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Abstract

Ant colony optimization (ACO) algorithms are computational
problem-solving methods that are inspired by the complex
behaviors of ant colonies; specifically, the ways in which ants
interact with each other and their environment to optimize the
overall performance of the ant colony. Our eventual goal is to
develop and experiment with ACO methods that can more
effectively adapt to dynamically changing environments and
problems. We describe biological ant systems and the dynam-
ics of their environments and behaviors. We then introduce
a family of dynamic ACO algorithms that can handle dy-
namic modifications of their inputs. We report empirical re-
sults, showing that dynamic ACO algorithms can effectively
adapt to time-varying environments.

Introduction

Ant colonies are a common example of parallelism and
emergent behavior. Each ant can remember only a small
amount of information, and can only utilize a small number
of simple rules: they can transmit and receive pheromone
inputs from the environment; they can move in the direc-
tion that contains the most pheromones; and they can retrace
their steps back to the ant colony. Despite this individual
simplicity, the colony as a whole exhibits complex behavior.

Ants coordinate themselves by modifying their envi-
ronment through pheromones, leading to parallelism and
self-organization. While looking for food, ants detect
pheromones to find the direction of a previously found food
source. When ants find a food source, they take some food
and retrace their paths back to the nest, emitting pheromones
along the way. In this way, ants self-organize to find near-
optimal solutions for finding food, choosing roles, and al-
locating resources. The ants exhibit adaptation by changing
the path, if the path becomes an inefficient way for the ants to
reach the food source. Ants exhibit adaptation when a food
source is depleted: as the result of changes to the environ-
ment, they are able to respond by searching for a new food
source.

Tipping points can arise in an ant system from both the
pheromones and the number of ants taking a path. If the
pheromones dissipate too quickly, then the ants are unable to
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establish a stable trail, and if they have to leave the path be-
cause of some obstruction, the path may have disappeared by
the time they circumnavigate the obstruction. On the other
hand, if the pheromones dissipate too slowly, then multi-
ple problems arise as well. A depleted food source still at-
tracts ants even if the pheromones do not decrease. Also,
even if a shorter path to the food source is presented to the
ants, the ants will not change to the shorter path until the
pheromone level on the new path increases enough to justify
switching over. If the pheromones do not diffuse quickly,
then the longer path continues to receive pheromones, while
the shorter path receives very few. A similar tipping point
comes from the number of ants taking a particular path, and
the length of that path. If only a few ants use a long path, then
the pheromones will diffuse before other ants can discover
it. A final complexity of the system is that the system itself
is designed as a feedback loop. Good paths to food receive
more pheromones, and in turn, more ants are convinced to
use that path again. Bad paths receive fewer pheromones be-
cause they take longer to travel, so other ants are not con-
vinced to use the path.

Ant colony optimization (ACO) algorithms have been in-
vented as attempts to model these complex behaviors in or-
der to solve computational problems. ACO algorithms typi-
cally simulate ants traveling along the edges of a graph and
spreading pheromones, based on some measure (e.g., length
of path). The paths that are chosen and found to be bet-
ter than others are examined more closely, whereas paths
found to be worse than others are discarded. Depending on
the ACO variant, the process is iterated until an acceptable
path is found, or until some predefined level of confidence
that the path is the optimal path is achieved.

The goal of our research is to explore the following ques-
tions:

1. Do the ant simulations used in ACO algorithms accurately
portray how real ants solve problems?

2. Can the ant simulations used in ACO algorithms be made
to adapt to changing environmental factors?

3. Can manipulating the ability to change these environmen-
tal factors provide a substantial increase in the long-term
efficiency of ACO algorithms?

4. Can allowing “artificial ants” in ACO algorithms manip-
ulate their own behaviors decrease the time necessary to
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converge to a solution, without having a great impact on
the space or conceptual complexity of the algorithm?

Previous Work
The first well known experiment with ants on finding the
shortest path is the so-called “double-bridge” experiment
(Deneubourg et al. 1990; Goss et al. 1989; Dorigo and Stut-
zle 2004). This experiment has two different setups. In the
first, a colony of ants is presented with two paths of equal
length to a food source. After a sufficient amount of time
has passed, the ants converge to one path. Each path is cho-
sen, over a number of trials, about 50 percent of the time. In
the second setup, two paths to a food source are presented
to the ant colony, but one is twice as long as the other. After
a sufficient amount of time, all of the ants converge to the
shorter of the two paths. The original double-bridge exper-
iment introduced the notion of simulating an ant colony to
solve the shortest path problem, and was the basis for the
ACO algorithms that followed.

The first ACO algorithm, Ant System, was designed as a
simple genetic algorithm (Dorigo 1992; Dorigo, Maniezzo,
and Colorni 1996). A population of “artificial ants” at-
tempted to solve the problem individually, and after each
generation of artificial ants, pheromones of solutions were
updated proportional to their quality. Since then, many ex-
tensions have been made to the Ant System. For example,
the Elitist Ant System strongly weights the best solution
found so far, resulting in a substantial speedup in converging
to a solution (Dorigo, Maniezzo, and Colorni 1996).

Some research has been published on the effectiveness
of ants and ACO algorithms to adapt to dynamic modifica-
tion of data at run time (Guntsch, Middendorf, and Schmeck
2001). For real ants, several major environmental changes
can affect the colony’s efficiency as they search for a food
source; two of the most significant changes are the main
food source changing location and new paths being created.
These two factors can be transformed into two computa-
tional problems: querying a program for solutions for multi-
ple, similar problems in succession, and modifying the input
data during a query to the program. The ability for artifi-
cial ants to adapt to this dynamic modification of data is the
major incentive for using ACO algorithms over algorithms
such as Dijkstra’s Shortest Path algorithm. In instances such
as routing network traffic, it is imperative that the algorithm
adapt to the changing data and update the solutions accord-
ingly (Dorigo, Birattar, and Stutzle 2006). One ACO algo-
rithm used in industry today for such a purpose is AntNet,
which is a major area of research for ACO algorithms (B.
Baran 2001; Dhillon and Vanmieghem 2007).

However, ACO algorithms greatly simplify an ant system.
Real ants face numerous other obstacles, such as changes
in weather and seasonal variations. Real ants adapt to these
conditions in various ways; for example, wood ants use in-
formation from the preceding years to decide which places
to search first for food after winter (Mabelis 1978). This is
analogous to a property of the problems in which ACO al-
gorithms are used: previously found solutions may be appli-
cable to future problems. Even if the best found solution to
this problem is a sub-optimal solution to the next problem,

another problem may arise at a later time for which this solu-
tion will again be optimal. If the algorithm utilizes a memory
technique to store previous solutions, the algorithm requires
more storage for these previous solutions. There is a trade-
off between how detailed and accuracy of the simulation,
and how complex the ACO algorithms are to implement and
maintain.

Approach

Our goal is to show the effects of an ACO algorithm that al-
lows agents to modify their own behaviors in response to a
change in input data. To do this, we first created a NetLogo
model to simulate both double-bridge experiments (Wilen-
sky 1999), expanding the model to include changing the in-
put data during runtime of an ACO algorithm. We also made
the assumption that the user would know when the data
had been altered, and modified the ACO algorithm to allow
ants to probabilistically choose their direction based both on
the pheromone content of the path and on how much time
elapsed since the data was changed. Finally, we included an
exploration parameter that permits each ant to choose a sub-
optimal path with some probability, enabling adaptation in
dynamic situations.

In the first double-bridge scenario, there are only two pos-
sible paths to the food; both of which are of equal length. In
the second scenario, there are still only two paths to take to
the food, but one path is substantially longer than the other.

In our model, ants looking for food choose their next
step probabilistically, biased in favor of paths with higher
pheromone content, and then push their current location onto
the stack. The probability that an ant will take a particular
path is given by the amount of scent on that path divided by
the total scent. Once the ant finds a food source, it retraces its
steps back to the colony by use of the stack, while dropping
a scent to entice other ants to follow its trail. The amount
of scent dropped is inversely proportional to the length of
the path found by the ant. These ant behaviors are similar to
those defined in Ant System (Dorigo, Maniezzo, and Colorni
1996). Any possible loops are removed from the stack as the
ants move from one node to another, rather than when the
ants returned to the colony. This is a slight modification of
the Simple-ACO algorithm, as defined by Dorigo and Stut-
zle (2004).

Experimental Design

We performed four experiments: for each of the two double-
bridge scenarios, we simulated modification of data at run-
time in two different ways. In each of these four exper-
iments, we both tested how the original ACO algorithm
would react to the modification, and gave an example of how
our dynamic ACO algorithm in which ants can modify their
behavior would react to the modification.

The change-path method simulates dynamic modification
of data through direct modification of the path lengths. If
the paths are originally equal, this technique simulates the
introduction of a new, shorter path by changing the path that
the ants did not choose to be shorter than the original path.
If the paths are not equal, it swaps the lengths of the paths,
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so that the ants are now on the substantially longer path.
The change-food method simulates change in search param-
eters through deletion of the food source and introduction of
a new food source at a different location. The food source
is moved to the midpoint of the path that the ants did not
choose. Both of these scenarios are invoked during run-time,
so that ants are forced to adapt to the changing conditions.
More specifically, they are called after the ants converge to
a path.

The exploration probability for the ants in the original
scenarios is 0.1 (that is, with probability 0.1, the ants will
choose a random path (with each path being equally proba-
ble), and with probability 0.9, they will choose a path with
probability proportional to the pheromone level on each
path). In the modified experiment, when one of the two
change methods is invoked, the willingness to deviate is set
to 1.0, and then decreases every time the ant reaches the
food source. This behavior is intended to model the ant’s in-
creased willingness to deviate from the path to explore other
potential solutions when the solution is known to have sub-
stantially changed. In our dynamic ACO algorithm, the ex-
ploration probability is initially set to 0.1, but decreases by
.002 to a minimum of .01 every time the ant reaches the food
source.

To test the ability for ants to adapt to the modified condi-
tions, the amount of pheromones on each path was recorded.
The ants were said to converge to one of the two paths when
the probability of choosing one path is 10 times as high as
that of the other path. After convergence, one of the change
methods was invoked.

A test is considered to be successful if the amount of
pheromones decreases on the no-longer-optimal path, and
the amount of pheromones on the new, optimal path eventu-
ally increases above the pheromone level on the old path.

We also compared the time taken to adapt in an ongo-
ing simulation to that of the simulation beginning with the
environmental changes already in effect, to determine the
relative efficiency of the ACO algorithm as an underlying
strategy. Finally, we recorded the number of ticks required
to converge before the modification, and the number of ticks
required for the ants to discover and converge to the opti-
mum path after the data was modified.

Results
Figures 1-8 illustrate some sample runs of this experiment.
Each figure shows lines: one for the average scent on the
upper path and one for the average scent on the lower path.

Figures 1-4 show some results of the original ACO algo-
rithm. Figure 1 shows the results of the first double-bridge
experiment, in which each path was the same length and the
path lengths were directly modified. The ants completely
converged to a path after 3500 steps, and the change-path
function was invoked. After 100 more steps, the ants com-
pletely converged to the opposite path, which was now op-
timal. Figure 2 shows the results of the first double-bridge
experiment, in which each path was the same length and the
search parameters were modified. The ants completely con-
verged to a path after 5000 steps, and the change-food func-
tion was invoked. After 5000 more steps, the ants still had

Figure 1: A sample trial of the first double-bridge exper-
iment with the original ACO algorithm using the Change
Path function at tick 3500 and running the simulation for
100 more ticks

Figure 2: A sample trial of the first double-bridge exper-
iment with the original ACO algorithm using the Change
Food function at tick 5000 and running the simulation for
5000 more ticks

Figure 3: A sample trial of the second double-bridge exper-
iment with the original ACO algorithm using the Change
Path function at tick 500 and running the simulation for 250
more ticks

Figure 4: A sample trial of the second double-bridge exper-
iment with the original ACO algorithm using the Change
Food function at tick 500 and running the simulation for
250 more ticks
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Figure 5: A sample trial of the first double-bridge experi-
ment with the dynamic ACO algorithm using the Change
Path function at tick 3500 and running the simulation
for 100 more ticks, with ants being able to modify their
behaviors

Figure 6: A sample trial of the first double-bridge experi-
ment with the dynamic ACO algorithm using the Change
Food function at tick 5000 and running the simulation
for 5000 more ticks, with ants being able to modify their
behaviors

Figure 7: A sample trial of the second double-bridge
experiment with the dynamic ACO algorithm using the
Change Path function at tick 500 and running the simulation
for 250 more ticks, with ants being able to modify their
behaviors

Figure 8: A sample trial of the second double-bridge exper-
iment with the dynamic ACO algorithm using the Change
Food function at tick 500 and running the simulation for 250
more ticks, with ants being able to modify their behaviors

not discovered the optimal path. Figure 3 shows the results
of the second double-bridge experiment, in which one path
was significantly longer than the other and the path lengths
were directly modified. The ants completely converged to a
path after 500 steps, and the change-path function was in-
voked. After 250 more steps, the ants began to converge to
the opposite path, which was now optimal. Figure 4 shows
the results of the second double-bridge experiment, in which
one path was significantly longer than the other and the path
lengths were directly modified. The ants completely con-
verged to a path after 500 steps, and the change-food func-
tion was invoked. After 250 more steps, the ants had not yet
begun to converge to the opposite path, which was now op-
timal.

Figures 5-8 show some results of our dynamic ACO algo-
rithm. Figure 5 shows the results of the first double-bridge
experiment, in which each path was the same length and the
path lengths were directly modified, but with the ants hav-
ing the ability to modify their behaviors. The ants had not
yet converged to a path after 3500 steps, and the change-
path function was invoked. After 100 more steps, the ants
completely converged to the optimal path. Figure 6 shows
the results of the first double-bridge experiment, in which
each path was the same length and the search parameters
were modified, but with the ants having the ability to mod-
ify their behaviors. The ants had not yet converged to a path
after 5000 steps, and the change-food function was invoked.
After 5000 more steps, the ants completely converged to
the optimal path. Figure 7 shows the results of the second
double-bridge experiment, in which one path was signifi-
cantly longer than the other and the path lengths were di-
rectly modified, but with the ants having the ability to mod-
ify their behaviors. The ants completely converged to a path
after 500 steps, and the change-path function was invoked.
After 250 more steps, the ants began to converge to the oppo-
site path, which was now optimal. Figure 8 shows the results
of the second double-bridge experiment, in which one path
was significantly longer than the other and the path lengths
were directly modified, but with the ants having the ability
to modify their behaviors. The ants completely converged to
a path after 500 steps, and the change-food function was in-
voked. After 250 more steps, the ants began to converge to
the opposite path, which was now optimal.

Figures 9-12 show the results of our analysis of the origi-
nal ACO algorithm, with respect to our four scenarios.

Figure 9 shows the results of the experiment in which the
lengths are originally the same, but then the path lengths
are changed. For this experiment, the average number of
ticks required for the ants to first converge on a path was
1528.11 with standard deviation 1379.97, whereas the num-
ber of ticks required for the ants to converge to the new path
was 93.13 with standard deviation 51.22. Therefore, we be-
lieve that the experiment was successful and that the ants
were able to adapt to this particular scenario.

Figure 10 represents the results of the scenario in which
the lengths are originally the same, but then the food posi-
tion is changed. For this experiment, the average number of
ticks required for the ants to first converge on a path was
1692.72 with standard deviation 1706.84, whereas the num-
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Figure 9: Box plots, including maximum (top of bar), second
quartile (dark gray box region), third quartile (light gray box
region), and mininum (bottom of bar), representing results
of 100 trial runs for the experiment in which the lengths are
originally the same, but then the path lengths are changed.
Box plot 1 represents the number of ticks required to con-
verge before modification, plot 2 represents the number of
ticks required to converge after modification.

ber of ticks required for the ants to converge to the new path
was 266.7 with standard deviation 179.32. Therefore, we be-
lieve that the experiment was successful and that the ants
were able to adapt to this particular scenario.

Figure 11 represents the results of the scenario in which
the lengths are originally substantially different, but then the
path lengths are changed. For this experiment, the average
number of ticks required for the ants to first converge on a
path was 57.01 with standard deviation 3.06, whereas the
number of ticks required for the ants to converge to the new
path was 197.30 with standard deviation 48.18. It is use-
ful to notice that although the time taken to converge to the
new path is greater than that to the original path, the average
time taken to converge to the new path is similar to the av-
erage time taken to converge to the new path in each of the
other scenarios. Therefore, we believe that the experiment
was successful and that the ants were still able to adapt to
this particular scenario.

Figure 12 represents the results of the scenario in which
the lengths are originally substantially different, but then the
food location is changed. For this experiment, the average
number of ticks required for the ants to first converge on a
path was 56.98 with standard deviation 2.71, whereas the
number of ticks required for the ants to converge to the new
path was 1081.36 with standard deviation 433.53. It is useful
to notice that although the time taken to converge to the new
path is much greater than that to the original path. The new,
optimal path lengths are almost equal, and are similar to the
lengths for the first two scenarios. Therefore, we believe that
even if this was an unexpected consequence, the experiment
was successful and that the ants were still able to adapt to
this particular scenario.

Figure 10: Box plots, including maximum (top of bar), sec-
ond quartile (dark gray box region), third quartile (light
gray box region), and mininum (bottom of bar), represent-
ing results of 100 trial runs for the experiment in which the
lengths are originally the same, but then the food location is
changed. Box plot 1 represents the number of ticks required
to converge before modification, plot 2 represents the num-
ber of ticks required to converge after modification.

The first interesting point raised by the results is that when
the two paths are equal, the ACO algorithm took a long time
converge to a path; when the two paths differed significantly
in length, the ants had a relatively easy time figuring out
which path was optimal. This may be due to a tipping point
in the algorithm, and is unexpected.

The second interesting point is the behavior of the sys-
tem after modification of the data. The two scenarios of ex-
periment two were treated similarly by the ACO algorithm.
There was an immediate drop in the amount of pheromone,
and the beginning of an upward trend for the new optimal
path can be seen in Figures 3, 7, and 8. However, in Ex-
periment 1, Scenario 2, the new optimal path received no
pheromones, whereas the other figures for Experiment 1
show a spike in pheromones. We believe this to be due to
random fluctuations, and that more ants diverged from the
path in Figures 1, 5, and 6, whereas fewer ants diverged
from the path in Figure 2. If the simulation were run for a
sufficient amount of time, it is expected that the plots would
eventually look similar. However, we notice from Figures
5 and 6 that, with the modification, ants were more quickly
and more often able to discern the optimal path after the data
had changed.

Conclusions and Future Work

Our original hypotheses, in reference to our research ques-
tions, were:

1. The ant simulations used in ACO algorithms simplify, but
overall accurately portray how real ants solve problems.

2. The ant simulations used in ACO algorithms can be made
to adapt to changing environmental factors.
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Figure 11: Box plots, including maximum (top of bar), sec-
ond quartile (dark gray box region), third quartile (light
gray box region), and mininum (bottom of bar), represent-
ing results of 100 trial runs for the experiment in which
the lengths are originally substantially different, but then the
path lengths are swapped. Box plot 1 represents the num-
ber of ticks required to converge before modification, plot
2 represents the number of ticks required to converge after
modification.

3. Manipulating the ability to change these environmental
factors provides a substantial increase in the long-term ef-
ficiency of ACO algorithms.

4. Allowing “artificial ants” of ACO algorithms to manipu-
late their own behaviors decreases the time necessary to
converge to a solution, without having a significant impact
on the space or conceptual complexity of the algorithm.
We adopted slightly more complex rules by which the ants

act, which resulted in two major findings. First, this modi-
fication allows ACO algorithms to more accurately model
ants in the real world. Next, this modification also increases
the ACO algorithm’s computational efficiency in solving a
shortest path problem, though not as much as expected. By
allowing ants to adapt their own behaviors in order to under-
stand when a solution will dramatically change, a reduction
in the time taken to find a solution may be generated. This is
most clearly demonstrated in Figure 6.

Our reproduction had similar results to the original
double-bridge experiment, adding confidence that the sim-
ulation was valid. One major concern about the validity of
the experiment is the amount of time it took for the ants to
converge upon a solution if the two paths were equal; in the
model, it took 2000 steps before one path was used signif-
icantly more than the other. However, this demonstrates a
weakness in the original ACO algorithms and a strength in
our modification of the ACO algorithm.

This study also suggests some possibilities for future
work in ACO algorithms. Other modifications to ACO algo-
rithms may also produce substantial consequences. As stated
previously, the simplification of ant systems into an ACO al-
gorithm overlooks several existing similarities between “real

Figure 12: Box plots, including maximum (top of bar), sec-
ond quartile (dark gray box region), third quartile (light gray
box region), and mininum (bottom of bar), representing re-
sults of 100 trial runs for the experiment in which the lengths
are originally substantially different, but then the food loca-
tion is changed. Box plot 1 represents the number of ticks
required to converge before modification, plot 2 represents
the number of ticks required to converge after modification.

ants” and “artificial ants.” Other possible relationships be-
tween real ants and simulations of ants should be explored
in order for us to gain a more accurate understanding of
both the Dynamic Shortest Path Problem and the ACO al-
gorithms.

References

B. Baran. 2001. Improved AntNet Routing. ACM SIG-
COMM Computer Communication Review 31:42–48.
Deneubourg, J.; Beckers, R.; Goss, S.; and Pasteels, J. 1990.
Collective Decision Making through Food Recruitment. In-
sectes Sociaux 37:258–267.
Dhillon, S., and Vanmieghem, P. 2007. Performance Analy-
sis of the AntNet Algorithm. Computer Networks 51:2104–
2125.
Dorigo, M., and Stutzle, T. 2004. Ant Colony Optimization.
MIT Press.
Dorigo, M.; Birattar, M.; and Stutzle, T. 2006. Ant Colony
Optimization. IEEE Computational Intelligence Magazine
1:28–39.
Dorigo, M.; Maniezzo, V.; and Colorni, A. 1996. Ant
System: Optimization by a Colony of Cooperating Agents.
IEEE Transactions on Systems, Man, and Cybernetics
26:29–41.
Dorigo, M. 1992. Optimization, Learning and Natural Al-
gorithms. Ph.D. Dissertation, Politecnico di Milano, Italy,
[in Italian].
Goss, S.; Aron, S.; Deneubourg, J.; and Pasteels, J. 1989.
Self-Organized Shortcuts in the Argentine Ant. Naturwis-
senschaften 76:579–581.

142



Guntsch, M.; Middendorf, M.; and Schmeck, H. 2001. An
ant colony optimization approach to dynamic TSP.
Mabelis, A. 1978. Wood Ant Wars: the Relationship
Between Aggression and Predation in the Red Wood Ant
(Formica Polyctena Forst). Netherlands Journal of Zoology
29:451–620.
Wilensky, U. 1999. NetLogo. Center for Connected Learn-
ing and Computer-Based Modeling, Northwestern Univer-
sity, available at http://ccl.northwestern.edu/netlogo/.

143


