��

�� �

��
�
��
��
	
	

�
�
�
	

���������	�����	

��"��������������

�	�������
���������

�	�������
����������

Figure 7: Learning efforts measured by the number of cycles
at the fifth trial. The different between the two conditions
shows the synergistic advantage of adding another learning
mode as complexity increases.

In summary, both the improved performance at the final
steady state and the reduced learning effort at the fifth trials
suggest synergistic effects of having multiple learning mech-
anisms in a single system. We found that the performance
of the system improves significantly as additional learning
mechanisms are added. ICARUS solves problems faster in
the conditions with two active learning mechanisms than in
the condition with a single learning mechanism, and it per-
forms even better with all three learning mechanisms.

Related and Future Work

This paper covers an ongoing research effort toward human-
level variety of learning capabilities. In the current state, the
system includes three different modes of learning, each of
which has a vast amount of related work in the literature.
First of all, learning from problem solving is closely related
to previous research on macro-operators (Fikes, Hart, and
Nilsson, 1972; Mooney, 1989; Shavlik, 1989). The ICARUS
approach shares the basic principle of composing knowl-
edge elements into larger structures. However, it supports
disjunctions and recursions in the skill hierarchy, in addi-
tion to the simple fixed sequences learned in systems with
macro-operators.

The mechanism for learning from constraint viola-
tions also has important similarities to previous work in
explanation-based learning literature (Ellman, 1989; Wuste-
man, 1992). These methods assume a significant amount of
domain theories presumed to be perfect. To augment this
limitation, researchers worked on the similar problems of
blame assignment and theory revision, although the exact
formulations were different from ours. Unlike most of these
work, our approach includes explicit descriptions of con-
straints, which the system uses to detect failures and revise
existing procedural knowledge accordingly.

The interoperation of these two learning mechanisms in
ICARUS has some similarity to the version space method
(Mitchell, 1997; Winston, 1992), which has two learning
modes for generalization from positive instances and spe-
cialization from negative instances. But the resemblance
stops at the conceptual level, since ICARUS learns and re-
vises its procedures using the two mechanisms, while the
version space method is exclusively for concept learning.

In contrast to the two learning methods above, the topic of
learning declarative knowledge from observations is signif-
icantly less studied. Researchers agree on the fundamental
differences between declarative and procedural knowledge
(Anderson, 1976), and the both types of learning are popular
research topics among neuroscientists in relation to particu-
lar brain regions (e.g., Weis et al., 2004; Quintero-Gallego
et al., 2006). However, research for simulating declarative
learning through computational means is not common. Chi
and Ohlsson (2005) classified various types of changes to
declarative knowledge as learning proceeds, but the work
does not attempt to model them computationally. We ex-
tended ICARUS to support declarative learning, but the re-
search is in an early stage and requires further investigation.

Although our current work successfully shows the syner-
gistic effects of multiple learning mechanisms in ICARUS,
this research is still at an early stage. We plan to extend the
architecture with yet another learning mechanism, possibly
learning by analogy, to further verify our hypothesis of syn-
ergy among learning mechanisms. As this paper suggests,
it is not our focus to implement a powerful single learn-
ing mechanism. Rather, we aim to build a collection of dis-
tinct learning capabilities that are written in a straightfor-
ward manner. Learning by analogy will not be an exception,
and we plan to start with a simple mechanism that maps ob-

72

jects to similar objects or predicates to related ones. We find
research on representation mapping by Könik et al. (2009)
as a good inspiration in this direction.

Conclusions
The human ability to adapt to changing situations depends
on a variety of learning mechanisms. Therefore, an intelli-
gent agent cannot be limited to a single learning mode to
simulate human behavior properly. We extended ICARUS to
support three different modes of learning to model this be-
havior. Our initial results in a route generation domain show
synergistic effects of having multiple learning mechanisms,
especially evident at higher levels of complexity in the envi-
ronment. We plan to collect more empirical evidences of the
synergy and continue to explore additional types of learning
capabilities in this framework.

Acknowledgments
This research was funded by Award # N0001-4-09-1025
from the Office of Naval Research (ONR) to the second au-
thor. No endorsement should be inferred.

References
Anderson, J. R. 1976. Language, memory, and thought.
Hillsdale, NJ: Lawrence Erlbaum.
Anderson, J. R. 1993. Rules of the mind. Hillsdale, NJ:
Lawrence Erlbaum.
Chi, M. T. H., and Ohlsson, S. 2005. Complex declar-
ative learning. In Holyoak, K., and Morrison, R., eds.,
The Cambridge handbook of thinking and reasoning. Cam-
bridge, UK: Cambridge University Press. 371–399.
Choi, D., and Ohlsson, S. 2010a. Cognitive flexibility
through learning from constraint violations. In Proceedings
of the Nineteenth Annual Conference on Behavior Represen-
tation in Modeling Simulation.
Choi, D., and Ohlsson, S. 2010b. Learning from failures for
cognitive flexibility. In Proceedings of the Thirty-Second
Annual Meeting of the Cognitive Science Society. Portland,
OR: Cognitive Science Society, Inc.
Choi, D., and Ohlsson, S. 2011. Effects of multiple learning
mechanisms in a cognitive architecture. In Proceedings of
the Thirty-Third Annual Meeting of the Cognitive Science
Society. Boston, MA: Cognitive Science Society, Inc.
Ellman, T. 1989. Explanation-based learning: A survey
of programs and perspectives. ACM Computing Surveys
21(2):163–222.
Fikes, R., and Nilsson, N. 1971. STRIPS: a new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2:189–208.
Fikes, R.; Hart, P.; and Nilsson, N. 1972. Some new direc-
tions in robot problem solving. In Meltzer, B., and Michie,
D., eds., Machine Intelligence 7. Edinburgh: Edinburgh Uni-
versity Press. 405–430.
Horn, A. 1951. On sentences which are true of direct unions
of algebras. Journal of Symbolic Logic 16(1):14–21.

Könik, T.; O’Rorke, P.; Shapiro, D.; Choi, D.; Nejati, N.; and
Langley, P. 2009. Skill transfer through goal-driven repre-
sentation mapping. Cognitive Systems Research 10(3):270–
285.
Laird, J. E.; Rosenbloom, P. S.; and Newell, A. 1986.
Chunking in soar: The anatomy of a general learning mech-
anism. Machine Learning 1:11–46.
Langley, P., and Choi, D. 2006. Learning recursive control
programs from problem solving. Journal of Machine Learn-
ing Research 7:493–518.
Mitchell, T. 1997. Machine Learning. New York: McGraw
Hill.
Mooney, R. J. 1989. The effect of rule use on the util-
ity of explanation-based learning. In Proceedings of the
Eleventh International Joint Conference on Artificial Intel-
ligence, 725–730. Detroit, MI: Morgan Kaufmann.
Ohlsson, S. 1996. Learning from performance errors. Psy-
chological Review 103:241–262.
Ohlsson, S. 2011. Deep learning: How the mind overrides
experience. New York, NY: Cambridge University Press.
Quintero-Gallego, E. A.; Gómez, C. M.; Casares, E. V.;
Márquez, J.; and Pérez-Santamarı́a, F. J. 2006. Declara-
tive and procedural learning in children and adolescents with
posterior fossa tumours. Behavioral and Brain Functions
2(9).
Shavlik, J. W. 1989. Acquiring recursive concepts with
explanation-based learning. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence,
688–693. Detroit, MI: Morgan Kaufmann.
Weis, S.; Klaver, P.; Reul, J.; Elger, C. E.; and Fernández,
G. 2004. Temporal and cerebellar brain regions that support
both declarative memory formation and retrieval. Cerebral
Cortex 14(3):256–267.
Winston, P. 1992. Artificial Intelligence. Reading, MA:
Addison-Wesley Publishing Company.
Wusteman, J. 1992. Explanation-based learning - a survey.
Artificial Intelligence Review 6(3):243–262.

73

