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Abstract 

It is costly and time consuming to develop Multi-
ple Choice Questions (MCQ) by hand. Using web-
based resources to automate components of MCQ 
development would greatly benefit the education 
community through reducing reduplication of ef-
fort. Similar to many areas of Natural Language 
Processing (NLP), human-judged data is needed to 
train automated systems, but the majority of such 
data is proprietary. We present a graph-based rep-
resentation for gathering training data from exist-
ing, web-based resources that increases access to 
such data and better directs the development of 
good questions. 

 

1 Introduction 

Systems that automate judging question difficulty have value 
for both educators, who spend large amounts of time creat-
ing novel questions, and students, who spend a great deal of 
time taking tests. The current approach for measuring ques-
tion difficulty relies on inspecting exam results and looking 
at the answer distracters picked most often by high-scoring 
students in comparison to those chosen by low-scoring stu-
dents. This method relies on models of how good pupils will 
perform and contrasts that with their lower-performing 
peers. Inverting this process and allowing educators to test 
their questions before students answer them would speed up 
question development and utility.  

In this paper we consider only Multiple Choice  
 

Questions, (MCQ). A question or “item” consists of several 
parts. The stem, or “question statement”, presents a query 

that is best answered by one of the answer options. The an-
swer options, or “answer alternates”, will include the answer 
and the distracters.  

In this paper we present an alternative method for build-
ing exams from sets of questions that have been answered by 
students. As exams are crucial for analyzing the difficulty of 
questions, building them from non-exam data aids in auto-
mating the generation of MCQ.  

2 Test Item Difficulty and Item Analysis 

A question may be difficult in many ways. The stem may be 
confusing or poorly scoped. The topic of the stem may be 
from an obscure corner of a discipline or use ambiguous 
terminology. Further, when a question has multiple answer 
options, high quality, incorrect options make a question dif-
ficult. 

To measure question difficulty, researchers have devised 
a method for judging both the difficulty of the question and 
the differentiation power of the answer options (Item Analy-
sis). Once a cohort (for this example, 100 students) has taken 
a test containing suitable questions, the process for ascertain-
ing this information is as follows [Gronlund, 1981]: 

 
1) The exams are graded and ranked from highest 

score to lowest. 
 
2) The set of 100 students is split into three groups 

that represent the top-scoring, middle-scoring, and 
lowest-scoring students. These three groups are 
commonly split, lower 27%-middle 46%-upper 
27%.  

 
3) The middle set of (46) exams is excluded. 

 
4) For each test item (question), the number of stu-

dents in the upper and lower groups who chose 
each answer option is tabulated in a template.  Ta-
ble 1 illustrates a sample filled-in template, includ-
ing all omissions. 
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5) Item Difficulty is measured by the percentage of 

students who answered a question correctly. The 
lower the percentage, the more difficult the ques-
tion is. In Table 1, the correct answer is B and the 
question has an item difficulty of 35%, as shown in 
column 6.  

 
6) Item Discriminating Power is the difference be-

tween the number of high-scoring students versus 
the number of low-scoring students who chose the 
same answer option. It is an indicator of item diffi-
culty on an answer option-by-answer option basis. 
This is shown in Table 1, column 7 and in more de-
tail in Figure 1. 

 
Table 1  Item Analysis examines the answer and distracter choices groups 
of students made for a single question.  

 
Distracters and their respective discriminating power values 
are shown in Figure 1. A “good” or difficult distracter is one 
that catches or distracts more good students than bad stu-
dents; such items have a positive number in column 7. 

This method for judging question difficulty and item dis-
criminating power relies on models of student performance 
from the three groups previously mentioned. Comprehension 
and aptitude tests seek to present questions that can be cor-
rectly answered by students who understand the subject mat-
ter and to confuse all other students with seemingly viable 
alternate answer options (distracters).  

A high-scoring student is one who answers most ques-
tions correctly, but when his or her answers are incorrect, 
chooses the best distracters. A low-scoring student will 
choose any of the answer options seemingly at random. A 
difficult question is one whose answer options are all 
deemed viable to a high-scoring student. That cohort will 
behave like low-scoring students, with a near equal spread of 
multiple distracters being chosen.  

 

 
Figure 1  Item Discriminating Power as a spectrum of distracter classes. 

 
We measure the relationship between the question and 

the answer option in a way that mirrors student performance 
as ascertained by Item Analysis. Our tool could be run prior 
to giving exams and would eliminate --or at least reduce-- 
the feedback loop of student results that directs future ques-
tion development. This would help avoid using questions 
that do not produce the desired discriminating effect. 

3 Language and Question Difficulty 

Many NLP-based exam generation systems rely heavily on 
previously produced real exam data to refine how similar 
distracters need to be to the correct answer to be “good” 
[Mitkov et al., 2009]. In the case of standardized compre-
hension or aptitude exams, this means having access to sets 
of exam data, which include the questions and detailed, 
question-by-question results from thousands of students. 
Unfortunately, such ideal data is very difficult to obtain.  

We procured data for two sets of MCQs from University-
level introductory biology classes using the PeerWise1 ques-
tion creation system [Denny, 2009]. PeerWise is a free, web-
based, question repository that allows classes to set up 
shared environments where students create questions that are 
subsequently used by their peers as a study aid. Instructors 
can review the questions or use some of the better questions 
for future exams. The repository consists of questions that 
are created by students and answered by their classmates. 
Since answering these questions may not be compulsory, the 
resulting data is a set of questions that have been answered 
by students but, not all of the questions have been answered 
by the same students.  

Developing a collaborative exam-building environment, 
such as PeerWise, has resulted in more than just a set of po-
tential exam questions associated with the related curricu-
lum. The students self-police the quality and correctness of 
questions via a ratings system and comments section. Ques-
tion difficulty is ranked from 1 to 3, 3 being the most diffi-
cult and question quality is measured from 0 to 5, 5 being 
the highest. These question ratings are saved and can be used 
as a comparison to how the students actually perform on the 
questions. Further, creating questions forces students to un-
derstand concepts adequately enough not only to make a 
correct statement, but also to find good distracters that in-
                                                
1 http://peerwise.cs.auckland.ac nz/ 
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deed distract their classmates. In classes that use PeerWise, 
instructors may make creating questions a voluntary, manda-
tory, or graded component of their class. 

In PeerWise, there are three steps for authoring and an-
swering questions. The first is to write, or author the ques-
tion, using the provided template that allows a window for 
typing the query and input cells for up to 5 distracters, A-E. 
Then, there is space for a student to add an explanation of 
the question and refer to the related textbook or course notes 
via tick boxes. These suggestions are based on previous 
links made between other questions and the course material. 
There is also input space for describing why the correct an-
swer is the best answer choice. This is especially useful in 
cases where the answer options are closely related topics. 
Students may contribute multiple questions and all questions 
that they create are linked via a unique, but publically anon-
ymous ID. 

The second component of the web tool allows the stu-
dents to have a test-like experience by answering questions. 
The answer screen looks like that of a conventional online 
test, with tick boxes associated with each possible answer. 
An example of the PeerWise biology data is question 31522: 

 
What is the name of the areas between osteons? 
 
A) canaliculi 
B) lacunae 
C) lamellae 
D) interstitial lamellae (correct answer) 
E) Volkmann’s canals 
 
When a student is presented with this question, a state-

ment at the top of the page notes how many people have 
previously answered the question (in this case 245 other 
classmates) and what was the average quality rating they 
gave the question (in this case 2.77). Not all of the students 
rate all of the questions and in this instance the ratings are 
based on 62 responses.  

The third step is to compare your answer choice to the 
correct one and then to rate the question. For question 
31522, the correct answer, D, was chosen 87 times, or by 
35% of the students. The number of students who chose each 
answer option is listed as well as the question explanation. 
Students are then given the chance to rate the question both 
in terms of overall quality and in regards to difficulty. Final-
ly, comments, suggests and edits may be included and these 
are emailed to the student who authored the question so that 
any flagged errors may be corrected. The format of the 
comment section is similar to that of an electronic bulletin 
board, so it allows the classmates to discuss the questions 
back and forth. 

The process of choosing questions for the datasets con-
sisted of automatically collecting the subset of questions that 
used inverse definition constructions such as “is called”, 
“known as”, and “is named” via regular expressions. Inverse 
definition questions describe a term or process by providing 

a definition and seek the name of the process. This question 
format is frequently used in the sciences where mastering 
domain-specific concepts are a key measure of comprehen-
sion.  

Further filtering of the questions removed any questions 
that contained or were structured with images, symbols, 
true-false, analogies, or negation. Questions were also omit-
ted that used “often” or “usually”, fill-in the blank format, or 
required set membership. In addition, only questions with 4 
or 5 distracters were used. This pre-processing reduced the 
data Set1 of 752 biology questions to 148. 

Then, the question sets were manually reviewed and all 
related questions materials were collected for processing. 
These materials consisted of the unique question ID, the 
timestamp of when the question was taken, the unique stu-
dent ID, the average rating, (0 to 5), the average difficulty, 
(1 to 3), the total number of responses, the total number of 
ratings, the correct answer, the number of answer options, 
the text of the question, the text of the answer options, and 
an explanation, if present. All of the question materials were 
provided in plaintext.   

4 The Adjacency Matrix Approach 

Since Item Analysis depends on splitting the group of stu-
dents who took the test into three subgroups, we need the 
scores and student set size to be sufficiently large. Our sam-
ple data has many omissions, as students choose which ques-
tions they want to try answering.  

Our approach for representing the individual student 
question answering relationship is with a graph: an “exam”, 
where every student answers every question would be a 
complete bipartite graph (or biclique) [Bondy and Murty, 
1976]. We are seeking a good set that is similar to an exam. 
By using a heat map, where correlated data appears as dark-
ened images, (Figure 3) to show the group of students who 
have answered the same questions, we are presented with a 
realistic exam where there are a few holes, omitted ques-
tions. These would be missing edges in Figure 2. The heat 
map presented in Figure 6 shows the data sorted to reveal the 
most dense group of students who have answered the same 
question. It also allows further analysis of this dense region 
to discover a maximal graph, or exams with no omissions.  

Finding a biclique in a larger semi-definite correlation 
matrix is an NP-complete problem [Aho, Hopecroft, and 
Ullman, 1974]. Discovering the single maximal clique is the 
ideal scenario, but in this situation, we only need to find a 
sufficiently large clique. Seeking the set of students who 
have answered the same questions would mean comparing 
each student’s questions to the questions answered by all 
other students, pairwise, iteratively. That is an NP-hard 
problem.   

Given an incidence matrix M of students and questions,  
where the rows of M correspond to students and the col-
umns correspond to questions, we can generate covari-
ance matrices S and Q. S is defined as M x M T which  
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Figure 2  Correlated Questions and Students as connected cliques in a 
bipartite sub-graph. The edges represent each unique question-student pair 
that is recorded every time a student answers a question. In the top graph 
the solid edges belong to the most correlated questions and, in the bottom 
one, belong to the most correlated students.  

 
generates a covariance matrix where Sij shows how many 
students questions student i has answered in common 
with student j. Q is defined as M T x M which generates a 
covariance matrix where Qij shows how many students 
have answered question i as well as question j. This can 
be seen graphically in Figure 2. S and Q can then be used 
heuristically to compute a sufficiently large clique of 
questions that have all been answered by the same set of 
students.  

  
 

 
The steps for building and sorting the covariance matrices 
are as follows: 

1) Collect the data in triples of student ID, question 
ID, and answer choice. 

 
2) The students are ordered by the number of ques-

tions they answered. 
 
3) Build the incidence matrix M, with students corre-

sponding to rows and the questions to columns. If a 
student answered a question, a 1 is placed in the 
appropriate column, if they did not, a 0 is placed in 
the space. The incidence matrix in Figure 5(1) is 
the bipartite graph shown in Figure 2.  

 
4) Compute S = M x M T. A heat map of S can be seen 

in Figure 3. 
 
5) Compute Q = M T x M. 

 
6) We can find the most correlated students by compu-

ting the vector s by summing over the rows of S. 
Thus, s = Σi Sij. We can then sort the rows and col-
umns of S based on the ordering of s as S is sym-
metric. This effect can be seen in Figure 6.  

 
7) As above, we can find the most correlated students 

by computing the vector q = Σi Sij. We can then sort 
the rows and columns of Q based on the ordering of 
q.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 3  Heat map of the correlated students before they are sorted to reflect the most correlated sets.  
Here, the white represents uncorrelated pairs and the black shows correlated pairs. 
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Figure 4  Setting up the Correlation Matrix. 
 
This sorting process provides a sound heuristic for se-

lecting highly correlated students and questions. We use a 
heat map (Figure 6) to show the most dense group of stu-
dents who have answered the same questions using the 
aforementioned methodology. This presents a realistic exam 
where there are a few holes, i.e. omitted questions. Again, 
these would be missing edges in Figure 2. The heat map also 
allows further analysis of this dense region to discover a 
maximal graph, or exams with no omissions. 

In the example shown in Figures 4 and 5, each question 
was given an identifier from 1 to 5. Each student, of which 
there were 4, was given an identifier from 1 to 4. An inci-
dence matrix M of size 5 x 4 was generated in which each 
row corresponds to a student and each column to a question. 
If a student answered a question, a 1 was entered into the 
incidence matrix at the appropriate row and column. All of 
the other spaces contained 0s.  

Given M might look like Figure 4(1), the transpose of M, 
MT, might look like Figure 4(2). Multiplying the matrix MT 
with M will then produce a covariance matrix C of 5 x 5, 
whose sum reveals the most correlated questions. Each cell 
of the covariance matrix contains the “correlation index” Cij 
that is a metric of how well correlated sentence i is with sen-
tence j. This is shown in Figure 5(1). The sum of M x MT 

would be of size 4 x 4 and present the most correlated stu-
dents, Figure 5(2).  

This graph-based algorithm, at its essence, prioritizes the 
set of students and questions that should be searched first to 
create the optimal, desired exam. A user may seek multiple 
sets of exams with a varying balance between the number of 
students and the number of questions. For example, one may 
seek an exam with a large number of students and a small 
number of questions, in an effort to give a test that quickly 
differentiates students into performance cohorts via item 
analysis.  

 

 
Figure 5  In the Correlation Matrix, using transpose and sum to reveal the 
most associated questions and students. 

5 Results and Analysis 

The bipartite sub-clique approach was implemented on two 
sets of PeerWise class data consisting of a set of questions, 
some of which had been answered by some of the students in 
the class. Set1 consisted of 148 questions and 1055 students. 
There were 28,049 edges between the questions and students 
(similar to Figure 2). Set2 consisted of 134 questions and 
900 students. There were 31,765 edges, or question-student 
pairings.  

A maximal clique for Set1, that mirrors the 100-student 
exam example shown in Section 2, would consist of 100 
students who have answered the same 13 questions. For 
Set2, this same exam model produces a set of 100 students 
who have answered the same 88 questions. This was deter-
mined using the sum process described Figure 5(2). 
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Figure 6  Heat map of the covariance matrix for data Set1, based on the 
number of students who answered the same questions. The x-axis orders the 
students by who answered the most questions multiplied by those students 
transpose. The y-axis, is those students transpose. Again, white represents 
uncorrelated pairs, whereas black represents correlated pairs.  
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6 Future Work 

The primary focus of future work is the identification of the 
most statistically significant balance between the numbers of 
students and the number of questions in an exam size. To 
build our exams we are seeking two maximums: the most 
number of students answering the largest number of the 
same questions. Thus, there is not one answer, but a set of 
possible answers that may reveal this ideal balance. For ex-
ample in Figure 7, the adjacency matrix approach produced 
multiple exams ranging in size from one question answered 
by the same 438 students to 148 questions answered by the 
same 9 students. We can then apply item analysis to the re-
sulting exams. 

There are two initial concerns that need to be addressed 
in regards to the new, created exams. One potential problem 
is the hypothesis that PeerWise attracts the better performing 
students to practice and build their expertise in a field. The 
better students may tend to both author and answer more 
questions than their lower-performing peers. Thus, the 
PeerWise system may skew Item Analysis from a more con-
ventional bell-curve across performance cohorts to a tight 
cluster of top-scoring students versus a long tail of the mid-
dle and lowest performing students. This hypothesis is cur-
rently being tested. So far, there is strong evidence that a 
highly clustered subset of the total set of students tend to 
answer a close grouping of questions. 

The second concern regarding the format of these exams 
is that the adjacency matrix-based exam creation is simply a 
data pre-processing step that provides potential evaluation 
materials in a faster and cheaper manner than other options. 
Once the exams have been created, the next step is to grade 
them and begin sorting the students into cohorts based on 
their performance. An underlying issue is whether the ques-
tions themselves are discriminating. Are there thresholds 
that should be met for a question to be deemed good enough  

 

 
to split the top-performing students from the lower-
performing ones?  

A naïve approach might be to force a threshold of ques-
tion difficulty onto the exams. An example of question diffi-
culty is shown earlier in the paper and computed in column 
six of Table 1. In this example the correct answer is B and 
the question has an item difficulty of 35%. The lower the 
percentage, the more difficult the question is. Perhaps exam 
questions need to have a difficulty of 75% to be discriminat-
ing for deeper Item Analysis. In one experiment 85% diffi-
culty was the threshold for question inclusion, and only 
questions below 85% were added in exam building. Again, 
the lower the percentage the more difficult the question, so 
the excluded questions were relatively easy. This reduced 
the upper bound on the question-student exam size from 148 
questions answered by the same 9 students to 144 questions 
answered by 9 students. Additional experiments that iterate 
through lower difficulty thresholds and compare how the 
resulting exams effectively split students into meaningful 
cohorts are being currently performed.  

Clearly, it is not simply the difficult questions that do not 
discriminate as questions that are too easy also fail to effec-
tively group students based on their performance level. The-
se might be identified by rules where questions in which the 
same answer option is chosen by more than 75% of students 
or where only 2 of the 5 answer alternates are chosen by any 
of the students, are omitted from the test set. Continued 
work is needed to discover the best constraints for discover-
ing discriminating questions. 

One final future improvement would allow exams to 
contain students who omit questions, as they do in natural 
test taking. Discovering what percentage of questions may 
be omitted in an exam without negatively affecting the sta-
tistical significance of the cohort groupings would increase 
the number of students whose questions may be included in 
an exam. This could greatly increase the amount of viable 
exam data provided by this adjacency matrix approach.   

 
 

Figure 7  A set of results for data Set1, which shows a set of potential exams. Each point represents a unique 
virtual exam for a given number of students and a given number of questions. The x-axis represents the num-

ber of students and the y-axis the number of questions. 
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7 Conclusion 

 
Human performance or judgment data are indispensable for 
the evaluation of NLP systems. However, it is excruciatingly 
expensive to create such data sets from scratch [Jurafsky and 
Martin, 2008]. It is, therefore, advantageous to explore all 
possibilities of reuse. I present an elegant, matrix-based 
method for data reconfiguration that could be used on arbi-
trary human judgment, performance data or stimulus materi-
als. An application of this method is demonstrated in the 
area of Question Generation. 

I build exams out of sets of questions that have been an-
swered by some students. An exam is a set of questions an-
swered by the same students, so the goal is to seek the stu-
dents who have answered the most questions in common.  

Creating exam questions is a time-consuming process 
that is dependent on a feedback loop of how students per-
form on the exams. Finding perfect training data is also dif-
ficult and motivates reuse wherever possible. I have present-
ed one method to create valuable data out of larger question 
sets using adjacency matrices. These exam matrices recreate 
exam-like data from sets of questions subsets of students 
have answered.  

This approach could be extended to other pre-and post-
processing of data sets, particularly those that are based on 
human judgments. 

Acknowledgements 
 

I would like to thank Prof. Bonnie Webber, A. Raymond 
Milowski, Dr. Simone Teufel, Dr. Donald MacDonald, Dr. 
Paul Denny, Dr. Joe Michael Kniss, Raymond Yuen and 
Jonathan Millin for their assistance with this work. 

 

 

 

 

 

 

 

 

 

References 
 
Aho, A., Hopcroft, J. and Ullman, J. 1974. Design and Anal-
ysis of Computer Algorithms. Addison-Wesley. 
 
Bondy, J. A. and Murty, U. S. R. 1976. Graph Theory with 
Applications. North Holland. 
 
Denny, Paul. 2009. PeerWise. 
http://peerwise.cs.auckland.ac.nz/. 
 
Gronlund, Norman E. 1981. Measurement and Evaluation in 
Teaching. 4th ed., Macmillan. 
 
Jurafsky, D. and Martin, J. H. 2008. Speech and Language 
Processing, 2nd ed. Prentice Hall. 
 
Mitkov, R.; Ha, L. A.; Varga, A.; and Rello, L. 2009. Se-
mantic Similarity of Distractors in Multiple-Choice Tests: 
Extrinsic Evaluation. In Proceedings of the EACL 2009 
Workshop on GEometrical Models of Natural Language 
Semantics (GEMS), Athens, Greece, March 2009: 49-56. 
 
 

44




