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Abstract
We present a statistical physics inspired approach to
modeling, analysis, and design of distributed aggrega-
tion control policies for teams of homogeneous and
heterogeneous robots. We assume high-level agent be-
havior can be described as a sequential composition of
lower-level behavioral primitives. Aggregation or divi-
sion of the collective into distinct clusters is achieved
by developing a macroscopic description of the ensem-
ble dynamics. The advantages of this approach are two-
fold: 1) the derivation of a low dimensional but highly
predictive description of the collective dynamics and
2) a framework where interaction uncertainties between
the low-level components can be explicitly modeled and
control. Additionally, classical dynamical systems the-
ory and control theoretic techniques can be used to an-
alyze and shape the collective dynamics of the system.
We consider the aggregation problem for homogeneous
agents into clusters located at distinct regions in the
workspace and discuss the extension to heterogeneous
teams of autonomous agents. We show how a macro-
scopic model of the aggregation dynamics can be de-
rived from agent-level behaviors and discuss the synthe-
sis of distributed coordination strategies in the presence
of uncertainty.

Introduction
The development of robotic teams that can operate in com-
plex and dynamic environments in support of or cooperat-
ing with human agents poses significant challenges. In ap-
plications such as automation of distribution warehouses,
distributed construction and assembly of large-scale infras-
tructure, and environmental monitoring, teams must have the
ability to autonomously distribute and redistribute to ensure
the timely completion of the various aspects of the project.
This is similar to the adaptive aggregation problem where
agents must assess who, when, and how members should
assemble into various collectives in order to maximize the
overall performance of the system which may be affected by
availability of resources, component failures, and/or changes
in the environment.

In the multi-robots domain, this aggregation problem can
often be posed as a resource allocation problem and is cate-
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gorized as the multi-task (MT), single-robots (SR) or multi-
robots (MR), time-extended assignment (TA) problem de-
pending on whether tasks required single or multiple robots
to perform (Gerkey and Mataric 2004). While market-based
approaches (Gerkey and Mataric 2002; Dias et al. 2006)
have shown much success, especially when learning is incor-
porated (Dahl, Mataric, and Sukhatme 2006), these methods
often scale poorly in terms of team size and number of tasks
(Dias et al. 2006; Golfarelli, Maio, and Rizzi 1997). Further-
more, the performance of these methods often degrade sig-
nificantly when inter-agent wireless communication is ex-
tremely limited, noisy, or completely unreliable.

In this work, we present a statistical physics inspired ap-
proach where a macroscopic description of the ensemble
dynamics is employed to synthesize distributed agent-level
control policies to enable autonomous agents to dynamically
aggregate and assemble into different groups/collectives.
In recent years, macroscopic continuous models have been
employed to model the dynamics of robotic self-assembly
(Hosokawa, Shimoyama, and Miura 1994; Napp, Burden,
and Klavins 2009) and robotic swarm systems (Martinoli,
Easton, and Agassounon 2004; Lerman, Martinoli, and Gal-
styan 2005; Hsieh et al. 2008). These continuous popula-
tion models are usually obtained by representing the indi-
vidual robot controllers as probabilistic finite state machines
and approximating the collection of discrete Markov pro-
cesses as a continuous-time Markov process. The macro-
scopic models are then used to determine the ensemble ef-
fects of a series of microscopic, or agent-level, behaviors.

We formulate the aggregation of the team into distinct
groups as a resource allocation problem similar to (Halasz
et al. 2007). We first consider the aggregation problem for
a team of homogeneous robots where the agent-level con-
trol policies are obtained via the sequential composition of
individual task controllers. We show how uncertainties in
the aggregation process that arise from individual interac-
tions can be incorporated into the macroscopic models and
show how these models can be further used to inform the
design of agent-level control policies (Hsieh et al. 2008;
Berman et al. 2008; Mather and Hsieh 2010). Our strat-
egy is inspired by existing work in modeling and control of
molecular dynamics where a polynomial Stochastic Hybrid
System (pSHS) is often employed to describe the ensem-
ble dynamics (Feinberg 1979; Higham 2008; Klavins 2010;
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Figure 1: (a) Robot controller for a set of 5 tasks where
fi(q, u) denotes the open-loop dynamics and u denotes the
feedback control strategy of the robot executing task i. This
is similar a first order reaction process. (b) Schematic repre-
sentation of a stochastic hybrid system.

Hespanha 2008). The main contribution is a team-size in-
variant approach towards the design of distributed agent-
level control policies that has the ability to respond to robot
failures in a natural way, ensuring graceful degradation.

The rest of the paper is structured as follows: We present
our methodology for homogeneous agents in Section and
describe the extension of the approach for heterogeneous
agents in Section . Section discusses the challenges of em-
ploying these models for synthesis of distributed control and
coordination strategies. We conclude with a discussion of di-
rections for future work in Section in .

Modeling Homogeneous Teams
In general, the explicit modeling of agent-level interactions
can be extremely complex because the dimension of the en-
semble configuration space is high and the correlation be-
tween the dimensions can be even higher. However, a team
of autonomous agents operating within a dynamic environ-
ment subject to sensor and actuation noise is similar to a
chemical reaction process. At the microscopic level, these
systems are composed of various stochastically interacting
molecules whose individual behaviors are difficult to predict
(Feinberg 1979; Gunawardena 2003; Gillespie 2007). At the
macroscopic level, the time evolution of the ensemble statis-
tics for these stochastic systems can be accurately modeled
using mass-action kinetics.

To illustrate this, consider the problem of enabling a team
of autonomous agents to distribute and aggregate around dif-
ferent tasks that are located at M distinct locations in the
workspace. For simplicity, we assume that the agents have
the ability to autonomously navigate within the workspace
and execute the tasks once they aggregate at the correct lo-
cations. We represent the single agent controller as a finite
state automaton as shown in Fig. 1(a) where q denotes the
agent’s state, fi(q, u) denotes the agent dynamics at loca-
tion/task i, and u denotes the agent’s feedback control strat-
egy at location/task i. Agents transition between tasks based
on pre-specified guard conditions assigned to the edges in
Fig. 1(a). The guard conditions are determined based on cri-
teria that describe the satisfactory completion of the given
task.

In general, the time for an agent to travel between lo-

cations can be accurately determined, especially in highly
structured environments. However, for an N -agent team,
the individual travel times can vary significantly since each
agent will have to negotiate different traffic patterns as they
operate in a common workspace. This is particularly chal-
lenging in the distributed control setting since individuals
must operate asynchronously. As such, it makes sense to
model the time it takes each agent to move from one lo-
cation to another (and the time it takes to complete a task)
as random variables. In other words, we consider the aver-
age arrival rate of the agents at each location rather than the
actual time taken by each agent. Let kij > 0 be defined as
the transition probability per unit time for an agent to com-
plete task i and travel to location j where kij is simply the
inverse of the average task completion time. Fig. 1(b) is the
representation of a collective of N agents whose individual
behaviors are described by Fig. 1(a). In Fig. 1(b) kij defines
the transition probability per unit time for an agent in state
Si with dynamics q̇ = fi(q, u) to switch to state Sj .

The directed graph, G, in Fig. 1(b), is an example of a
stochastic hybrid system (SHS) where the discrete states are
represented by the nodes and each may be possess distinct
continuous dynamics. In this work, we abstract away the
continuous dynamics in the models and assume that indi-
vidual agents have the ability to store and execute the con-
trollers in each discrete state (u for each fi(q, u)) and only
consider the switching dynamics, i.e., fi(q, u) = i. Let xi(t)
denote the fraction of agents in state Si at time t, then the
time evolution of the xi, . . . , xM is given by

dxi(t)

dt
=

∑
(j,i)∈E

kjixj(t)−
∑

(i,j)∈E

kijxi(t) (1)

for all i = 1, . . . ,M where E denotes the edge set of G.
The above system of linear ordinary differential equations

(ODEs) describes the average rate of change of the fraction
of robots at each task. The specification in terms of fractions
rather than absolute robot numbers allows for a team size
invariant formulation which is practical for scaling purposes
as well as in situations where losses of robots to attrition and
breakdown may happen. Equation (1) models the ensemble
dynamics of the agents as they aggregate/cluster around dif-
ferent regions of the workspace. If we think of the transition
rates as design parameters, instead of describing the vari-
ability in transition times between regions, we can shape the
steady-state distribution of the team across the various clus-
ters through the selection of the k′ijs (Halasz et al. 2007;
Hsieh et al. 2008). The result is a set of agent-level transi-
tion rules that can be implemented at the agent-level without
the need for communication. In other words, given the set
of controllers in each discrete state, complete knowledge of
G, kij’s, and the ability to localize, the agents can automati-
cally aggregate and assemble themselves accordingly across
the M locations without the need for any inter-agent com-
munication. This is a team-size invariant solution to the dy-
namic multi-task (MT) robots, single-robot (SR) tasks, time-
extended assignment (TA) problem (MT-SR-TA) (Gerkey
and Mataric 2004) and can be extended to the dynamic MT-
MR-TA (multi-robot tasks) problem through the appropriate
selection of the discrete controllers u.
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We note that in this framework, the complexity of the ag-
gregation problem is only dependent on the complexity of
the desired high-level group behavior, e.g., autonomous op-
eration of a warehouse or environmental monitoring, and
is encoded in the structure of the SHS. While equation
(1) allows us to predict the mean ensemble behavior (Mar-
tinoli, Easton, and Agassounon 2004; Lerman, Martinoli,
and Galstyan 2005) and can be used to synthesize agent-
level control policies (Halasz et al. 2007; Hsieh et al. 2008;
Berman et al. 2009), it is based on mass action kinetic princi-
ples which provides an approximation of the average value
of the system state. In theory, this approximation only be-
comes exact in the thermodynamic limit, i.e., when popu-
lation sizes approach infinity. However, recent studies have
shown that these models can perform surprisingly well even
when the group size is small (Mather and Hsieh 2010). This
is because, although the number of agents may be relatively
small, the number of potential interactions between the var-
ious agents may be quite large.

Modeling Heterogeneous Teams
Consider the automation of a distribution warehouse or fac-
tory floor where a fleet of autonomous agents must cooperate
in order to accomplish a task. To explicitly model aggrega-
tion and interactions among heterogeneous agents, we must
move beyond first order linear differential equations. Con-
sider the cooperation between two types of agents: robots
and humans. Let xr, xh, and xrh be the fraction of available
robots, available humans, and human-robot teams. This re-
sults in the following system of nonlinear rate equations for
the ensemble:

ẋrh = krhxrxh − λrhxrh (2)
where krh denotes the likelihood per unit of time for a free
robotic agent to encounter a free human agent and λrh de-
notes the likelihood for a human-robot team to dissolve into
free robot and human agents.

Similar to equation (1), the equilibria of the system given
by equation (2) is determined by the transition rates. Fur-
thermore, in this setting, interaction uncertainties are ex-
plicitly captured in the model via the transition rates. Dif-
ferent from its linear equivalent, these systems can possess
multiple steady-states, limit cycles, and even chaotic behav-
ior depending on the choice of system parameters. Similar
to the system given by equation (1), there has been sig-
nificant work in the last thirty years that relates the struc-
ture of the agent-level controllers and the inter-agent inter-
actions to conditions for the existence, uniqueness, multi-
plicity, and stability of equilibrium points (Feinberg 1979;
Gunawardena 2003). The challenge then is to determine the
ideal set of system parameters for a given desired outcome.

Achieving Distributed Ensemble Feedback
The ability to characterize the uncertainties that arise from
the interactions of a multi-agent team operating in a shared
complex and dynamic workspace opens up the possibility
for an ensemble approach towards the design of distributed
agent-level control and coordination policies for aggrega-
tion.

For a system described by (1), it was shown in (Mather,
Hsieh, and Frazzoli 2010) that spurious frequency compo-
nents can be predicted via a frequency domain analysis of
the linear model. These frequency components represent the
effects of noisy interactions among the agents during the ag-
gregation process. If we only consider the ensemble model
and disregard the underlying physical system, then we can
leverage on decades of control theoretic approaches to de-
sign an appropriate filter to get rid of the spurious behavior.
One such example is a notch filter which selectively removes
a specific frequency while leaving the rest untouched, effec-
tively reducing the gain of the spurious frequency compo-
nent. A typical 2nd order notch filter has the transfer func-
tion H(s),

H(s) =
s2 + 2ζ1ωN − ω2

N

s2 + 2ζ2ωN − ω2
N

(3)

with ωN and ζ1/ζ2 chosen such that the location and mag-
nitude of the notch are properly located at the spurious fre-
quency. While applying this filter to the ensemble model is
straight-forward, it is not clear how such a filtering strategy
can be achieved in a distributed fashion without requiring
agents to estimate the higher order derivatives of the ensem-
ble states.

A common starting point in the synthesis of distributed
controllers is to assume perfect communication among the
agents, thus providing individuals with full knowledge of
the system states. Such an approach invariably results in a
distributed control policy that is, in spirit, equivalent to a
centralized one. While not ideal, this exercise helps us un-
derstand the information required by each robot to achieve
a truly decentralized implementation of the proposed strat-
egy where robots only rely on their local information. For
any ensemble derived feedback strategy, the challenge lies
in determining the appropriate distributed implementation
that minimizes the usage of available network resources.
As such, the advantage of this approach is the ability to
explicitly take into account network resource needs at the
controller synthesis stage by minimizing the number of en-
semble states that need to be estimated. For the system de-
scribed by (1), a communication-less implementation of the
notch filter can be achieved by approximating the ideal notch
filter using a series of carefully placed artificial delays in
the agent-level controller. We refer the interested reader to
(Mather and Hsieh 2010) for the specific details.

Future Work
In this work, we presented a statistical physics inspired ap-
proach towards modeling the dynamics of a aggregation in
robot teams in the presence of uncertainty. The advantage of
this approach are two-fold: 1) a team-size invariant descrip-
tion of the ensemble and 2) a communication resource aware
approach towards the design of scalable distributed control
and coordination strategies for aggregation.

While existing work have shown the potential of this
approach, fundamental questions still remain. Specifically,
what are the limitations of these abstract ensemble mod-
els? Given an ensemble feedback controller, how do we dis-
tribute the sensing and control to achieve the prescribed con-
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trol strategy? Are there appropriate ensemble metrics that
will enable us to further optimize the topology of the high-
level description of the agent-level control policies in or-
der to simply the distributed implementation? Another di-
rection for future work is to determine how one selects the
appropriate analysis and design techniques as agent-level in-
teractions become more complex. This is of particular im-
portance since complex interactions between heterogeneous
agents would result in more and more nonlinear components
in the ensemble dynamics. Finally, the proposed models pro-
vide a description of the average ensemble behavior in the
presence of uncertainty. A final question of paramount inter-
est is whether we can leverage the inherent ability of noise
for self-organization to further develop minimal effort agent-
level control and coordination strategies.
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