
Autonomous Skills Creation and Integration in Robotics

Lorenzo Riano and T. M. McGinnity
Intelligent Systems Research Centre

University of Ulster
Londonderry, BT48 7JL

United Kingdom
l.riano@ulster.ac.uk, tm.mcginnity@ulster.ac.uk

Abstract

The fragmentation of research in AI and robotics has
created a vast repertoire of skills a robot could be
equipped with but that must be manually integrated to
form a complex action. We propose a novel evolutionary
algorithm that aims at autonomously integrating,
adapting and creating new actions by re-using skills that
are either externally provided or previously generated.
Complex actions are created by instantiating a Finite
State Automaton and new skills are created using fully
recurrent neural networks. We validated our approach in
two scenarios, i.e. exploration and moving to pre-grasp
positions. Our experiments show that complex actions
can be created by composing independently developed
skills. The results have been applied and tested with a
real robot in a variety of scenarios.

Introduction
A robot needs a huge variety of skills in order to effectively
solve a task in a real-world scenario. Providing a robot with
these skills has been the main activity of researchers in
robotics or in related fields. Unfortunately this has created
fragmentation of the efforts, as the creation of reliable
skills requires a researcher to devote most of the time on
a particular problem.

Fortunately there is an increasing number of high-quality
programs or routines that researchers can experiment with
or simply integrate for free. A well known example is the
Robotics Operating System (ROS) (Quigley et al. 2009),
which is an open source effort to allow people to easily
share code that runs robot applications. Skills like mapping,
motion control, object detection and planning are freely
available to researchers that can therefore integrate them to
build complex applications.

When combining skills to solve a particular problem, a
roboticist has to answer the following questions:

• Which skills are needed and how to combine them.

• How skills should be modified to work in cooperation
with others.

• Which skills are not available and need to be created.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper we propose a novel approach to combine, in
a unified framework, composition, adaptation and creation
of new actions based on skills the robot is already provided
with1. An action is performed by a Finite State Automaton
(FSA, plural automata) (Hopcroft, Motwani, and Ullman
1979), whose nodes represent skills that are externally
provided to the robot (or previously created actions) and
whose transitions are the outcomes of the actions. Each
action can have a set of parameters. The FSA are instantiated
by an evolutionary process (Bäck 1996) that simultaneously
evolves the topology of the FSA and the parameters of the
actions. Therefore, during the evolutionary process, skills
are adapted and combined together to solve a particular
problem, and new skills are created whenever the old ones
are not sufficient.

The creation of new skills is performed by instantiating
fully recurrent neural networks (NN) (Beer and Gallagher
1992). A NN skill is therefore an “empty placeholder” for a
generic numerical processor. The results of the computation
are then used by other skills as an input to their programs.
For example, neural networks could generate numbers that
will be interpreted by a motion planner as a location to
move the robot to. Each NN skill has a network with fixed
topology but, as the output of one network can be chained
to the input of another, arbitrary topologies can be achieved.
We will exploit this feature in during our experiments, when
chaining the output of a fixed topology network to the input
of another network creates more complex topologies with a
richer variety of results.

Our proposed approach does not depend on a particular
implementation of a skill. Therefore if a new algorithm
is provided that performs better than an old one, the
corresponding node in the evolved FSA can be replaced
with the new procedure without impairing the functionalities
of the action. This allows for specific AI techniques to
be developed and improved independently from the overall
system, and then be autonomously combined at a later stage.
Reuse of components thus becomes an important advantage
of our proposed approach.

1We will use the word “skill” to indicate a program the robot
is already provided with, while we will use the term “action” to
indicate a newly created skill. The term skill should not be confused
with its general usage in the Reinforcement Learning literature,
where “skill” denotes a motor controller.

AAAI Technical Report SS-12-02 
Designing Intelligent Robots: Reintegrating AI



One of the main limitations of evolutionary algorithms in
robotics is that they require a simulator to be effective. This
is due to the requirement that hundreds if not thousands of
trials have to be experimented in order to find a solution. In
our approach this problem is avoided by concentrating on
high-level actions and their effect, rather than the physics
of the robot and its interactions with the environment. For
example we deal with a grasping action in a high-level
way: the result of grasp(object i) is simply “object i is
in the robot gripper”, while the particular application of
grasping in use will take care of the details in the real
robot. This is therefore an implementation of the “minimal
simulator“ approach described in (Jakobi 1997). Noise can
be introduced by allowing actions to have a failure outcome
based on pre-conditions not being met or even a random
event.

Given the abstract level of the simulator, deploying an
FSA to a real robot is a straightforward process, as we will
illustrate with two experiments.

Related Work
The idea of sequencing a robot’s behavior in several
sub-actions has been explored several times in the past.
In (Konidaris and Barto 2009) the authors propose a
Reinforcement Learning algorithm with options that allows
skills to be discovered and combined into options. Although
it is possible that an option is externally provided, their effect
on skill acquisition had not been investigated. While the
previous work used a simulated problem, in (Konidaris et al.
2011) the same approach is used to have a real robot solve a
complex task. The robot discovered new skills by extracting
trajectories obtained from the composition of existing ones.
Although we share the same goals with this work, the main
differences with our proposed approach are in both the
techniques we employed and in the level of abstraction of
the skills our robot uses.

A related approach to skills building is in (Hart and
Grupen 2011). Here the authors propose a framework where
control policies are hierarchically combined to generate
complex behaviours. Reinforcement learning is used to
create the control policies. Policies need however to be
expressed in terms of potential functions, which limit their
application to more abstract actions like the ones we use in
this paper.

Planning-based approaches (Beetz et al. 2010; Stulp and
Beetz 2008) include the possibility to optimize the free
parameters of two subsequent actions so that the overall
execution of the plan is optimal. This optimization happens
only when two actions have to be performed together,
therefore it applies only to a limited set of scenarios. Plans
are constructed on-line by using knowledge extracted from
the web. A plan is then executed by invoking elementary
program units, which are analogous to our idea of actions.
The concept of elementary programs, or actions, is used
also in (Kaelbling and Lozano-Pérez 2011) in the context
of manipulation and geometric planning.

Our approach borrows ideas from the robotics planning
literature, in that we share with it some of the goals
outlined in the previous section. An FSA can be seen as

the structure that instantiates and carries on the execution
of a plan. However while a planning system requires a
detailed description of every action’s pre-conditions and
post-conditions, training an FSA can be performed with
data driven simulations. For example during our experiments
the success of a grasping action is determined by a neural
network trained on real data, instead of having been
simulated. To the best of our knowledge this is not feasible
in a planning system.

A second major difference between our proposed
approach and classic planning is that we allow actions to be
adapted to a particular problem by varying their parameters.
Moreover, in our proposed approach adapting an action or
creating a new one is performed in the same framework,
while the same might not be as easy using classical planning
approaches.

Techniques
Finite State Automata
Given our particular application, our formulation of the
FSA differs from the classic one adopted for example in
(Hopcroft, Motwani, and Ullman 1979). We define an FSA
as a quadruple (A,O, δ, s), where:

• A is a finite, non-empty set of actions.

• O is a finite set of outcomes. Each outcome j of state ai
is denoted by outj [ai].

• δ : A×O → A is the transition function.

• s is the initial state.

In addition to the above, all the states have a (potentially
empty) set of real-valued parameters and they can send data
to other states. An example of an FSA is given in Figure 2.
The parameters are used to adapt an action to a particular
problem.

The main difference with the model illustrated in
(Hopcroft, Motwani, and Ullman 1979) is the lack of the
input alphabet, or inputs. This means the the transition
from one action to another depends on the action outcome
only. However data passing replaces and enhances the input
function. Although the main features and behavior of our
proposed model still closely resembles the classic FSA’s
one, it is closer to a Turing Machine than to an automaton.

Evolutionary Algorithms
The evolutionary algorithm we used follows the general
standard structure described for example in (Bäck 1996).
The implementation made use of the library PyEvolve
described in (Perone 2009). As the details of the proposed
evolutionary algorithm have been described in a previous
work (Riano and Mcginnity 2012), here we only summarise
the main steps involved.

The genome is represented as a directed graph G =
(V,E) with parallel edges, where V is the set of the nodes
and E is the set of edges. A node vi ∈ V is associated with
a single skill type aj ∈ A, and it has a (possibly empty) list
of real-valued parameters 0 ≤ αi ≤ 1 (as in our model
of FSA described in the previous section). The meaning



of the parameters is skill-specific. As every skill aj has a
fixed number of outcomes, every node will have a specific
number of outgoing edges, each of them representing the
specific outcome of an skill. In addition to the nodes and
edges, the genome encodes the FSA starting state. There is
no restriction on the skill type the node can be associated to,
and several nodes can have the same skill type. When using
neural networks as a single skill, the weights of the network
are co-evolved with the FSA structure, as they represent
real-valued parameters of a generic node.

In our proposed evolutionary algorithm we developed
both mutation and crossover operators. Each of these
operators has to guarantee that every node in the graph
has the same number of outgoing edges as the number
of outcomes of the associated skill. Moreover every node
which is not reachable from the starting node will be
removed from the graph. This is to ensure that the
evolutionary search is not wasted in areas that do not
contribute to the overall fitness function.

Mutation happens both at the graph-level and at the node
level. At the graph level nodes can be added or removed,
or the starting node can be changed. At the node level,
parameters can be mutated by adding a normally distributed
random number, an outgoing edge can be re-routed to a
different node or the skill associated with a node can be
changed.

Crossover is performed between two parents genomes, g1
and g2, to create two children graphs c1 and c2. Crossover
has to ensure that groups of nodes that are potentially
working together will not be broken in the process. In this
work we assume that nodes whose distance is small (as the
path length in the graph) are more likely to be working
together than nodes that are far away. This allows for
sub-solutions to be developed and maintained by subgraphs
and to be preserved over generations if they contribute
positively to the fitness function. Potential candidates for
crossover are therefore searched using a breadth-first search
starting from randomly selected nodes.

Provided Skills
In this work we assume that a robot is equipped with skills
that are the product of research conducted in the relative
field. These are:

• Detecting and grasping unknown objects using 3D
information (Hsiao et al. 2010).

• Planning and executing a collision-free trajectory with an
artificial arm (Cohen, Chitta, and Likhachev 2010).

• Navigation and obstacle avoidance using an
omni-directional base (Marder-Eppstein et al. 2010).

These skills are freely available as part of ROS2.

Experimental Results
In this section we describe two experiments we conducted
to validate our proposed approach. In the first experiment
we wanted to develop an FSA for an exploration strategy.

2www.ros.org

Figure 1: The PR2 robotics platform we used in our
experiments.

The robot is placed in an unknown environment and its task
is to locate an object. Therefore a new action is built to move
the robot so that it will cover as much space as possible.

The second experiment makes use of the exploration
action. The robot has to locate the object and then move
to a position from where it can grasp it. As the details
of the grasping are abstracted by the simulator, we used
a previously trained classifier to evaluate if an object is
graspable.

As a result of the mutation and crossover the FSA grow
or shrink in size. It is not uncommon to observe more
than 50 states during an experiment. As many states can
be associated with the same skill, we appended numbers to
their name to distinguish between them. This is shown in the
figures in the next sections.

Experimental Setup
In our experiments we assumed that the robot is located in
a squared environment whose edges length varies between
3 and 5 meters. In the environment a table with an object
on top is randomly placed. Both the size of the table and
the location of the object on the table are randomly selected.
The robot is placed so that the table will always be with a
positive x coordinate (in the robot’s frame of reference), but
at the beginning of the experiment the table is not visible
by the robot. We assume that the robot can detect objects
within π/2 degrees in front of it and with a maximum range
of 1.5 meters. To evaluate the performance of an action the
FSA is tested in 300 randomly generated environments. To
avoid infinite loops a FSA is allowed only a finite number of
transitions before terminating with failure.

The robotic platform we used is a mobile manipulator
PR2 robot manufactured by Willow Garage3 (Figure 1). It
is two-armed with an omni-directional driving system. Each
arm has 7 degrees of freedom. The torso has an additional
degree of freedom as it can move vertically. The PR2 has a
variety of sensors, among them a tilting laser mounted in the
upper body, two stereo cameras (with narrow and wide field

3http://www.willowgarage.com



Figure 2: The Explorer FSA. The numbers at the end of
state’s names are used to uniquely identify them. The red
circle is the starting state.

of view) and a laser scanner mounted on the base which is
used for mapping and navigation.

Exploration
For the exploration task the robot started with the following
skills:

• ExitSuccess: The robot uses the stereo camera in front
of it to find the 3D location of the object. This skill’s
outcome is either success if the object is within the field
of view of the robot or failure. If successful the FSA
terminates.

• RobotMove: The robot moves to the x, y location
with orientation θ provided as an input message. This
movement is collision-aware, i.e. it will fail if the path
ends in collision with either the table or the environment
boundaries. The movement goal is provided by the neural
network described below. This skill’s outcome is either
success if the movement was completed or failure.

• NeuralNetwork: This skill is a fully recurrent neural
network with 3 inputs, 3 outputs and no hidden neurons.
The network’s input is the output or whatever neural
network had previously been activated, or it is random if
this is the first time this skill is active. To avoid random
fluctuations the network is allowed to settle for 30 steps
before generating the output. This skill has only a success
outcome.

The reward function is 1.0 whenever the robot was able to
discover the object, 0.0 otherwise. The reward is averaged
over 300 trials with randomly generated environments.

After around 400 generations our algorithm discovered
the FSA in Figure 2. We double-tested this action in
5000 randomly generated environments obtaining a success
rate of 93%. We believe that many failures were due to
environments where the object was not discoverable, e.g. it
was in a corner of the room at the very end of the table, thus
too far to be seen by the robot.

We tested the same FSA on the real robot in a 4 × 4
environment. The experiment has been repeated 50 times
with a randomly placed table and object. The robot obtained
a success rate of 91%. All the failures where due to the
neural networks generating poses that were unreachable by
the robot.

The behavior of the FSA in Figure 2 can be described as:

1. NeuralNetwork 17 generates an output triple using a
random input.

2. NeuralNetwork 54 uses the output from
NeuralNetwork 17 to generate another triple.

3. RobotMove 88 uses the output from NeuralNetwork 54
to move the robot to a an x, y, θ location. If it fails then
control switches to NeuralNetwork 52. Otherwise control
switches to ExitSuccess 57.

4. ExitSuccess 57 checks if the object is visible. If it is not,
control switches to NeuralNetwork 52, otherwise the FSA
terminates with success.

5. NeuralNetwork 52 uses any previously generated output
as input for its computation. This includes the output
it generated 2 or 3 steps ago. Control then switches to
RobotMove 88.

Although we did not use hidden nodes in the neural
networks, NeuralNetwork 52 has its input chained with
its output (via other states), therefore it is mimicking the
behavior of an hidden layer.

This experiment showed that the attractors in fully
recurrent neural networks are capable of blindly search for
an object in a variety of environments.

Move to Pre-Grasp Position
In this second experiment we made use of the exploration
action previously developed to have the robot first search for
an object then move to a pose from where it is possible to
grasp it.

Many robotics applications require the robot to be able to
manipulate objects. The approach we use to grasp an object
(Hsiao et al. 2010) works only if the object is reachable by
the robot. However during our experiments we found that an
object is often hard to reach, even if it is close to the robot.
This is due to physical constraints of the robot’s arms that
are not easy to analytically model. Several approaches have
been proposed (Stulp, Fedrizzi, and Beetz 2009; Berenson,
Kuffner, and Choset 2008) to deal with this problem, and the
results prove that this is still a hard benchmark for robotics
algorithms.

Representing a grasping scenario requires an accurate
simulation of the environment and the robot. As this will
slow down the evolutionary process, a fast computation of an
action’s outcome is required. In this experiment we decided
to use a Radial Basis Function neural network (RBFNN)
(Poggio and Girosi 1990) to classify whether an object is
reachable or not. We collected training and validation data
over a full day of experimentations, where the robot was
moving randomly with respect to an object on a table. To
generate more random positions the robot had to try to push
the object instead of grasping it. During our experiments we
found that if the robot can push an object then it can grasp
it as well. The opposite is not necessarily true, so pushing
is a harder task than grasping4. For each tentative push we

4Pushing an object requires the robot to be able to reach several
positions around the object, while grasping requires only one.
Therefore if the robot can push an object, it can grasp it as well.



Figure 3: Pre-Grasp The numbers at the end of state’s names
are used to uniquely identify them. The red circle is the
starting state.

recorded the position of the object in the robot’s frame of
reference, the robot’s torso height and which arm was used
to push the object, or if the object is unreachable. Overall we
collected 872 data points: of these 500 points were used for
training and 372 for validation. We then trained a RBFNN
with 5 inputs, the x, y, z position of the object in the robot
frame of reference, the angle θ between the robot and the
object on the x − y plane and the robot’s torso height h.
The RBFNN classifies the input into three classes, 0 if the
object is unreachable, 1 if it is reachable with the left arm
and 2 if it is reachable with the right arm. After training the
network had a performance of 92% correct classifications
over the validation data set. We have thus obtained a fast
way to determine if an object is reachable from a given
position: this can be used in a simulator without resorting
to a computationally expensive analysis.

The robot started with the following skills:

• ExitSuccess: The robot uses RBFNN to determine if the
object is graspable.This skill’s outcome is either success
or failure. If successful the FSA terminates.

• RobotMove: This skill is analogous to the one presented
in the previous experiment, with the difference that it will
also take an input representing the robot torso height.

• NeuralNetwork: This skill is a fully recurrent neural
network with 6 inputs, 4 outputs and 3 hidden neurons.
The network’s input is the x, y location of the object,
the x, y location of the table and the width, length of the
table. The network’s outputs represent the x, y, θ location
to move the robot to plus the robot torso height. This
skill has a failure outcome if the object has not been
discovered, or success otherwise.

• Explorer: This skill is the FSA developed in the previous
section. It has both the success and failure outcomes.

The reward function is either 1.0 if the robot moves to a
position where it can grasp the object, or 0 otherwise.

This experiment proved to be more difficult than the
previous one, as only a few positions are good candidates
to grasp an object. It took our algorithm 2300 generations to
achieve a success rate of 88%. The resulting FSA is shown
in Figure 3. In order to appreciate the complexity of the
overall system we show in Figure 4 the complete FSA with
the Explorer skill expanded.

We tested the PR2 in 50 different scenarios, obtaining a
success rate of 77%. A third of the failures was due to the
explorer not being able to find the object. A second cause of

Figure 4: The Pre-Grasp FSA with the explorer state
expanded. Confront with Figure 2 and Figure fig:pre grasp
automaton.

failures was due to the errors induced by the approximation
of the pre-grasp poses by the RBFNN, that predicted poses
from which the robot could not reach the object.

The structure of the FSA in Figure 3 shows that the the
topology is close to be optimal. The explorer is used only
at the beginning when the neural network fails (the object
has not been discovered yet), but after that it is not activated
any more. The control switches to the upper part of the FSA
where the usual cycle of generate a position - move - check
if it is successful happens. The main duty is performed by
NeuralNetwork 4 which does not use any chaining, as the
number of inputs differs from the number of outputs. Its role
is therefore to generate candidate positions from where to
approach the object.

Discussion and Conclusions
The goal of this work is to illustrate an algorithm where
externally provided skills are automatically combined to
generate complex actions. A researcher willing to integrate
the results obtained in other fields with his/her own work
only has to write a simple simulator, define a reward function
and let the evolutionary algorithm find a solution to the
problem. Moreover, by using generic computational devices
like recurrent neural networks, our proposed algorithm is
able to fill the gaps where the provided skills are not
sufficient. This is the main distinction between our approach
and other planning-based approaches.

A number of questions arises from this work. As the
number of skills the robot is equipped with increases,
choosing the right ones for a particular problem becomes
crucial. In the experiments above we provided the
evolutionary algorithm the right set of actions to work with.
Although this choice has certainly helped to obtain results
in a shorter number of generations, we do not believe this
has a significant influence over our results. Our proposed
algorithms deals with genomes whose size increases and
decreases as the evolutionary process unfolds over time.



For example the node RobotMove 88 suggests that at one
point during evolution there were at least 88 nodes in the
FSA. Many of these nodes have been found to decrease the
genome’s fitness and they have been evolved out. Therefore,
as discussed above, the limited number of transitions an
FSA is allowed during one execution acts as a force that
pushes the evolutionary algorithm to look only for the nodes
that positively contribute to the fitness. This in turn will
automatically remove actions that do not contribute to solve
a problem.

A major issue with this work is to write a correct simulator
for our experiment. Many skills can change the robot
state in unpredictable ways, rendering the results obtained
in simulation not usable on the real robot. For example,
although the result of grasping is either the object is in
the robot gripper or it is not, there are other not modeled
results like the changed position of the robot’s end effectors.
This changes could in turn influence other actions, e.g. the
robot can not safely move if the arms will collide with
the environment. Obviously these effects could be modeled
by a more complex simulator, but this will both increase
the efforts of writing it and it will increase the required
computational time, reducing some of the benefits of our
proposed approach. We are currently working on automated
ways to learn the effect of the actions, so that the robot
will have a good estimate of the world’s state changes after
having performed an action. This will be an extension to the
RBFNN for pre-grasping poses classification we used in the
second experiment.

Another major issue is that, with the increasing
complexity of the actions, co-evolving an FSA’s topology
with neural network parameters becomes a huge task. This
in turn might hinder the scalability of our approach to
solve complex tasks. We addressed this problem by using
a “scaffolding” approach (Bongard 2008), i.e. presenting
the robot with problems of increasing complexity and the
re-using the results obtained before. This requires a big
effort to correctly segment the task into feasible steps.
We are currently investigating a double-step evolutionary
approach, where first an FSA topology is found, then neural
networks are generated to fill the missing skills. This will
factorize the solution space rendering the search for a
solution feasible.

References
Bäck, T. 1996. Evolutionary algorithms in theory and
practice. Oxford University Press New York.
Beer, R. D., and Gallagher, J. C. 1992. Evolving Dynamical
Neural Networks for Adaptive Behavior. Adaptive Behavior
1(1):91–122.
Beetz, M.; Jain, D.; Mösenlechner, L.; and Tenorth, M.
2010. Towards performing everyday manipulation activities.
Robotics and Autonomous Systems 58(9):1085–1095.
Berenson, D.; Kuffner, J.; and Choset, H. 2008. An
optimization approach to planning for mobile manipulation.
2008 IEEE International Conference on Robotics and
Automation 1187–1192.

Bongard, J. 2008. Behavior chaining: Incremental behavior
integration for evolutionary robotics. Artificial Life 11:64.
Cohen, B.; Chitta, S.; and Likhachev, M. 2010.
Search-based planning for manipulation with motion
primitives. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on, 2902–2908. IEEE.
Hart, S., and Grupen, R. 2011. Learning Generalizable
Control Programs. IEEE Transactions on Autonomous
Mental Development 3(3):216–231.
Hopcroft, J.; Motwani, R.; and Ullman, J. 1979.
Introduction to automata theory, languages, and
computation. Addison-wesley Reading, MA.
Hsiao, K.; Chitta, S.; Ciocarlie, M.; and Jones, E. 2010.
Contact-reactive grasping of objects with partial shape
information. In Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, 1228–1235. IEEE.
Jakobi, N. 1997. Half-baked, ad-hoc and noisy: Minimal
simulations for evolutionary robotics. In Fourth European
Conference on Artificial Life, 348–357. The MIT Press.
Kaelbling, L., and Lozano-Pérez, T. 2011. Hierarchical task
and motion planning in the now. In IEEE Conference on
Robotics and Automation (ICRA).
Konidaris, G., and Barto, A. 2009. Skill discovery
in continuous reinforcement learning domains using skill
chaining. Advances in Neural Information Processing
Systems 22:1015–1023.
Konidaris, G.; Kuindersma, S.; Grupen, R.; and Barto,
A. 2011. Autonomous Skill Acquisition on a Mobile
Manipulator. In Proceedings of the Twenty-Fifth Conference
on Artificial Intelligence.
Marder-Eppstein, E.; Berger, E.; Foote, T.; Gerkey, B. P.;
and Konolige, K. 2010. The Office Marathon:
Robust Navigation in an Indoor Office Environment. In
International Conference on Robotics and Automation.
Perone, C. S. 2009. Pyevolve: a Python open-source
framework for genetic algorithms. SIGEVOlution
4(1):12–20.
Poggio, T., and Girosi, F. 1990. Networks for approximation
and learning. Proceedings of the IEEE 78(9):1481–1497.
Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.;
Leibs, J.; Berger, E.; Wheeler, R.; and Ng, A. 2009. Ros: an
open-source robot operating system. In ICRA Workshop on
Open Source Software.
Riano, L., and Mcginnity, T. M. 2012.
Automatically Composing and Parameterizing Skills
by Evolving Finite State Automata. Robotics
and Autonomous Systems (In Press, available at
http://dx.doi.org/10.1016/j.robot.2012.01.002).
Stulp, F., and Beetz, M. 2008. Refining the execution
of abstract actions with learned action models. Journal of
Artificial Intelligence Research 32(1):487–523.
Stulp, F.; Fedrizzi, A.; and Beetz, M. 2009. Action-related
place-based mobile manipulation. 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems
3115–3120.




