
TEXPLORE: Real-Time Sample-Efficient Reinforcement Learning for Robots

Todd Hester and Peter Stone
Department of Computer Science
The University of Texas at Austin

Austin, TX 78712
{todd,pstone}@cs.utexas.edu

Abstract

Reinforcement Learning (RL) is a paradigm for learning
decision-making tasks that could enable robots to learn and
adapt to situations on-line. For an RL algorithm to be prac-
tical for robotic control tasks, it must learn in very few sam-
ples, while continually taking actions in real-time. In addi-
tion, the algorithm must learn efficiently in the face of noise,
sensor/actuator delays and continuous state features. In this
paper, we describe TEXPLORE, a model-based RL method
that addresses these issues. It learns a random forest model of
the domain which generalizes dynamics to unseen states. The
agent targets exploration on states that are both promising
for the final policy and uncertain in the model. With sample-
based planning and a novel parallel architecture, TEXPLORE
can select actions continually in real-time whenever neces-
sary. We empirically evaluate TEXPLORE learning to control
the velocity of an autonomous vehicle in real-time.

Introduction
Robots have the potential to solve many problems in soci-
ety by working in dangerous places or performing unwanted
jobs. One barrier to their widespread deployment is that they
are mainly limited to tasks where it is possible to hand-
program behaviors for every situation they may encounter.
Reinforcement learning (RL) (Sutton and Barto 1998) is a
paradigm for learning sequential decision making processes
that could enable robots to learn and adapt to their environ-
ment online. An RL agent seeks to maximize long-term re-
wards through experience in its environment.

Learning on robots poses many challenges for RL, as it re-
quires an algorithm to learn very quickly in the face of noise,
delays, and continuous state features. RL has been applied to
a few carefully chosen robotic tasks that are achievable with
limited training and infrequent action selections (e.g. (Kohl
and Stone 2004)), or allow for an off-line learning phase
(e.g. (Ng et al. 2003)). However, to the best of our knowl-
edge, none of these methods allow for continual learning on
the robot running in its environment.

In this paper, we bring together two threads of research to
create an RL algorithm, TEXPLORE, that is sample efficient,
while being able to act continually in real-time. These two
properties not only make TEXPLORE applicable to robotic

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

control tasks, but also many other real-world tasks. The
key insights of TEXPLORE are 1) to learn multiple domain
models that generalize the effects of actions across states
and target exploration on uncertain and promising states;
and 2) to combine Monte Carlo Tree Search and a parallel
architecture to take actions continually in real-time. TEX-
PLORE has been released publicly as a ROS package at:
http://www.ros.org/wiki/rl-texplore-ros-pkg.

Background
We adopt the standard Markov Decision Process (MDP) for-
malism for this work (Sutton and Barto 1998). An MDP
consists of a set of states S, a set of actions A, a reward
function R(s, a), and a transition function P (s′|s, a). In
many domains, the state s has a factored representation,
where it is represented by a vector of n state variables
s = 〈x1, x2, ..., xn〉. In each state s ∈ S, the agent takes
an action a ∈ A. Upon taking this action, the agent receives
a reward R(s, a) and reaches a new state s′. The new state
s′ is determined from the probability distribution P (s′|s, a).

The value Q∗(s, a) of a given state-action pair (s, a) is
an estimate of the future reward that can be obtained from
(s, a) and is determined by solving the Bellman equation:

Q∗(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a)max
a′

Q∗(s′, a′), (1)

where 0 < γ < 1 is the discount factor. The goal of the agent
is to find the policy π mapping states to actions that maxi-
mizes the expected discounted total reward over the agent’s
lifetime. The optimal policy π is then as follows:

π(s) = argmaxaQ
∗(s, a). (2)

Model-based RL methods learn a model of the domain
by approximating R(s, a) and P (s′|s, a) for each state and
action. The agent can then plan on this model through a
method such as value iteration (Sutton and Barto 1998) or
UCT (Kocsis and Szepesvári 2006), effectively updating the
Bellman equations for each state using their model. RL al-
gorithms can also work without a model, updating the values
of actions only when taking them in the real task. Generally
model-based methods are more sample efficient than model-
free methods, as their sample efficiency is only constrained
by how many samples it takes to learn a good model.

AAAI Technical Report SS-12-02
Designing Intelligent Robots: Reintegrating AI

Figure 1: A diagram of how model learning and planning are typ-
ically interleaved in a model-based agent.

TEXPLORE
In this paper, we describe TEXPLORE (Hester and Stone
2010), a sample-efficient model-based real-time RL algo-
rithm. We describe how TEXPLORE returns actions in real-
time in the following section, and then describe its approach
to model learning and exploration.

Real-Time Architecture
In this section, we describe TEXPLORE’s real-time architec-
ture, which can be used for a broad class of model-based
RL algorithms that learn generative models. Most current
model-based RL methods use a sequential architecture such
as the one shown in Figure 1. In this architecture, the agent
receives a new state and reward; updates its model with
the new transition 〈s, a, s′, r〉; plans exactly on the updated
model (i.e. by computing the optimal policy with a method
such as value iteration); and returns an action from its policy.
Since both the model learning and planning can take signif-
icant time, this algorithm is not real-time. Alternatively, the
agent may update its model and plan on batches of experi-
ences at a time, but this requires long pauses for the batch
updates to be performed. Making the algorithm real-time re-
quires two modifications to the standard sequential archi-
tecture: 1) utilizing sample-based approximate planning and
2) developing a novel parallel architecture called the Real-
Time Model-Based Architecture (RTMBA).

First, instead of planning exactly with value iteration,
RTMBA uses an anytime algorithm for approximate plan-
ning. It follows the approach of Silver et al. (2008) (among
others) in using a sample-based planning algorithm from
the Monte Carlo Tree Search (MCTS) family (such as
UCT (Kocsis and Szepesvári 2006)) to plan approximately.
These planners simulate trajectories (rollouts) from the
agent’s current state, updating the values of the sampled ac-
tions with the reward received. The agent performs as many
rollouts as it can in the given time, with its value estimate
improving with more rollouts. These methods can be more
efficient than dynamic programming approaches in large do-
mains because they focus their updates on states the agent is
likely to visit soon rather than iterating over the entire states-
pace.

In addition to using MCTS for planning, we have devel-
oped a Real-Time Model Based Architecture (RTMBA) that
parallelizes the model learning, planning, and acting such
that the computation-intensive processes (model learning
and planning) are spread out over time. Actions are selected
as quickly as dictated by the robot control loop, while still

Figure 2: The Real-Time Model-Based Architecture (RTMBA).

being based on the most recent models and plans available.
This architecture is general, allowing for any type of model
learning method, and only requiring any method from the
MCTS family for planning.

Since both the model learning and planning can take
significant computation (and thus also wall-clock time),
RTMBA places both of those processes in their own paral-
lel threads in the background, shown in Figure 2. A third
thread interacts with the environment, receiving the agent’s
new state and reward and returning the action given by the
agent’s current policy. By de-coupling this action thread
from the time-consuming model-learning and planning pro-
cesses, RTMBA releases the algorithm from the need to com-
plete the model update and planning between actions. Now,
it can return an action immediately whenever one is re-
quired. In addition, this architecture enables the agent to
take full advantage of multi-core processors by running each
thread on a separate core.

For the three threads to operate properly, they must share
information while avoiding race conditions and data incon-
sistencies. The model learning thread must know which new
transitions to add to its model, the planning thread must ac-
cess the model being learned, the planner must know what
state the agent is currently at, and the action thread must ac-
cess the policy being planned. RTMBA uses mutex locks to
control access to these variables, as summarized in Table 1.

The action thread receives the agent’s new state and re-
ward, and adds the new transition experience, 〈s, a, s′, r〉, to
the updateList to be updated into the model. It then sets
the agent’s current state in agentState for the planner and
returns the action determined by the agent’s value function,
Q. When it is time to act, the action thread returns an ac-
tion quickly. Although updateList, agentState, and Q are
protected by mutex locks, updateList is only used by the
model learning thread between model updates, agentState
is only accessed by the planning thread between each roll-

Variable Threads Use
updateList Action, Store experiences to

Model Learning be updated into model
agentState Action, Set current state

Planning to plan from
Q(s, a) Action, Update policy used

Planning to select actions
M Planning, Latest model

Model Learning to plan on

Table 1: This table shows all the variables that are protected under
mutex locks in the proposed architecture, along with their purpose
and which threads use them.

out, and Q is under individual locks for each state. Thus,
any given state is freely accessible most of the time. When
the planner is using the same state the action thread wants,
it releases it immediately after updating its values.

The model learning thread checks if there are any expe-
riences in updateList to be added to its model. If there
are, it makes a copy of its model to tmpModel, updates
tmpModel with the new experiences, clears updateList,
and replaces the original model with the updated copy. The
other threads can continue accessing the original model
while the copy is being updated, since only the swapping of
the models requires locking the model mutex. After updat-
ing the model, the model learning thread repeats, checking
for new experiences to add to the model.

The model learning thread can use any type of model,
such as a tabular model, Gaussian Process regression
model (Deisenroth and Rasmussen 2011), or the random
forest model used by TEXPLORE. Depending on how long
the model update takes and how fast the agent is acting,
the agent can add tens or hundreds of new experiences to
its model at a time, or it can wait for long periods for a
new experience. When adding many experiences at a time,
full model updates are not performed between each individ-
ual action. In this case, the algorithm’s sample efficiency is
likely to suffer compared to that of sequential methods, but
in exchange, it continues to act in real time.

Though TEXPLORE uses a variant of UCT, the planning
thread can use any MCTS planning algorithm. The thread
loops, continually retrieving agentState and performing
planning rollouts from that state. Each rollout queries the
latest model, M , to update the agent’s value function. With
more rollouts, the algorithm’s estimates of action values im-
prove, resulting in more accurate policies.

Model Learning
While the parallel architecture we just presented enables
TEXPLORE to operate in real-time, the algorithm must learn
an accurate model of the domain quickly to learn the task
with high sample efficiency. While tabular models are a
common approach, they require the agent to take every ac-
tion from each state once (or multiple times in stochas-
tic domains), since they learn a prediction for each state-
action separately. If we assume that the transition dynam-
ics are similar across state-action pairs, we can improve
upon tabular models by incorporating generalization into the

model learning, as has been done by past algorithms such
as SPITI (Degris, Sigaud, and Wuillemin 2006) and FITTED
R-MAX (Jong and Stone 2007). TEXPLORE achieves high
sample efficiency by combining this generalization with ag-
gressive exploration to improve the model as quickly as pos-
sible. TEXPLORE approaches model learning as a supervised
learning problem with (s, a) as the input and s′ and r as the
outputs the supervised learner is predicting. One of the ben-
efits of incorporating generalization is that the supervised
learner will make predictions about the model for unseen
or infrequently visited states based on the transitions it has
been trained on.

In many domains, the relative transition effects of actions
are similar across many states, making it easier to general-
ize actions’ relative effects than their absolute ones. For ex-
ample, in many gridworld domains, there is an EAST action
that usually increases the agent’s X variable by 1. It is easier
to generalize the relative effect of this action than the abso-
lute outcome. Relative transitions have been used to improve
model learning in previous work such as RAM-R-MAX (Lef-
fler, Littman, and Edmunds 2007) and FITTED R-MAX (Jong
and Stone 2007). Instead of trying to predict s′, TEXPLORE
takes advantage of this idea by learning to predict the change
in the state: srel = s′ − s.

The algorithm learns a model of the domain by learning
a separate prediction for each of the n state features and re-
ward, similar to a Dynamic Bayes Network (DBN) model.
Assuming that each of the state variables transition indepen-
dently, these separate feature predictions can be combined to
create a prediction of the complete state vector. The proba-
bility of the change in state is the product of the probabilities
of the change in each of its n state features.

TEXPLORE uses decision trees to learn models of the tran-
sition and reward functions. It uses an implementation of the
C4.5 algorithm (Quinlan 1986), which chooses the optimal
split at each node of the tree based on information gain. Our
implementation includes a modification to make the algo-
rithm incremental. For continuous domains, the algorithm
uses the M5 regression tree algorithm (Quinlan 1992), which
learns a linear regression model in each leaf of the tree, en-
abling it to better model continuous dynamics by building a
piecewise linear model.

Each tree makes predictions for the particular feature or
reward it is given based on a vector containing the n features
of the state s along with the action a: 〈x1, x2, ..., xn, a〉. This
same vector is used when querying the trees for the change
in each feature and reward. The trees are built on-line while
the agent is acting in the MDP. At the start, the tree will be
empty, and then it will generalize broadly, making predic-
tions about large parts of the statespace. It will continue to
refine itself until it has leaves for individual states where the
transition dynamics differ from the global dynamics.

We are particularly interested in applying TEXPLORE to
robots, which commonly have sensor and actuator delays.
For example, a robot’s motors may be slow to start moving,
and thus the robot may still be executing (or yet to execute)
the last action given to it when the algorithm selects the next
action. This is important, as the algorithm must take into ac-
count what the state of the robot will be when the action

actually gets executed. To address this problem, TEXPLORE
provides its models with the past k actions as inputs in addi-
tion to the current state and action, similar to the U-TREE al-
gorithm (McCallum 1996). The model can then learn which
of these past actions is relevant, thus learning the delay dy-
namics in the domain.

Using decision trees to learn the model of the MDP pro-
vides us with a model that can be learned quickly with few
samples. However, the model’s generalization to unvisited
or infrequently visited state-actions may be incorrect. There-
fore, it is vital for the algorithm to have a good method for
driving exploration to state-actions where the model is likely
to be incorrect and needs improvement.

TEXPLORE builds multiple possible models of the do-
main in the form of a random forest (Breiman 2001). The
random forest model is a collection of m decision trees.
Each tree is trained on only a subset of the agent’s ex-
periences (〈s, a, s′, r〉 tuples), as it is updated with each
new experience with probability w. To increase stochastic-
ity in the models, at each split in the tree, the best fea-
ture is chosen from a random subset of the features, with
each feature removed from this set with probability f . Each
model in the forest can be used to drive exploration sim-
ilar to the way Bayesian methods such as (Strens 2000;
Asmuth et al. 2009) use samples from their distribution over
possible models, but without the computational overhead of
maintaining and sampling from such a distribution.

The random forest model’s final prediction for a state-
action is the average of the predictions of each of the trees.
For example, if four trees predicted outcome A with proba-
bility 1.0, and a fifth tree predicted outcomes A and B with
equal probability of 0.5, the final model will have a 0.9 prob-
ability of outcome A and a 0.1 probability of outcome B. Av-
eraging multiple possible models of the domain inherently
incorporates uncertainty in the model. If all the models agree
on the outcome of a particular state-action, then it is likely
to be correct. Moreover, averaging the models in this way
also allows the trade-off between exploration costs and po-
tential benefits to be handled naturally. For example, if the
models disagree and the average model predicts there is a
small chance of a particular high-valued outcome occurring,
it may be worth exploring even if there is a low probabil-
ity that it is real. On the other hand, if this outcome has a
large negative value, the possibility that exploring it could
be costly should make the agent avoid it. Thus, TEXPLORE
will explore state-actions where both 1) some of its mod-
els predict good outcomes and 2) its models do not predict
overwhelming exploration costs. Figure 3 shows a diagram
of how the entire model learning system works.

Experiments
In this section, we evaluate the ability of TEXPLORE to learn
velocity control on our autonomous vehicle (Beeson et al.
2008) and its simulation. This task has a continuous states-
pace, delayed action effects, and requires learning that is
both sample efficient (to learn quickly) and computationally
efficient (to learn on-line while controlling the car).

The experimental vehicle is an Isuzu VehiCross (Figure 4)
that has been upgraded to run autonomously by adding shift-

Figure 3: Model Learning. The agent calculates the difference be-
tween s′ and s as the transition effect srel. Then it splits up the
state vector and learns a random forest to predict each state feature
and reward. Each random forest is made up of stochastic decision
trees, which get each new experience with probability w. The ran-
dom forest’s predictions are made by averaging each tree’s predic-
tions, and then the predictions for each feature are combined into a
complete model.

Figure 4: The autonomous vehicle operated by Austin Robot
Technology and The University of Texas at Austin.

by-wire, steering, and braking actuators to the vehicle. The
brake was actuated with a motor physically moving the
pedal, which had a significant delay. ROS (Quigley et al.
2009) was used as the underlying middleware. Actions must
be taken in real-time, as the car cannot wait for an action
while a car is stopping in front of it or it approaches a turn
in the road. To the best of our knowledge, no prior RL al-
gorithm is able to learn in this domain in real time: with no
prior data-gathering phase for training a model.

Since the autonomous vehicle was already running ROS
as its middleware, we created a ROS package for interfac-
ing with RL algorithms similar to the message system used
by RL-Glue (Tanner and White 2009). We created an RL
Interface node that wraps sensor values into states, trans-
lates actions into actuator commands, and generates reward.
This node uses a standard set of ROS messages to communi-
cate with the learning algorithm. At each time step, the RL
Interface node computes the current state and reward and
publishes them as a ROS message to the RL agent. The RL
agent can then process this information and publish an ac-
tion message, which the interface will convert into actuator
commands. Whereas RL agents using RTMBA respond with

-20000

-15000

-10000

-5000

 0

 0 10 20 30 40 50

A
v
e

ra
g

e
 R

e
w

a
rd

Episode Number

Simulated Vehicle: Velocity Control from 2 to 7 m/s

Q-Learning
Dyna

RTMBA
Sequential VI

Sequential UCT

Figure 5: Average rewards of the algorithms controlling the au-
tonomous vehicle in simulation from 2 to 7 m/s. Results are aver-
aged over a 4 episode sliding window. Each episode consisted of
10 seconds of vehicle control.

an action message immediately after receiving the state and
reward message, other methods may have a long delay to
complete model updates and planning before sending back
an action message. In this case, the vehicle would continue
with all the actuators in their current positions until it re-
ceives a new action message.

The task was to learn to drive the vehicle at a desired ve-
locity by controlling the pedals. For learning this task, the
RL agent’s 4-dimensional state was the desired velocity of
the vehicle, the current velocity, and the current position of
the brake and accelerator pedals. For the discrete methods,
desired velocity was discretized into 0.5 m/s increments,
current velocity into 0.25 m/s increments, and the pedal po-
sitions into tenths of maximum position. The agent’s reward
at each step was −10.0 times the error in velocity in m/s.
Each episode was run at 10 Hz for 10 seconds. The agent
had 5 actions: one did nothing (no-op), two increased or de-
creased the desired brake position by 0.1 while setting the
desired accelerator position to 0, and two increased or de-
creased the desired accelerator position by 0.1 while setting
the desired brake position to 0. While these actions changed
the desired positions of the pedals immediately, there was
some delay before the brake and accelerator would reach
their target positions.

First, we ran simulated experiments with the vehicle start-
ing at 2 m/s with a target velocity of 7 m/s. We compared Q-
LEARNING (Watkins 1989) and DYNA (Sutton 1990) with
three algorithms using the TEXPLORE model. One used
RTMBA, one used the sequential architecture shown in Fig-
ure 1 with value iteration planning, and another used the
same architecture but planned by running UCT for 0.1 sec-
onds. Figure 5 shows the average rewards per episode for
this task. Here, the model-free methods cannot learn the
task within the given number of episodes. Planning approxi-
mately with UCT is better than performing exact planning,
but using RTMBA is better than either. In only 5 minutes
(thirty 10-second episodes), TEXPLORE with RTMBA learns
to quickly accelerate to and maintain a velocity of 7 m/s.

Finally, we ran five trials of Continuous TEXPLORE (using
M5 regression trees) with k = 2 on the physical vehicle
learning to drive at 5 m/s from a start of 2 m/s. Figure 6

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0 5 10 15 20

R
e

w
a

rd

Episode Number

Physical Vehicle Velocity Control from 2 to 5 m/s

Figure 6: Average rewards of TEXPLORE learning to control the
physical vehicle from 2 to 5 m/s. Results are averaged over 5 trials.

shows the average rewards over 20 episodes. In all five trials,
the agent learned the task within 11 episodes, which is less
than 2 minutes of driving time. In 4 of the trials, the agent
learned the task in only 7 episodes. This experiment shows
that TEXPLORE can learn a robotic task that has continuous
state and actuator delays in very few samples while selecting
actions continually in real-time.

Related Work
Since TEXPLORE is addressing many challenges, there is
ample related work. Deisenroth and Rasmussen (2011) use
Gaussian Process regression to learn a model of the domain
that generalizes experience to unknown states and repre-
sents uncertainty explicitly. This approach learns to control
a physical cart-pole device in few actions, but it requires ten
minutes of computation for every 2.5 seconds of experience.

Model-based Bayesian RL methods seek to solve the ex-
ploration problem by maintaining a posterior distribution
over possible models. This approach is promising for solv-
ing the exploration problem because it provides a principled
way to track the agent’s uncertainty in different parts of the
model. However, these methods have a few drawbacks. They
must maintain a belief distribution over models and sam-
ple from it, both of which can be computationally expen-
sive. In order to generalize, the user must design a model
parametrization that ties the dynamics of different states to-
gether correctly. In addition, the user must provide a well-
defined prior for the model.

Duff (2003) presents an “optimal probe” that solves the
exploration problem optimally, using an augmented states-
pace that includes both the agent’s state and its beliefs over
its models (called a belief state MDP). Planning over this
larger augmented statespace enables the agent to explore op-
timally, but can be very computationally expensive.

Other Bayesian methods use the model distribution to
drive exploration without having to plan over a states-
pace that is augmented with model beliefs. Both Bayesian
DP (Strens 2000) and Best of Sampled Set (BOSS) (Asmuth
et al. 2009) approach the exploration problem by sampling
from the distribution over world models and using these
samples in different ways.

Bayesian DP samples a single model from the distribu-
tion, plans a policy using it, and follows that policy for a

number of steps before sampling a new model. In between
sampling new models, the agent will follow a policy con-
sistent with the sampled model, which may be more ex-
ploratory or exploitative depending on the sampled model.

BOSS, on the other hand, samples m models from the
model posterior distribution and merges them into a sin-
gle optimistic model with the same statespace, but an aug-
mented action space of mA actions. Essentially, there is an
action modeled by each of the predictions of the m models
for each of the A actions. Planning over this model allows
the agent to optimistically select at each state an action from
any of the m sampled models.

Learning on a robot requires actions to be given at a spe-
cific control frequency, while maintaining sample efficiency
so that learning does not take too long. Batch methods such
as experience replay (Lin 1992) and LSPI (Lagoudakis and
Parr 2003) improve the sample efficiency of model-free
methods by saving experiences and re-using them in peri-
odic batch updates. However, these methods typically run
one policy for a number of episodes, stop to perform their
batch update, and then repeat.

The DYNA framework (Sutton 1990) incorporates some of
the benefits of model-based methods while still running in
real-time. DYNA saves its experiences, and then performs l
Bellman updates on randomly selected experiences between
each action. Thus, instead of performing full value itera-
tion each time, its planning is broken up into a few updates
between each action. However, it uses a simplistic model
(saved experiences) and thus is not very sample efficient.

The DYNA-2 framework (Silver, Sutton, and Müller 2008)
extends DYNA to use UCT as its planning algorithm. This im-
proves the performance of the algorithm compared to DYNA.
However, to be sample-efficient, DYNA-2 must have a good
model learning method, which may require large amounts of
computation time between action selections.

Discussion and Conclusion
This paper presents TEXPLORE, an RL algorithm which ad-
dresses the challenges necessary to be successful on robots.
To achieve high sample efficiency, TEXPLORE learns ran-
dom forest models that generalize transition and reward
dynamics to unseen states. Unlike methods that guarantee
optimality by exploring exhaustively, TEXPLORE explores
quickly by targeting its exploration on states that are both
promising for the final policy and uncertain in the model.
TEXPLORE can take actions continually in real-time by using
sample-based planning and a parallel architecture (RTMBA).
These properties allow TEXPLORE to learn to control the ve-
locity of an autonomous vehicle quickly. TEXPLORE repre-
sents an important step towards the applicability of RL to
larger and more real-world tasks such as robotics problems.

Acknowledgements
This work has taken place in the Learning Agents Research Group
(LARG) at UT Austin. LARG research is supported in part by
NSF (IIS-0917122), ONR (N00014-09-1-0658), and the FHWA
(DTFH61-07-H-00030).

References
Asmuth, J.; Li, L.; Littman, M.; Nouri, A.; and Wingate, D. 2009.
A Bayesian sampling approach to exploration in reinforcement
learning. In UAI.
Beeson, P.; O’Quin, J.; Gillan, B.; Nimmagadda, T.; Ristroph, M.;
Li, D.; and Stone, P. 2008. Multiagent interactions in urban driving.
Journal of Physical Agents 2(1):15–30.
Breiman, L. 2001. Random forests. Machine Learning 45(1):5–32.
Degris, T.; Sigaud, O.; and Wuillemin, P.-H. 2006. Learning the
structure of factored Markov Decision Processes in reinforcement
learning problems. In ICML, 257–264.
Deisenroth, M., and Rasmussen, C. 2011. PILCO: A model-based
and data-efficient approach to policy search. In ICML.
Duff, M. 2003. Design for an optimal probe. In ICML, 131–138.
Hester, T., and Stone, P. 2010. Real time targeted exploration in
large domains. In ICDL.
Jong, N., and Stone, P. 2007. Model-based function approximation
for reinforcement learning. In AAMAS.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-Carlo
planning. In ECML.
Kohl, N., and Stone, P. 2004. Machine learning for fast
quadrupedal locomotion. In AAAI.
Lagoudakis, M., and Parr, R. 2003. Least-squares policy iteration.
Journal of Machine Learning Research 4:1107–1149.
Leffler, B.; Littman, M.; and Edmunds, T. 2007. Efficient reinforce-
ment learning with relocatable action models. In AAAI, 572–577.
Lin, L.-J. 1992. Reinforcement learning for robots using neural
networks. Ph.D. Dissertation, Pittsburgh, PA, USA.
McCallum, A. 1996. Learning to use selective attention and short-
term memory in sequential tasks. In From Animals to Animats 4:
Proceedings of the Fourth International Conference on Simulation
of Adaptive Behavior.
Ng, A.; Kim, H. J.; Jordan, M.; and Sastry, S. 2003. Autonomous
helicopter flight via reinforcement learning. In NIPS 16.
Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs,
J.; Wheeler, R.; and Ng, A. 2009. ROS: an open-source robot
operating system. In ICRA Workshop on Open Source Software.
Quinlan, R. 1986. Induction of decision trees. Machine Learning
1:81–106.
Quinlan, R. 1992. Learning with continuous classes. In 5th Aus-
tralian Joint Conference on Artificial Intelligence, 343–348. Sin-
gapore: World Scientific.
Silver, D.; Sutton, R.; and Müller, M. 2008. Sample-based learning
and search with permanent and transient memories. In ICML.
Strens, M. 2000. A Bayesian framework for reinforcement learn-
ing. In ICML, 943–950.
Sutton, R., and Barto, A. 1998. Reinforcement Learning: An Intro-
duction. Cambridge, MA: MIT Press.
Sutton, R. 1990. Integrated architectures for learning, planning,
and reacting based on approximating dynamic programming. In
ICML.
Tanner, B., and White, A. 2009. RL-Glue : Language-independent
software for reinforcement-learning experiments. JMLR 10.
Watkins, C. 1989. Learning From Delayed Rewards. Ph.D. Dis-
sertation, University of Cambridge.

