
Communicating, Interpreting, and Executing High-Level
Instructions for Human-Robot Interaction

Nishant Trivedi
Pat Langley

Computer Science and Engineering
Arizona State University, Tempe, AZ 85287

Paul Schermerhorn
Matthias Scheutz

Cognitive Science Program
Indiana University, Bloomington, IN 47406

Abstract

In this paper, we address the problem of communicating, in-
terpreting, and executing complex yet abstract instructions to
a robot team member. This requires specifying the tasks in an
unambiguous manner, translating them into operational pro-
cedures, and carrying out those procedures in a persistent yet
reactive manner. We report our response to these issues, af-
ter which we demonstrate their combined use in controlling a
mobile robot in a multi-room office setting on tasks similar to
those in search-and-rescue operations. We conclude by dis-
cussing related research and suggesting directions for future
work.

Introduction
Advances in robotics hardware and software have taken
robots to the point where they can play an important role
in extended activities like surveillance, exploration, and res-
cue operations. Yet an important remaining bottleneck is
the need for robots to interact efficiently with human team
members. Effective human-robot interaction requires a mid-
dle ground between fully autonomous agents that operate
entirely on their own and detailed but tedious teleoperation
by human controllers. Many mixed-initiative settings would
benefit from human-robot coordination that operates at the
same level as occurs in human teams.

A key characteristic of human teams is that they coor-
dinate behavior at the level of natural language. This lets
the members communicate their beliefs, goals, and inten-
tions in terms abstract enough to be conveyed rapidly, yet
unambiguous enough to transform them into operational ac-
tivity. We believe that similar levels of communication sup-
port team coordination whether members are co-located or
remote, and whether they adopt a flat or hierarchical com-
mand structure. We maintain that reproducing the ability to
coordinate such joint activity at this abstract level will make
human-robot teams as effective as ones that are composed
entirely of humans.

In this paper, we report an innovative approach to support-
ing human-robot interaction in this manner. The next section
describes the search-and-rescue scenario that has driven our
research, along with the physical setting and robotic plat-
form we have used to pursue it. After this, we present three

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

facets of our approach to enabling joint human-robot activ-
ity: stating and representing complex tasks, converting them
into operational procedures, and executing those procedures
in a teleoreactive manner. Next we report successful robot
runs on tasks communicated at an abstract level. In closing,
we review work on related topics and outline directions for
additional research.

Coordination for Search and Rescue

Consider a situation in which a human-robot team must tra-
verse a partially known environment to find objects. For ex-
ample, the members might need to jointly explore a dam-
aged building in search of injured people who need medical
attention or evacuation. The human may have access to a
map, but it could be unreliable and in any case it does not
include locations for the objects being sought.

Suppose further that the human team member remains
outside for reasons of safety, since portions of the building
may be unstable. However, he can see the output of a video
camera mounted on the robot and he can communicate with
the robot through spoken or written language. For instance,
based on available video and his estimate of the robot’s lo-
cation, the human might give the instruction:

Go down the hallway until you find an open door
and then go through it.

The robot would interpret this abstract command, transform
it into operational procedures, and report on its progress and
completion. The human would then give another command,
the robot would continue on this new mission, and so forth.
In this manner, the team could jointly explore the environ-
ment, finding injured people that could be treated or evacu-
ated in a more targeted operation.

We have developed a laboratory setting that captures
many important features of such scenarios: a building with
several rooms connected by a long hallway. We have placed
boxes of various colors throughout the environment that
serve as surrogates for injured people. We have control of
which doors are open, lighting conditions, and other factors
that make the joint exploration task more or less challenging.

We have used a Pioneer P3AT platform for our robotics
development and evaluation. The robot is equipped with a
number of sensors relevant to the task, including a SICK
laser range finder for detecting obstacles and doorways,

Advances in Cognitive Systems: Papers from the 2011 AAAI Fall Symposium (FS-11-01)

321



bumper sensors and emergency stop buttons, and two video
cameras, one visual-light camera (for use in daylight) and
one infrared camera (for use at night), both for detecting
objects and for streaming video to the operator. The robot
also has an analog wireless audio link that lets it commu-
nicate in natural language with the remote human operator.
All control software runs on a Dell quadcore Pentium lap-
top mounted on the robot, so it can range throughout the test
environment.

Supporting human-robot interaction in this type of sce-
nario poses a number of technical challenges. First, we must
specify and represent the complex tasks that the human team
member might ask his robot collaborator to carry out. Sec-
ond, we must translate these instructions into procedures that
an intelligent agent can interpret. Third, we must enable ex-
ecution of these procedures in a flexible yet task-directed
way within an integrated robotic system. In the sections that
follow we describe our responses to these technical issues,
which we claim are sufficient to enable high-level control
of robots in a variety of task-oriented settings. Later we
will support these claims with demonstrations of their in-
tegrated use in directing behavior of the Pioneer robot de-
scribed above.

Specifying Complex Tasks

The first step in developing any intelligent system involves
specifying the content over which it will operate. We can
conveniently divide this content into the system’s beliefs
about its situation, the tasks it desires to achieve, and the
knowledge it uses to achieve them. We discuss the percep-
tual and inference mechanisms that provide our agent’s be-
liefs in a later section, once we describe the knowledge that
supports them. Here we focus on the more basic research
question of how to encode the tasks themselves.

Traditional task representations, like those used in the AI
planning literature (Ghallab, Nau, & Traverso, 2004), focus
on goals that describe static or instantaneous features of the
state, such as location of the robot or having an object placed
in a box. Clearly, the tasks from our target scenario are more
complex in that they describe sequences of states that should
occur, as well as the conditions under which they should take
place. Yet these descriptions are not fully specified; they are
not themselves executable robot programs in that they retain
the high-level, abstract character of language.

In response, we have developed a command language for
specifying complex task-oriented behavior. The language
combines a small set of command predicates with domain
concepts and actions to let one describe activities in terms of
application conditions, termination criteria, and orderings on
subactivities. Elements in the language are composable, let-
ting one specify complex commands, and thus a wide range
of agent behaviors, by combining simpler structures. Our
goal is not to reproduce the full expressive power of natu-
ral language, but rather to provide a surrogate that serves the
more limited functions needed to express high-level com-
mands, just as parents use restricted language when com-
municating with children.

For this reason, the command language uses a constrained

English syntax to describe activities. For example, the state-
ment

Go down the hallway until you find an open door
and then go through it.

would be rephrased as

First Until you find open door D
Holds you go down the hallway

Next you go through D.

This command demonstrates the use of two distinct paired
sets of command predicates.

One pair, Until/Holds, indicates an activity that the agent
should carry out until its halting criteria are met.1 The other,
First/Next, specifies that the agent should first pursue one ac-
tivity (the Until/Holds subcommand) and then carry out an-
other (going through the door). In more complex tasks, this
might involve three or more ordered activities. The expres-
sion open door refers to a known domain concept, while go
down and go through refer to known domain activities. The
words find, the, are, and should are ‘stop’ words included
for readability, while the remaining terms, D and you, de-
note pattern-match variables.

The constrained English syntax maps directly onto an in-
ternal notation that uses list structures. Here the correspond-
ing internal representation would be

(before (until (open-door ?d)
(go-down-hallway ?you))

(go-through ?you ?d))

In this structure, the before predicate denotes an ordering on
two or more subcommands, while until specifies conditions
(in this case, only one) for terminating a subcommand. This
notation differs from the English syntax in that it uses paren-
theses as delimiters rather than pairs of command words. In
addition, it omits stop words and marks variables with ques-
tion marks.

The internal notation also clarifies the embedded charac-
ter of commands, with the until clause occurring within the
before statement and with the go-down-hallway action oc-
curring within the until clause. Both before and until take
two or more arguments. For before, each entry is a subcom-
mand that the agent should carry out in order. For until, the
final entry is either another command or a domain action,
whereas the earlier arguments specify a set of conditions that
must match consistently (with shared variables denoting the
same values) for the final statement to apply.

Another function of commands is to allow conditional
statements. For example, consider the instruction

First If D is a door in front of you
Then you go through D

Next you turn left
Next you go down the hallway.

Here use of First and Next indicates that the agent should
execute the three subcommands in the specified order, but

1The Holds here indicates that the preceding description should
be true, although the phrasing is slightly awkward.

322



the If/Then expression indicates that the first subcommand
is conditional on the agent detecting a door in front of it.

We can also specify this embedded conditional statement
in our internal syntax; in this case, we would write

(before (if (door-in-front ?you ?d)
(go-through ?you ?d))

(turn-left ?you)
(go-down-hallway ?you))

Here the if predicate indicates that its final argument should
be carried out only if the preceding condition is satisfied.
More generally, such statements may include multiple con-
ditions, all of which must match to execute the final subcom-
mand. As before, door-in-front is a domain concept, while
go-through, turn-left, and go-down-hallway are activities.

The above example is slightly problematic, since it does
not specify what the agent should do if there is no door
in front of it. This clarifies the need to express contingent
courses of action. For instance, consider the command

If B is a box
Then Either If B is blue, Then you turn right

Or If B is not blue, Then you turn left.

Here the Either predicate indicates the start of the first al-
ternative, while Or marks its end and the start of the second
option. Although not shown in this example, the syntax al-
lows three or more alternatives.

Again, we can state an equivalent command in the internal
syntax, with the English instructions becoming

(if (box ?b)
(or (if (blue ?b) (turn-right ?you))

(if (not (blue ?b)) (turn-left ?b))))

In this case, the or predicate has two arguments, but it can
take anny number of subcommands or expressions with do-
main actions like turn-right and turn-left.

We have also implemented a routine that transforms En-
glish command expressions into the internal representation
already described. This process involves detecting command
predicates that mark the beginning and end of subcommands
to determine the hierarchical structure of the instruction. The
software also removes stop words, detects word sequences
that correspond to domain predicates and actions, and re-
places the former with the latter. The routine transforms any
remaining terms into pattern-match variables. The result is a
list structure like those we have already seen.

The above statements are imperative in that they indicate
the agent should carry out the specified instructions. How-
ever, both the English and internal languages also incorpo-
rate a nonimperative define predicate that lets the system en-
capsulate procedures for later reuse. This function takes as
arguments the activity’s name, its arguments, and its specifi-
cation. The ability to define such named procedures has two
benefits. First, it supports the specification of recursive ac-
tivities that otherwise could not be stated. Second, it enables
the specification of generalized behaviors, such as moving
toward or away from an entity, followed by repeated use of
this command with different objects as arguments. As a re-
sult, this capacity reduces considerably the effort needed to

produce complex behavior.
Some readers may question whether stating instructions in

constrained English provides advantages over writing pro-
grams in a traditional procedural language. However, note
that, although our command language can specify desired
behavior in great detail, it also allows very abstract instruc-
tions that refer to known procedures. Moreover, commands
may be nondeterministic and require the agent to select
among different expansions. Taken together, these features
support the ability to accept and interpret high-level speci-
fications for complex activities that the agent should carry
out, supporting taskability in the sense that Langley, Laird,
and Rogers (2009) describe.

Our first claim is that the command language described
above suffices to specify a broad range of complex tasks that
involve extended activities. More specifically, the four pairs
of command predicates, when combined with domain con-
cepts and actions, are enough to describe a reasonable subset
of behaviors that arise in tasks like search-and-rescue oper-
ations. We will return to this claim when we report experi-
mental results with the Pioneer robot. We will not argue that
our notation is necessary, since other formalisms may offer
equivalent coverage. We also believe that human users will
find the constrained English syntax more usable than tradi-
tional languages for robot programming, but we are not yet
ready for studies with human subjects, so for now this must
remain a conjecture.

Translating Tasks into Procedures

Although statements in the internal syntax are more formal
than English instructions, they would be useless without an
interpreter that executes them in the environment or converts
them into executable procedures for an existing interpreter.
We have chosen the second alternative of transforming in-
ternal command statements into knowledge structures for
ICARUS (Langley, Choi, & Rogers, 2009), an agent architec-
ture that supports teleoreactive execution. We will delay dis-
cussion of this execution mechanism until the next section.
Here we focus on the structures it utilizes and our methods
for transforming commands into them.

ICARUS distinguishes between two types of knowledge.
The first – concepts – specifies classes of situations that
can arise in the agent’s environment. Each conceptual pred-
icate is associated with one or more Horn clauses that de-
fine it as logical combinations of lower-level concepts and
percepts, the latter describing objects in the environment.
This imposes a hierarchical organization on concept mem-
ory, with higher levels denoting more abstract relations. Our
command language assumes relevant domain concepts have
been defined, so that instructions can refer to them without
ambiguity.

The second form of knowledge in ICARUS – skills – de-
scribes activities that the agent can carry out to alter its en-
vironment. Each skill predicate is associated with one or
more decomposition rules that break into down into an or-
dered set of component skills or actions, the latter describing
primitive activities the agent can execute directly. Each skill
clause also includes conditions that determine when it can
apply and a set of effects that describe how it alters the en-

323



vironment. The architecture organizes skills in a hierarchy,
with higher-level structures encoding more abstract proce-
dures that typically cover longer periods.

We have developed a translator that turns commands in
the internal format described earlier into a set of ICARUS
skills for the task. The mapping is reasonably straightfor-
ward, with each list or sublist in the internal command rep-
resentation leading to one skill clause. The translation algo-
rithm operates recursively, stepping downward through the
embedded lists of the internal notation and creating skills
as it returns upward. For this reason, it creates lower-level
skills first, then ones that refer to them, and finally a single
top-level skill that corresponds to the entire command.

We can clarify the translator’s operation with an example.
As we have seen, the English instruction

First Until you find open door D
Holds you go down the hallway

Next you go through D.

is converted to the internal notation

(before (until (open-door ?d)
(go-down-hallway ?you))

(go-through ?you ?d))

In this case, the translator produces two ICARUS skills

((skill-2 ?d ?you)
:conditions ((robot ?you))
:subskills ((skill-1 ?you ?d)

(go-through ?you ?d)))
((skill-1 ?you ?d)
:subskills ((go-down-hallway ?you))
:effects ((open-door ?you ?d)))

organized in a two-level hierarchy, with skill-2 referring to
skill-1. Because the first structure corresponds to an If/Then
command, it includes conditions but no effects. In contrast,
because the second came from an Until/Holds statement, it
contains effects but no conditions. The predicates robot and
open-door are predefined concepts, whereas go-through and
go-down-hallway are predefined primitive skills.

We have noted that the mechanism for converting English
commands to the internal encoding assumes that relevant do-
main concepts and actions have been defined, and our trans-
lator relies on the same assumption. However, we should
also mention that, if a command refers to skills already de-
fined, the system can incorporate them into new structures.
This lets a human instructor state high-level commands in
terms of simpler specifications he has given earlier.

Our second claim is that the translation mechanism just
described supports the conversion of commands stated in
our constrained English syntax into a set of equivalent
ICARUS skills. More specifically, the four pairs of command
predicates map directly onto different aspects of the ICARUS
skill syntax, and that embedding these commands leads nat-
urally to the hierarchical organization of skills that plays a
central role in the architecture. The internal details of the
translation mechanism matter little, and other implementa-
tions are certainly possible, but we hold that the mapping
process supports the same broad range of physical activities

as does the command language. We will revisit this claim
when we present the results of robot demonstration runs in
a later section.

Executing Translated Commands

Once it has transformed constrained English instructions
into a set of hierarchical skills, the command interpreter
invokes ICARUS to carry out the specified activities in the
current situation. To clarify the details of this process, we
should briefly review how the architecture utilizes its con-
cepts and skills to produce complex activity over time.

ICARUS operates in discrete cycles that involve calling on
two main modules.2 The first carries out a process of con-
ceptual inference. This matches the antecedents of concep-
tual clauses to percepts (descriptions of objects visible to the
agent) to produce beliefs (instances of defined concepts) that
the module adds to a belief memory. These trigger matches
of higher-level conceptual clauses that produce more ab-
stract inferences. This process continues in a bottom-up
manner until the architecture has generated all beliefs im-
plied by its concepts and percepts. In this manner, the agent
maintains an up-to-date set of beliefs about its environment.

The second ICARUS module is responsible for skill ex-
ecution. This examines its top-level intentions (instances
of known skills) and selects the highest-priority candidate
that it has not yet completed. The architecture retrieves skill
clauses with heads that match this intention and selects one
with matched conditions that make it applicable. If this skill
clause is nonprimitive, then ICARUS creates a new intention
for its first subskill and continues to the next cycle. This con-
tinues until it reaches a primitive skill, which it executes in
the environment. Once this has completed, it moves on to
the next subskill, expands it if necessary, and continues until
none remain, in which case it pops back to the parent in-
tention. If all goes well, ICARUS eventually completes the
top-level intention, but unexpected environmental changes
cause it to adapt reactively to the new situation, accessing
other parts of the skill hierarchy.3

The notion of an intention plays a central role in carry-
ing out the English commands provided to the robot. Once
the translator has produced a corresponding set of hierar-
chical skills, it also generates a top-level intention that is
an instance of the highest-level skill. The command inter-
preter then calls on ICARUS to carry out this intention, which
brings the architecture’s machinery into play. Upon comple-
tion, the system awaits further instructions, then translates
and executes them upon arrival.

In previous work, we have provided ICARUS with do-
main actions that it can execute directly in simulated envi-
ronments, but this approach is not available when dealing
with physical robots. To give it robust means for control-
ling a robot, we have integrated it with DIARC, a distributed

2The full architecture includes additional modules for problem
solving and skill acquisition, but we will not deal with them in this
paper.

3This approach to hierarchical yet reactive control incorporates
ideas from both Ingrand, Georgeff, and Rao’s (1992) PRS and Nils-
son’s (1994) teleoreactive programs.

324



robot control architecture. This supports lower-level activi-
ties such as multi-modal perceptual processing using color
and shape detection, object detection and tracking using
SIFT features, face detection and person tracking, gesture
and pointing behavior detection, navigation, and overall be-
havior coordination (Scheutz & Andronache, 2004). DIARC
is implemented in the distributed multi-agent robotic devel-
opment infrastructure ADE (Scheutz, 2006), which allows
for straightforward extension and integration of new soft-
ware components by “wrapping” them in “ADE agents”, in
this case the ICARUS architecture.
DIARC provides a convenient way for executing behaviors

on the robot by virtue of a goal manager, which is a priority-
based scheduler for actions scripts that run in parallel in their
own threads. Whenever a script is ready for execution, the
goal manager instantiates an action interpreter, whose job
it is to execute all atomic and complex actions in the script.
Atomic actions are typically either requests for (raw) sen-
sory information from the robot’s sensors (e.g., distance data
from the laser range finder) or motor commands that are
sent to various robot effectors (e.g., rotational and transla-
tional velocities sent to the wheels of the base). Complex ac-
tions are (possibly conditional) sequences of atomic actions.
Each instantiated action script has a priority associated with
it, which can be based on various factors, typically includ-
ing the utility of accomplishing the goal associated with the
script and the time available for the script to finish. DIARC
uses these priority values for priority-based behavior arbi-
tration (Scheutz & Andronache, 2004), in which the goal
manager continually recalculates the priority of each run-
ning script to let those with higher priority access resources
(e.g., effectors) when there is contention.

Because DIARC interfaces directly with the robot’s sen-
sors, it is responsible for detecting entities like boxes, doors,
and hallways, then depositing descriptions of relevant ob-
jects into ICARUS’ perceptual buffer to drive the inference
process. This occurs automatically in some situations, such
as when an obstacle appears in the robot’s path, letting them
serve as interrupts to ongoing activities. However, ICARUS
can also deliberately focus attention on classes of objects
like doors or boxes by invoking an attend action, which
causes DIARC to deposit descriptions of any visible instances
of that class into the perceptual buffer. ICARUS must explic-
itly call this action on each cycle for it to have an effect;
otherwise, DIARC will not provide it with information about
objects when they are detected, which can cause the former
to omit key inferences about the environment.

Another aspect of the ICARUS-DIARC integration con-
cerns the selection and execution of hierarchical skills. This
is straightforward when ICARUS first attempts to find an
applicable path through the hierarchy. The process works
as described earlier except that, upon reaching a primitive
skill, the architecture passes the associated actions to its
companion system as DIARC goals, which invokes modules
that attempt to achieve them. However, because both com-
ponents have reactive interpreters, the integrated system also
requires information to flow upward from the former to the
latter about the status of these actions/goals, which may
take many cycles to complete. For this reason, each DIARC

goal is marked as ongoing, succeeded, or failed. In the first
case, ICARUS does not invoke any more actions, since it as-
sumes DIARC is making progress on the task. In the latter two
cases, ICARUS abandons the previously selected skill path,
even if otherwise applicable, and attempts to find another,
since it knows DIARC has either completed it successfully or
failed to do so. This feedback lets ICARUS retain high-level
oversight of the robot’s behavior while taking advantage of
DIARC’s efforts at lower levels.

Our final claim is that the integration of ICARUS and
DIARC just described is sufficient to execute the same broad
range of tasks that the command language and the com-
mand translator support. More specifically, the integrated
system enables teleoreactive control of robots which carry
out extended activities that involve complex combinations
of conditions and sequencing. In the next section, we report
demonstrations of this ability with a physical robot in real-
istic scenarios. Again, we will not argue that our approach
is the only response to this challenge, but we believe it is a
viable one that makes a clear contribution to the literatures
on human-robot interaction and cognitive systems.

Experimental Demonstrations

To ensure that our approach to human-robot interaction has
the intended capabilities, we have tested it on the Pioneer
P3DXE platform in the environment described earlier. Dur-
ing the development phase, we used a 2D simulator to de-
bug the system, making simplifying assumptions to ease the
process, but the physical world poses additional operational
issues. Only by demonstrating our system on an actual robot
can we be sure that our technical approach is robust in the
face of these issues. Here we consider one run in detail and
then present the highlights from additional tests.

Our first demonstration involved the English command
that we presented in the beginning:

First Until you find open door D
Holds you go down the hallway

Next you go through D.

As explained previously, the first step in processing this task
description is to pass it through a compiler that transforms it
into a list-structure representation. As background knowl-
edge, this process depends on the presence of basic con-
cepts for domain-specific conceptual predicates like open-
door and domain actions like go-through. The second step,
which we also discussed earlier, involves translating the list-
structure encoding into a set of hierarchical ICARUS skills
that refer to the conceptual predicates in their conditions and
effects. Finally, the system generates a top-level intention,
(skill-2 ?d you), which it asks ICARUS to execute.

Given this intention and its supporting structures, the sys-
tem invokes ICARUS to make conceptual inferences and ex-
ecute relevant skills to carry out the intention, relying on
DIARC to provide it with percepts and to carry out low-
level activities like moving through a door and going down
a hall. For this task, ICARUS initially executes skills that
move the robot down the hallway, calling on DIARC to han-
dle the necessary motion commands. This continues for sev-
eral ICARUS cycles until the robot reaches a door, leading

325



to satisfaction of the ‘until’ condition and to completion of
the first subskill. ICARUS then calls on another translator-
generated skill to move the robot through the door, again in-
voking DIARC to handle details of environmental execution.

Our second demonstration involved an English instruction
of similar complexity that illustrates sequential behavior:

Go straight through the door in front of you and
turn left, then go down the hallway and turn right.

Using our constrained English syntax, we rephrased this
statement as

If you are a robot
Then First If D is a door in front of you

Then you go through D
Next you turn left
Next you go down the hallway
Next you turn right.

Conversion of this command to the list-structure notation
and translation into ICARUS structures produces the two
skills

((skill-4 ?you)
:conditions ((robot ?you))
:subskills ((skill-3 ?d ?you) (turn-left ?you)

(go-down-hallway ?you)
(turn-right ?you)))

((skill-3 ?d ?you)
:conditions ((door-in-front ?d ?you))
:subskills ((go-through ?you ?d)))

In addition, the system generates the top-level intention
(skill-4 you), which it passes to ICARUS for execution.

In this run, ICARUS infers that a door is directly in front
of the robot and calls DIARC to maneuver through it. Once
the latter reports success, ICARUS again invokes DIARC, first
to turn the robot to the left and then to move it down the
hallway. Some time later, when DIARC completes these ac-
tivities, ICARUS tells it to turn the robot right. Finishing this
behavior means the entire task is done, at which point the
system halts and awaits further instructions.

A final task that illustrates the conditional execution of
behavior involves the command:

Go through the first doorway after the blue box.

This time, we rephrased the instruction in our constrained
syntax to be

If you are a robot and
B is a box and B is blue and
D is the door immediately after B

Then you go through D.

In this case, the conversion and translation processes gener-
ated only the single ICARUS skill

((skill-5 ?you ?d ?b)
:conditions ((robot ?you) (box ?b) (blue ?b)

(door-immediately-after ?d ?b))
:subskills ((go-through ?you ?d)))

along with the intention (skill-5 you ?d ?b), which the sys-

tem calls on the architecture to execute. Here ICARUS must
notice a blue box that DIARC detects for it, infer which door
comes immediately after the box, and call on DIARC to ma-
neuver the robot to that door and through it. Afterward, the
agent does not go through any more doors without further
commands, since it has completed the specified task.

Although these example traces do not cover the entire
range of instructions that can arise in our setting, they pro-
vide clear evidence that our system operates as planned,
converting English commands into list structures, translat-
ing this internal notation into hierarchical skills, and using
one of these skills to state a specific intention. The system
then calls on ICARUS to execute the intention, which in turn
invokes DIARC to control the robot. The demonstrations pro-
vide support for the three claims stated earlier: that our com-
mand language covers a wide range of robot behaviors, that
our translation mechanism converts these commands into le-
gal ICARUS skills, and that the hybrid ICARUS-DIARC sys-
tem executes the specified behavior in a realistic setting.
The integrated character of our approach makes it difficult
to evaluate these claims separately, but the successful runs
with a physical robot suggest their viability. Naturally, we
plan to carry out additional tests on other complex tasks in
this domain, but the results to date have been encouraging.

Related Research
There has been considerable work in the human-robot in-
teraction community (Goodrich & Schultz, 2007) on coor-
dinating teams of humans and robots, examining both high
and low levels of interaction, and ranging from one-on-one
coordination to managing large robot teams. For example,
Kennedy et al. (2008) advocate using detailed mental simu-
lation of a single human teammate’s reasoning and choices
in order to predict his actions and thus avoid wasted ef-
fort. At the other extreme, Lewis et al. (2006) have exam-
ined ways that a human operator can teleoperate large robot
teams without encountering cognitive overload.

Natural language interaction is widely viewed as the most
promising communication medium for human-robot teams,
and several projects have explored integration of natural lan-
guage capabilities in robot systems. For instance, Rybski
et al. (2008) describe an approach that lets a human team-
mate teach a robot new action scripts using natural language
descriptions, although the scripts are fairly simple and de-
scriptions must conform to a highly structured subset of lan-
guage that mirrors the procedural semantics of action exe-
cution. Another approach, reported by Brenner (2007), uses
knowledge about the robot’s capabilities to aid language un-
derstanding. This method relies on a correspondence be-
tween words and terms that appear in models of actions’
conditions and effects. This connection aids determination
of parts of speech and, more generally, understanding of
commands in the domain.

There has been extensive research on formal represen-
tation languages for expressing the complex activities that
arise in many planning and executon tasks. For example,
Baier and McIlraith (2006) present a heuristic approach to
planning that converts goals stated in a variant of linear tem-
poral logic into nondeterministic finite automata over which

326



planning techniques can operate. In other work, Fainekos
et al. (2009) describe a motion-planning system that con-
verts high-level behavior descriptions (e.g., a sequence of
desired actions) expressed within linear temporal logic into
robot programs. Similarly, Grosskreutz and Lakemeyer’s
(2000) cc-GOLOG extends the logic programming language
GOLOG to robotic tasks by supporting the statement of
complex hierarchical procedures. However, none of these
systems actually control a physical robot; the resulting plans
have been tested only in simulation or compared to “known”
solutions.

Finally, there have been successful efforts to control
robots using other agent architectures, such as SOAR and
ACT-R. Laird et al.’s (1991) Robo-SOAR interacted with
the external environment via a camera and robotic arm to
achieve simple block manipulation goals. Although the sys-
tem could accept advice when unable to solve a problem
itself, this was restricted to suggesting a particular task op-
erator and was not provided in natural language. ACT-R/E
enables control of mobile robots by integrating modules that
interact with sensors (e.g., visual and aural), reason about
the world (e.g., localization), and carry out actions (e.g., lo-
comotion and speech production). Kennedy et al.’s (2008)
work with ACT-R/E is similar to our integrated approach,
but it does not translate natural language instructions into
a formal notation before further processing or construct an
explicit skill hierarchy.

Hence, although our work incorporates ideas from each of
these research projects, there have been no reported efforts
on human-robot coordination that combine presenting com-
mands in constrained natural language, translating them into
a formal notation, and executing them via an agent architec-
ture like ICARUS. This integrated approach offers clear ad-
vantages for human-robot interaction, since both the high-
level goal language and the architecture’s internal structures
for beliefs, goals, and intentions remain close to natural lan-
guage, which humans use effectively in coordination. Thus,
our work makes clear contact with previous results but com-
bines them in new ways to provide novel capabilities for
human-robot coordination.

Concluding Remarks
In this paper, we reported a novel approach to human-robot
interaction that supports communication of high-level but
complex tasks and their robust execution. Our approach re-
lied on three distinct but integrated components. The first
specifies instructions in a constrained version of English, re-
lying on pairs of key words that allowed direct conversion
into an internal list-structure notation. The second translates
these list structures into a set of hierarchical skills that can
be interpreted by ICARUS, an agent architecture that sup-
ports conceptual inference and teleoreactive execution. The
third specifies an intention based on the command, expands
the skills in a top-down manner, and passes information to
DIARC, a robotic architecture, to handle the details of con-
trolling the physical device, which returns results to ICARUS
for use on future decision cycles. We demonstrated this inte-
grated system on a Pioneer robot in a multi-room setting on
tasks that could arise in search-and-rescue operations.

The encouraging results from these experiments suggest
that we should continue pursuing this approach to human-
robot interaction, but it is also clear that our initial system
would benefit from a variety of extensions and studies. One
natural avenue for future work involves adding knowledge to
DIARC and ICARUS that would let them recognize a broader
range of objects and act appropriately in response to them.
We should also examine empirically whether humans can
use our command language effectively on realistic search-
and-rescue tasks. It seems possible that they will find the
syntax overly constraining, in which case we should explore
more flexible approaches to processing robot instructions
stated in natural language (e.g., Dzifcak et al., 2009; Kress-
gazit et al., 2008).

In the longer term, we should take advantage of ICARUS’
ability to solve novel problems (Langley et al., 2009), so
that our integrated system can handle complex tasks even
when it lacks domain-specific skills for their components.
Moreover, the architecture’s capacity for acquiring such
skills from successful problem solving should support learn-
ing of high-level commands, which would let humans sim-
plify their instructions to robots and allow even more effi-
cient communication. A more radical extension would let
the agent draw inferences, based on a human’s commands
and questions, about the latter’s beliefs, goals, and inten-
tions, which in turn would further reduce the need for de-
tailed commands. Taken together, these extensions would let
the ICARUS-DIARC combination play an even fuller role as a
member of a human-robot team.

Acknowledgements

The research reported in this paper was funded in part
by MURI Grant No. N00014-07-1-1049 from the Office
of Naval Research. The views and conclusions contained
herein are the authors’ and should not be interpreted as rep-
resenting the official policies or endorsements, either ex-
pressed on implied, of ONR or the U. S. Government. We
thank Wende Frost, Ravi Gummadi, and Anupam Khulbe
for their earlier contributions to the project.

References

Baier, J. A., & McIlraith, S. A. (2006). Planning with first-
order temporally extended goals using heuristic search. Pro-
ceedings of the Twenty-First National Conference on Artifi-
cial Intelligence (pp. 788–795). Boston: AAAI Press.
Brenner, M. (2007). Situation-aware interpretation, planning
and execution of user commands by autonomous robots.
Proceedings of the Sixteenth IEEE International Symposium
on Robot and Human Interactive Communication. Jeju Is-
land, Korea: IEEE Press.
Dzifcak, J., Scheutz, M., Baral, C., & Schermerhorn, P.
(2009). What to do and how to do it: Translating natural lan-
guage directives into temporal and dynamic logic represen-
tation for goal management and action execution. Proceed-
ings of the 2009 International Conference on Robotics and
Automation. Kobe, Japan.
Fainekos, G. E., Girard, A., Kress-Gazit, H., & Pappas, G. J.

327



(2009). Temporal logic motion planning for dynamic mobile
robots, Automatica, 45, 343–352.
Ghallab, M., Nau, D., & Traverso, P. (2004). Automated
planning. San Francisco: Morgan Kaufmann.
Goodrich, M. A., & Schultz, A. C. (2007). Human-robot
interaction: A survey, Foundations and Trends in Human-
Computer Interaction, 1, 203–275.
Grosskreutz, H., & Lakemeyer, G. (2000). cc-GOLOG: To-
wards more realistic logic-based robot controllers. Proceed-
ings of the Seventeenth National Conference on Artificial In-
telligence. Austin, TX: AAAI Press.
Ingrand, F. F., Georgeff, M. P., & Rao, A. S. (1992). An ar-
chitecture for real-time reasoning and system control. IEEE
Expert, 7, 34–44.
Kennedy, W. G., Bugajska, M. D., Adams, W., Schultz,
A. C., & Trafton, J. G. (2008). Incorporating mental sim-
ulation for a more effective robotic teammate. Proceedings
of the Twenty-Third Conference on Artificial Intelligence.
Chicago: AAAI Press.
Kress-Gazit, H., Fainekos, G. E., & Pappas, G. J. (2008).
Translating structured English to robot controllers, Ad-
vanced Robotics, 22, 1343–1359.
Laird, J. E., Yager, E. S., Hucka, M., & Truck, C. M. (1991).
Robo-SOAR: An integration of external interaction, plan-
ning, and learning using SOAR. Robotics and Autonomous

Systems, 11, 113–129.
Langley, P., Choi, D., & Rogers, S. (2009). Acquisition of
hierarchical reactive skills in a unified cognitive architecture,
Cognitive Systems Research, 10, 316–332, 2009.
Langley, P., Laird, J. E., & Rogers, S. (2009). Cognitive ar-
chitectures: Research issues and challenges, Cognitive Sys-
tems Research, 10, 141–160.
Lewis, M., Polvichai, J., Sycara, K., & Scerri, P. (2006).
Scaling-up human control for large scale systems. In N. J.
Cooke, H. Pringle, H. Pedersen, & O. Connor (Eds.), Human
Factors of Remotely Operated Vehicles. New York: Elsevier.
Nilsson, N. (1994). Teleoreactive programs for agent con-
trol. Journal of Artificial Intelligence Research, 1, 139–158.
Rybski, P. E., Stolarz, J., Yoon, K., & Veloso, M. (2008). Us-
ing dialog and human observations to dictate tasks to a learn-
ing robot assistant. Journal of Intelligent Service Robots, 1,
159–167,
Scheutz, M. (2006). ADE - Steps towards a distributed de-
velopment and runtime environment for complex robotic
agent architectures, Applied Artificial Intelligence, 20, 275–
304.
Scheutz, M., & Andronache, V. (2004). Architectural mech-
anisms for dynamic changes of behavior selection strategies
in behavior-based systems, IEEE Transactions of System,
Man, and Cybernetics Part B, 34, 2377–2395.

328




