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Abstract

Nearly 20% of total energy consumption in the United States
is accounted for in heating, ventilation, and air condition-
ing (HVAC) systems. Smart sensing and adaptive energy
management agents can greatly decrease the energy usage
of HVAC systems in many building applications, for exam-
ple by enabling the operator to shut off HVAC to unoccu-
pied rooms. We implement a multi-modal sensor agent that
is non-intrusive and low-cost, combining information such as
motion detection, CO2 reading, sound level, ambient light,
and door state sensing. We show that in our live testbed at
the USC campus, these sensor agents can be used to accu-
rately estimate the number of occupants in each room using
machine learning techniques, and that these techniques can
also be applied to predict future occupancy by creating agent
models of the occupants. These predictions will be used by
control agents to enable the HVAC system increase its effi-
ciency by continuously adapting to occupancy forecasts of
each room.

Introduction
Adaptive multi-agent systems are a key component of ef-
forts towards reducing energy consumption, with proposed
applications to smart grid and residential HVAC system op-
eration. In this paper, we describe a multi-agent system
deployed in a large educational/commercial office building
environment that optimizes energy use and occupant com-
fort. Such a system can significantly reduce energy con-
sumption without decreasing occupant comfort and satisfac-
tion by adding spatiotemporal constraints that limit energy
use to zones and intervals where occupants are predicted to
be present. These policies are learned by observing patterns
of occupant behavior and optimizing HVAC operation in re-
sponse to the learned occupant models. The techniques de-
scribed have wide applicability across commercial and resi-
dential building environments.

Buildings consume about 40% of all energy used in the
United States, divided nearly equally between the residential
and commercial sectors, with a significant portion devoted
to heating, ventilation, and air conditioning (HVAC) sys-
tems (ene 2010). While the HVAC mechanical units them-
selves have increased in efficiency over the years, there have
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not been advances in terms of using intelligent agents to im-
prove efficiency. Intelligent agents that robustly learn and
adapt to the environments in which they are deployed have
the potential to greatly reduce energy consumption by pro-
actively adjusting building HVAC systems to respond to oc-
cupant needs along multiple objectives such as minimizing
energy while maximizing occupant comfort and satisfaction.

Recently the agents community has begun to develop
techniques for energy efficient practices within smart grid
and some building domains, primarily residential build-
ings (Mo and Mahdavi 2003; Ramchurn et al. 2011;
Rogers et al. 2011; Kamboj, Kempton, and Decker 2011).
Here we focus on HVAC control in commercial buildings,
though the techniques should be directly applicable in res-
idential settings as well. The innovative application de-
scribed is a Building-Level Energy Management Systems
(BLEMS) project that is deploying a multi-agent system
with 58 multi-modal sensors, multiple learning agents that
collaboratively learn and adapt to specific occupant needs,
and 74 actuators that correspond to the building’s HVAC
zones and the two central air handling units (AHUs). The
system is shown in Figure 1. Sensor Agents in each room
read environmental variables such as temperature, CO2, and
sound level every minute, and record these values to a Time-
line. Occupancy Estimation Agents (OEAs) use these read-
ings to estimate the number of occupants in each room. The
Policy Agent may use these estimates for reactive actions
when needed, but primarily these estimates are then used by
Occupancy Prediction Agents (OPAs) to predict the num-
ber of occupant who will be in each room in the next hour.
The Policy Agent uses these predictions to adjust the heat-
ing or air conditioning actuators so that the respective rooms
are warmed or cooled to the desired temperature before the
occupants arrive, or to shut down the system when occu-
pants leave. It does this by communicating with the Honey-
well Enterprise Buildings Integrator (EBI) system used by
University to remotely control HVAC operation in many of
campus buildings.

The core component of the system is the adaptive Esti-
mation and Prediction agents that observe multiple sensors
and learn patterns of occupant behavior. By modeling occu-
pancy patterns, the BLEMS Policy agent can conserve en-
ergy by constraining heating and cooling policies to be ac-
tive only during the hours when occupants are actually in
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Figure 1: The BLEMS System: Sensor, Estimator, Predictor, and Policy Agents, and the Honeywell EBI.

specific rooms and zones of the building. We show that our
Estimation Agent can achieve 95% accuracy in the occu-
pancy prediction task, with RMSE of occupant numbers of
0.6. Prediction of the occupancy status of a room is also
an important component of the system because the thermal
mass of each zone sometimes requires a substantial start-up
time to heat or cool the space to a comfortable temperature.
We thus need to know whether a room will be in use up to
an hour in advance of actual occupancy. This type of in-
formation can be inferred or predicted from learned patterns
of occupant behavior. We show that we can achieve nearly
90% accuracy in this occupancy prediction task.

Deployment Environment
The BLEMS system is currently being deployed to a 3-story
research and teaching building at the University (name with-
held), henceforth referred to as University, as part of a pro-
gram funded by the U.S. Department of Energy. The build-
ing contains lecture halls, classrooms, conference rooms,
lounge spaces, and staff and student offices. The wide
range of space uses enables us to test the capabilities of the
BLEMS agents within different regimes, suggesting appli-
cability to both commercial office buildings and residential
spaces, as well as challenging environments such as inter-
mittently used conference rooms. The building, along with
a floorplan of the first floor showing sensor locations, in
shown in Figure 2.

To test the BLEMS system prior to full deployment at
University, we deployed two identical BLEMS agents within
two different lab spaces at the University, which we’ll refer
to as Lab1 and Lab2. The spaces were chosen because they
represent the most challenging environment for the BLEMS
agents, where multiple students share the space and have in-

dividually variable schedules. The BLEMS Occupancy Es-
timation Agent and Occupancy Prediction Agent learn the
behavior patterns of these users over the course of a month
of observation, and use this learned behavior to adjust heat-
ing and air conditioning policies.

Related Work
There is an expanding literature on agent-based HVAC con-
trol and occupant behavior modeling techniques for re-
ducing energy consumption in residential and commercial
building settings. Most of the agent literature on efficient
HVAC control centers on residential settings where occu-
pancy is considerably easier to model, and where HVAC
systems are also much simpler, or on smart grid related
technology (Mo and Mahdavi 2003; Ramchurn et al. 2011;
Rogers et al. 2011; Kamboj, Kempton, and Decker 2011). In
the commercial office settings described in this paper, occu-
pant schedules are much more variable, with professors of-
ten traveling, teaching, or attending meetings elsewhere, and
where large inflows and outflows of students into classroom
spaces occurs regularly. Furthermore, the HVAC system has
many more interlinked controls, including central air han-
dling units that deliver cooled air throughout the building
ductwork, and individual airflow control and heating units
in each zone/room. This makes the BLEMS Policy Agent’s
task more complex.

Occupant behavior models have also been explored by
many researchers in civil and industrial engineering. The
closest in spirit to the current work is a model developed by
Page et al. 2008, which models occupancy using a Markov
chain. They develop a time series model of an occupant in
particular zones of the building. This model was shown to
simulate occupant behavior well in the aggregate, for exam-
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Figure 2: (Top) The BLEMS testbed: University Building.
(Bottom) Floorplan of first floor deployment.

ple producing PDFs of arrival times that matches the actual
distribution relatively well. However, the model does not at-
tempt to predict actual occupancy on any given day and time,
rather it only produces a probability density for occupancy
at that day and time. Furthermore, it does not attempt to es-
timate the number of occupants in zones where more than
one person may be present, e.g., labs or conference rooms.

In general, other work on occupancy models suffer from
the same drawback. The outputs of these models tend to
be probability densities, rather than specific predictions. As
we will show in this paper, in many cases we can achieve
higher accuracy by using other input features to a machine
learning-based predictor, instead of simply counting and us-
ing the historical probabilities, or using survey data. The
reason much of this work differs in spirit from our current
paper is a difference in goals: for the related work, the oc-
cupancy models were used to create simulations of overall
building occupancy, from which engineers could calculate
a building’s thermal loads and thus correctly size and pro-
vision an HVAC system. Use of these simulations in the
operation of the HVAC system would typically be relegated
to computing a reasonable start and end time for the HVAC
system to be turned on. In marked contrast, our goal is to
dynamically operate the HVAC system on a zone by zone
basis, with potentially different behavior for each zone and
each day and time. We actively use the occupancy models
we develop to operate the HVAC system. Thus, our mod-
els cannot simply produce an aggregate probability density;
instead we need accurate estimates of occupancy for every
day, time, and zone.

For completeness, we survey some of this related work:

(Ian Richardson and Infield 2008; Rhys Goldstein and
Khan 2010) attempted to create statistical occupancy time-
series model based on occupancy survey of the people on a
regular day. Richardson et al. 2008 generated realistic oc-
cupancy using this model.The generated occupancy is bi-
nary information on a 10-minute resolution, which is sim-
ilar to our study of prediction accuracy analysis where we
have surveyed occupants of a building and generated data
using probabilistic selection of occupant’s typical sched-
ules. Liao et al. 2010 developed an agent-based model to
simulate the occupant behavior and developed a graphical
model on the probabilistic factors that effect agent behavior.
Their experiment was limited to one occupant of a particular
room.The probabilistic graphical model alone cannot pre-
dict occupancy due to dynamic nature of occupants day-to-
day activity. Yu. 2010 has applied a rule-based technique on
motion sensor data and achieved an accuracy of 83%; they
learned the rules with statistical methods in the context of
single occupant in a room. In contrast to much of this work,
we are building predictive models that can be deployed to a
variety of offices, labs, and classrooms throughout campus
buildings, and is adaptive enough to quickly learn individual
occupant behaviors when deployed in the field.

Lighting is another important, though less significant,
component of building energy usage. Controls based on oc-
cupancy estimates were shown to result in energy saving of
40% when the control system was able to substitute day-
lighting in place of artificial lighting (D. Bourgeois and
Macdonald 2006). Other types of HVAC systems, such as
TABS ( Thermally Activated Building System ), which uses
heated or cooled water circulating through pipes embedded
in the floor instead of forced air, have also been investi-
gated (Dirk Saelens and Baetens 2011). These investiga-
tions have used simple probabilistic occupancy models that
assume arrival and departure times distributed according to
Gaussian or uniform distributions, with a probabilistic rate
of temporary absence. Such models are useful for evaluating
traditional static policies for building operation. However, as
described above, HVAC operations can be significantly opti-
mized by responding to individual occupancy patterns rather
than treating the population as homogenous.

Sensing Agent
In contrast to other attempts to estimate current room
occupancy, we use non-intrusive techniques that do not
rely on the video or camera feeds used in prior, related
work (Benezeth et al. 2011; Sarkar, Fairchild, and Salvag-
gio 2008). Currently the most reliable estimates are based on
image recognition techniques. Instead we introduce a multi-
modal sensor that is low-cost and non-intrusive. Unlike the
ubiquitous motion sensors deployed in “green” buildings to-
day, a multi-modal sensor provides multiple types of read-
ings from which we can more accurately gauge occupancy,
including estimating the number of occupants in a room.
Each modality is incorporated using fairly low-cost, off-the-
shelf components. The device has the following raw sen-
sors: sound, wide-field motion detection, narrow-field mo-
tion detection, ambient light, temperature, humidity, carbon
dioxide, and door state (open/closed).
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The Sensing Agent reads the values of these sensors ev-
ery minute and records a useful transformation of this data
onto the BLEMS Timeline. For example, it records onto
the Timeline the number of times that motion was detected,
rather than the raw value which is a lifetime count of motion
activations. For our experiments, the Sensing Agent also re-
trieves ground truth occupancy counts from a Counter App
that is deployed on iPads installed next to the doorways in
Lab1 and Lab2. The students in these labs record their ar-
rivals and departures using this app. This enables us to verify
the accuracy of our Estimation and Prediction agents. Lab
1 was also outfitted with a camera that snapped an image of
the entire lab every minute. Using these images, we verified
the accuracy of the data collected by the Counter App, to en-
sure that students were using the App on a consistent basis.
Our results showed that the Counter App data was a reason-
able reflection of ground truth. In the future, the Sensing
Agent may also receive other inputs, such as feedback from
occupants using provided smartphone applications.

Occupancy Estimation Agent
The BLEMS system relies on accurate occupancy estimation
(current number of occupants in a room) and occupancy pre-
diction (a prediction of how many occupants will be in the
room in the next 15, 30, 45, 60 minutes) in order to adjust
the operation of the HVAC system to conserve energy while
maintaining occupant comfort. We investigate two estima-
tion problems: 1) estimation of whether or not there are any
occupants in a room, and 2) estimation of the exact number
of occupants in a room. The first problem, binary estimation,
is clearly simpler, and we demonstrate high accuracy for that
task. Solving this problem allows us to modify HVAC op-
eration so that it is turned off when there are no occupants.
The second problem is much harder, given the fairly crude
sensors we are given and the goal of estimation an exact
number of occupants. However, we also demonstrate sur-
prisingly good accuracy for this task as well. Solving this
problem allows us to further tune HVAC operation so that
space conditioning energy (flow rate of conditioned air into
the zone) is adjusted to match the number of occupants in
the space, which increases comfort.

Baseline: Rule-Based Heuristic
We first implement a simple heuristic that serves as a base-
line comparison for the binary occupancy estimation prob-
lem. The rule-based estimator takes as input the previous
15-minute interval of sensor data and outputs whether any
occupant is present in the room. Presence is output as long
as the narrow or wide field motion detector detects motion,
or if the sound or CO2 sensor reads higher than the baseline
normal.

Machine Learning Methods
We use a variety of statistical learning techniques like linear
regression, logistic regression, multi-layer perceptron, and
support vector machines (SVM) to train prediction models
using sensor data labeled with the ground truth data. Given

a new feature vector of sensor readings, the trained models
can then estimate the occupancy.

It is important to note that the choice of features in the
representation of the data often makes a big difference in
the accuracy of the trained classifiers, depending on the type
of classifier used. As described earlier, the BLEMS Sensor
Agent creates a set of features that are based on the origi-
nal raw sensor readings, but transformed and projected onto
useful axes such as the number of times motion was detected
in the last minute. The Estimation Agent adds additional
knowledge to this feature vector, such as domain knowl-
edge that biases the classification or collaborative knowl-
edge from other agents operating in nearby or similar rooms.
This overall set of features includes:
• Time: the time is the minute count from the start of the

day,
• Biasing Time: in some experiments we also provide a

nonlinear function that encodes the notion that occupants
are more likely to be in the room during usual work hours.

• Sound: cumulative sound energy sensed for one minute,
• CO2 : instantaneous reading of the carbon dioxide sensor,
• Number of times wide-field motion detected in the last

minute, where the sensor is mounted to detect motion
within the room,

• Number of times narrow-field motion detected in the last
minute, where the sensor is mounted to point across the
doorway,

• Temperature: Instantaneous temperature of the room
recorded by sensor,

• Humidity H: Instantaneous humidity recorded by sensor,
• MotionM : Number of times motion detected by the wide

beam motion detector in the last minute,
• Motion N : Number of times motion detected by the nar-

row beam motion detector in the last minute,
• Motion status M0: Current wide beam motion sensor sta-

tus { High=1, Low=0 },
• Motion status N0: Current narrow beam motion sensor

status { High=1, Low=0 },
• CO2(t1, t2): AverageCO2 during a window of time from
t1 to t2 hours in the past,

• CO2(4am, 7am): Average CO2 during 4am-7am, when
occupancy is presumed to be zero,

• O(t1, t2): Average estimated occupancy count during a
window of time from t1 to t2 hours in the past,

• corr(CO2(t1, t2), CO2(t3, t4)): Correlation of
CO2(t1, t2) and CO2(t3, t4), where CO2(ti, tj) is
the vector of CO2 per-minute readings during a window
of time from ti to tj hours in the past,
The classifiers are trained using various subsets of this

collection of features. We present results using three differ-
ent subsets of features:

(i) Time, Sound, CO2, cumulative motion count difference,
cumulative beam count difference, temperature, humidity,
and motion sensors,

(ii) All features in Set (i), plus CO2(0, 3), CO2(3, 6), and
CO2(6, 9),
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(iii) All features in Set (ii), plus CO2(0.5, 2.5) − CO2(0, 2),
CO2(1, 3) − CO2(0.5, 2.5), CO2(1.5, 3.5) −
CO2(1, 3), O(0, 2), O(0.5, 2.5), O(1, 3),
O(1.5, 3.5), corr(CO2(0, 2), CO2(0.5, 2.5))
, corr(CO2(0.5, 2.5), CO2(1, 3)), and
corr(CO2(1, 3), CO2(1.5, 3.5)).

Using these features, we estimate the occupancy count
Ô(t) at the current time t. We will omit the notation t when
it is clear.

Experiments and Results
For the results reported in this paper, sensor devices were
deployed at Lab 1 and Lab2. Both of these office spaces
are shared by multiple graduate students, and the number
of occupants ranges from zero to ten, with large variability
within and between days. Training data was collected over
several weeks. The models were then trained on this dataset.
For binary occupancy estimation, we report accuracy of the
predictions. For estimation of a numeric occupancy value,
we report the Root Mean Square Error (RMSE). We report
both 1) the average RMSE obtained through 10-fold cross
validation, where in each of 10 runs, one-tenth of the train-
ing dataset is held out of the training and used as the test
set, and also 2) the average RMSE obtained using a test set
composed of two days of data recorded during the following
week.

Rule-based heuristic. Somewhat surprisingly, the rule-
based heuristic resulted in very poor results for the simple bi-
nary occupancy estimation problem. The heuristic resulted
in the wrong answer more often that the correct answer; es-
sentially the opposite of the prediction would have resulted
in higher accuracies. This is due to several limitations in the
rule-based heuristic. The rules are very sensitive to back-
ground fluctuations in average CO2 and sound levels. The
rules are also likely to over-estimate occupancy because sat-
isfying any one of the rules will cause the heuristic to predict
that there is an occupant in the room.

Learning techniques. The feature sets used to train the
occupancy estimators can greatly affect the resulting accu-
racy. One of the novel aspects of our learning methods is the
design of the feature set. To overcome variability in certain
environment variables such asCO2, we constructed features
that attempt to measure the change in background CO2 lev-
els throughout the day. These background changes are of-
ten due to the influence of occupants in other rooms of the
building, since air is partially recirculated. The correlation
features and average CO2 features enable the classifiers to
partially account for these influences. Eventually, as sensors
are deployed throughout the University Building, we will be
able to use communication between the agents to directly
correct for some of these variations.

The core learning algorithms are primarily WEKA im-
plementations of standard machine learning algorithms. We
report results using MultiLayer Perceptron, Linear Regres-
sion, Gaussian processes, and SVM to estimate the occu-
pants using data from the Sensor Agent. We briefly describe
each of these methods here, and provide the parameters used

in each case. We did not use cross-validation to optimize the
choice of parameters yet; this may be done in future work.

MultiLayer Perceptron learning has one linear node in
first layer and four nodes with sigmoid activation functions
in second layer. The parameters are: Learning rate 0.3, Mo-
mentum 0.2, epochs 500, error threshold 20, and one hidden
layer with 4 nodes. The model denoted MLP10 is the Mul-
tiLayer Perceptron trained on feature set (ii).

Gaussian Processes learning has RBF kernel and noise of
1.0 . It was computationally expensive due the high number
of matrix inverse calculations and is very time consuming
for training even with a few thousand data points.

Linear Regression uses a ridge regularizer= 1.0e− 8 , m5
attribute selection. The trained model estimates the num-
ber of occupants based on a linear combination of the input
feature values.

SVM Multiclass classifier was also used, and the parame-
ters of ν-SVM are v = 0.001, ε = 0.01, kernel=radial basis
function, cost=1.0. The model denoted SVM15 is this SVM
trained on feature set (iii).

Results. Table 1 shows the accuracy and RMSE of the
different estimation techniques on cross-validated training
data, and on a held out test set. We show accuracy and
RMSE under the two different subsets of features described
earlier. For real-valued estimators, an instance is considered
to be correctly classified when the estimated value is greater
than 0.7 and the ground truth people count is greater than or
equal to 1, or if the estimated value is less than or equal to
0.7 and the ground truth is zero.

The average RMSE for estimation with most of these
techniques is less than one, which is quite good. The Multi-
Layer Perceptron achieves an RMSE of 0.82 on the unseen
test data from the following week. An RMSE of 0.82 is a
good result since the number of occupants varies between
zero and ten. It suggests that our occupancy estimate is usu-
ally within one of the correct number of occupants. Given
that we are using fairly simple and crude sensors, and we
have not optimized the learning process extensively, we be-
lieve this is an encouraging result.

Moreover, we used an ensemble learning method to com-
bine results across multiple time periods. This method used
a voting method to elicit the most popular prediction in the
previous fifteen minutes, and used this value as its predic-
tion. In practice, this enabled the occupancy estimator to
smooth out occasionally irregularities in the data and result-
ing predictions, leading to considerably better RMSE scores,
as shown in Table 1. It also appears to be more robust to vari-
ability in the training data, such as one experiment where we
used training data from several months earlier than the test
data set.

The experiments suggest that CO2 is highly correlated to
the number of occupants. Motion and motion count also
correlate to presence of an occupant in room. For example,
the Linear Regression learns the following coefficients for
estimating the current number of occupants:

Ô = −8.889 + 0.3883 ∗M − 0.1826 ∗N
+41.777 ∗ CO2 + 0.0096 ∗H + 0.8754 ∗M0
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Estimation method Train Test Accuracy
RMSE RMSE

Rule-based heuristic – – 46%
MultiLayer Perceptron, 0.66 0.895 95%
featureset(i)
Gaussian Processes, 0.99 0.95 91%
featureset(i)
Linear Regression, 1.2 0.91 86%
featureset(i)
ν-SVM-R, 1.05 0.88 85%
featureset(ii)
MultiLayer Perceptron, 0.88 0.82 90%
featureset(ii)
Linear Regression, 1.05 0.89 87%
featureset(ii)
Ensemble Voting, 0.6 0.7 95%
featureset(iii)

Table 1: Accuracy of different occupancy estimation tech-
niques. The Ensemble Method has the best accuracy and
lowest RMSE.

However, it is also clear that this simple classifier, while de-
cent, does not achieve optimal occupancy estimation perfor-
mance.

To get a better sense of the estimates produced throughout
each day, Figure 3 shows plots for the estimated occupancy
on a particular day of test data using the different occupancy
estimation algorithms. Figure 6 is plot of RMSE of esti-
mation average over a day against different dates. We can
see from for Lab1 that SVM15 has low RMSE compared to
MLP10. SVM15 includes autocorrelation and average CO2
features.

We also evaluate the performance of cross lab estimation:
that is, using a occupancy model trained from one lab’s data
to estimate occupancy at the other lab. We observed an
RMSE of around 2.5-3.5 for estimating Lab 2 occupancy
using the Lab1 model, and an RMSE of 1.2-1.6 for estimat-
ing Lab1 occupancy using the Lab 2 model. Figure 6 shows
occupancy estimation for Lab 2 using a trained model of Lab
1.

Occupancy Prediction Agent
The previous section shows that we can use BLEMS Sensor
Agents to accurately estimate the number of occupants in a
shared office space. On its own, this could enable signifi-
cant gains in energy efficiency by enabling the HVAC sys-
tem to be quickly adjusted to meet the needs of the current
number of occupants. However, if we can predict the future
occupancy, efficiency can be increased further. Partly, this is
due to the need for unoccupied spaces to be conditioned to
within a fairly tight range of temperature, so that a new occu-
pant is not subjected to uncomfortable conditions while the
space is brought to an acceptable temperature. Thus, energy
is wasted maintaining all spaces within a building to within

(a) MultiLayer Perceptron

(b) SVM with 15 attributes

Figure 3: Occupancy estimation using machine learning
techniques.

(a) MultiLayer Perceptron accuracy on data with unusual
sensor bias.

Figure 4: Effect ofCO2 background variation on occupancy
estimation.

a few degrees of desired temperature. Accurate prediction of
future occupancy would enable the HVAC software to com-
pletely turn off heat or air conditioning to un-used spaces.
The HVAC can be turned on if occupancy is predicted far
enough in advance, so that the system has ample time to
prepare the room for occupancy by heating or cooling it as
needed. Typically offices and shared lab spaces can be con-
ditioned within one hour, so in this paper, we investigate the
use of machine learning techniques to predict the future oc-
cupancy of building spaces for up to that interval.

As in the occupancy estimation problem described ear-
lier, we train the occupancy models using a labeled training
dataset. Each day is divided into a feature vector of length
96, where the room’s occupancy within each 15-minute in-
terval in the day is represented by one binary feature. We
train a separate model to estimate the future occupancy in
the room at each 15-minute interval of the day. That is, if it
is currently 11:45, to predict the occupancy at twelve noon,
we train a model using a training set that has feature vectors
describing the occupancy pattern from midnight to 11:45,
labeled by the occupancy at noon.
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Figure 5: Cross lab testing: Estimating Lab 2 occupancy
using model trained on Lab 1 data.

(a) Lab 2 Occupancy Estimation RMSE from 9/18-9/30 by
MLP10 and SVM10

(b) Lab 1 Occupancy Estimation RMSE from 9/14-9/30
by SVM15 and MLP10

Figure 6: Estimation RMSE for Lab 1 and Lab 2.

We use two different datasets for this portion of the work.
The primary dataset is the same as in the occupancy estima-
tion work, consisting of sensor data and ground truth from
the deployed Sensor Agents in the two campus lab spaces
described earlier. We predict future occupancy in two dif-
ferent scenarios: (1) assuming we only have access to the
estimated occupancy counts outputted by the Occupancy Es-
timation Agent, and (2) assuming we have access to the
ground truth.

We tested occupancy prediction using ground truth data
and sensor occupancy estimation. We used similar algo-
rithms as in the synthetic data, except with less training data
(15 to 18 days instead of 100+ days) and test data of less
than a week. Table 2 shows the accuracy of prediction of
estimated occupancy. The accuracy is 0.95 for occupancy
prediction using ground truth data and drops to .89 for occu-
pancy prediction using estimated occupancy.

The second dataset is derived from survey data gathered
from the University Building occupants. We conducted a

Training Test
Data Data Accuracy

Lab1 ,Ground Truth 15 5 0.945
Lab2, Ground Truth 18 6 0.93

Lab1, Estimated Data 15 5 0.89
Lab2, Estimated Data 18 6 0.8

Table 2: Occupancy Prediction accuracy (15 min in ad-
vance), using real data from live deployment at Lab 1 and
Lab 2.

survey of the building occupants using a web application
that asks for their three most typical schedules during the
week. Based on the survey of 30 respondents, we gener-
ated simulated data using probabilistic selection of sched-
ules with some noise added. Each of the three schedules is
selected with a probability corresponding to the occupant’s
survey response. The occupancy pattern is then perturbed by
changing the occupancy bit of each 15-minute interval with
0.2 probability. We use this simulated dataset to investigate
the feasibility of predicting occupancy of a room up to 1.5
hours in advance.

The learning methods are trained on different combi-
nations of size of training dataset {100,200} days, and
predict the occupancy {15, 30, 60, 90} minutes in advance.
The results are shown in Table 3 and Figure 7. We used
a multilayer perceptron and logisitic regression classifier.
We note that the best possible accuracy is 0.8, since we
generated the data with a noise term of 0.2. The table
shows that both methods are able to fairly accurately predict
occupancy 15 minutes in advance. Prediction of occupancy
30, 60, and 90 minutes in advance is somewhat lower, but
is still quite high relative to the absolute maximum of 80%
accuracy. With smaller amounts of noise in the generated
data, the accuracy is significantly higher, but this shows that
the methods will still perform reasonably well with high
degrees of noise.

On the synthetic survey data, it is interesting to note that
the system’s performance is actually not as good. Partly we
believe this is because occupant schedule are actually not
as variable as the data we synthetically generated. We pur-
posefully chose a high noise term of 0.2 in order to produce
a challenging dataset. However, our live data shows that this
may have been overly pessimistic. Table 3 shows our accu-
racy using the survey-based synthetic data, Figure 7 shows
how the accuracy degrades as we attempt to predict further
into the future (up to an hour in advance).

Conclusion
Adaptive multi-agent systems that learn about occupant be-
haviors and optimize HVAC operation in response to these
occupant models promise to greatly reduce energy consump-
tion.We show that machine learning techniques can be used
to estimate room occupancy using a set of simple sensors,
and that we can use similar techniques to learn agent models
that predict occupant behavior. By using these agent mod-
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Prediction method Training Min in Accuracy
size advance

Multi-layer Perceptron 100 15 67%
MultiLayer Perceptron 200 15 68%
Logistic Regression 100 15 72%
Logistic Regression 200 15 75%

Table 3: Accuracy of different occupancy prediction tech-
niques for predicting future occupancy 15 minutes in ad-
vance, given different amounts of training data(Synthetic
data generated from survey of University Building occu-
pants).

Figure 7: Occupancy Prediction: accuracy vs. time period
for advance prediction.

els to predict room occupancy up to an hour in advance,
the BLEMS system can intelligently control the multi-agent
HVAC system to minimize energy usage while maintaining
occupant comfort.

We will continue to refine the learning methods. In par-
ticular, the current off-the-shelf methods will need to be re-
fined to better handle small training dataset sizes (so that we
can predict occupancy without lengthy collection of occu-
pant behavior) and take advantage of additional structure in
the data (such as a sequence of beam activation and motion
activation indicating occupant arrival). Even with the cur-
rent methods, it appears that we can handle relatively small
dataset sizes of a couple weeks.

The good performance of the system on the live test-bed
environments enables us to proceed with the project. The
BLEMS system is currently being deployed to an entire
three-storey office building on the University campus. Ex-
periments in the near future will meter the energy consump-
tion at University Building under control conditions and un-
der the treatment condition with the BLEMS system. We
will establish the energy reduction made possible by intel-
ligent sensing, agent modeling, and adaptive control strate-
gies.
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