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Abstract

This paper gives a brief retrospective of a research
project begun in 1987 and continuing to the present on
the topic of language acquisition by an autonomous hu-
manoid robot. We recount the motivations for, theoret-
ical bases of and experimental results on this subject.
Important results include novel models and algorithms
resulting in interesting linguistic function of our robots.

The Strong Theory of AI is clearly expressed in Turing’s
seminal 1950 paper in which he proposes the infamous “Tur-
ing Test” for intelligent behavior. The intuition behind his
elaborate argument is that the Universal Turing Machine
is capable of performing virtually any symbol manipula-
tion process and is therefore sufficient for creating a mental
model of the world. The preferred realization of this idea is
a synthetic model, complete in every detail, that computes a
symbolic representation of meaning from natural language
text. This process is to be based on predetermined opera-
tions on predefined symbols. The symbols and operations
are to be determined by some combination of scientific ob-
servation, introspection and divine inspiration.

In the penultimate paragraph of this paper, Turing of-
fers an astounding and often overlooked alternative suggest-
ing that the symbols and relations amongst them could be
learned from real-world sensory data. In fact, he urges that
both approaches be tried. It may be argued that both ap-
proaches conform to the Strong Theory of AI but in signifi-
cantly different ways. The direct synthesis is predicated on a
discrete symbolic model perfectly isomorphic to reality and
unaffected by any uncertainty present in the physical world.
This approach assumes that the sensorimotor periphery may
safely be ignored. The alternative theory uses the compu-
tational power of the Turing Machine to analyze the physi-
cal processes from which distributed symbols and structures
derive. Thus, cognitive function emerges from physical mea-
surement and mathematical description of the experience of
and participation in reality.

A unification of these two complementary interpretations
of the Strong Theory leads to the following hypothesis about
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brain, mind and language. The disembodied mind is a fan-
tasy. Thought is almost exclusively the product of the vast
associative memory called the brain. The memory is able to
capture spatiotemporal order and represent it episodically.
Thus there can be no isolated perceptual or cognitive func-
tions. Memory is built up from instincts by the reinforce-
ment of successful behavior in the real world at large. As a
cognitive model of reality is acquired, a linguistic image of
it is formed primarily in response to semantic information.
Other levels of linguistic structure exist to make semantics
robust to ambiguity. When the language is fully acquired,
most mental processes are mediated linguistically and we
appear to think in our native language which we hear as our
mind’s voice.

The argument outlined above is discussed in detail in
chapters 9 and 10 of (Levinson 2005) and serves as the basis
for our ongoing research on the role of sensorimotor func-
tion, associative memory and reinforcement learning in au-
tomatic acquisition of spoken language by an autonomous
robot. Over the years we have made some progress to-
ward this most ambitious goal. We have integrated visual
navigation and object manipulation under voice command
(Squire and Levinson 2007) and then augmented it with syn-
tax learning (McClain 2007). In these experiments we spoke
naturally to the robot while pushing it around its ”playpen”.
This resulted in the acquisition of lexical semantics for phys-
ical objects such as ”green ball” and ”red can”. The visual
navigation ability was learned by means of a Markov Deci-
sion Process whose parameters were estimated by a variant
of Q-learning. The perceptual and linguistic abilities were
simultaneously learned by means of a nested collection of
HMMs whose parameters were estimated by an incremen-
tal stochastic gradient algorithm. Later we added a simple
grammatical inference algorithm so that the robot was able
to learn the production rules of a small context-free gram-
mar and the lexical semantics of action verbs and the com-
positional semantics of short sentences. In this experiment
we also provided speech synthesis so that the robot could
perform an action and then use the grammar generatively to
explain its actions.

As members of the EUCog project, we recently acquired
an iCub humanoid robot. This has enabled us to study an-
thropomorphic fine motor control (Silver, Wendt, and Levin-
son 2010) and language acquisition (Majure et al. 2010).
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The motor control experiments are based on the design of
a PID controller to allow the robot to balance a ping-pong
ball at any designated location on a flat plate held in the
robot’s hand based on visual perception. We are now study-
ing the process of reinforcement learning of the controller by
means of a Q-learning algorithm where the Q-function com-
putes the reward of a state/action pair. These experiments
are a prelude to getting the robot to learn to stand upright
and walk.

At present we are studying cortical models for associa-
tive memory (Duda and Levinson 2010). These are ab ini-
tio simulations beginning at the cellular level in which we
use well-known cellular electrodynamics to produce spik-
ing neurons. These are clustered into small networks whose
collective properties such as firing density and phase syn-
chrony are taken as information bearing features. The small
networks are interconnected by fixed neural pathways into
larger networks whose non-linear dynamics display multi-
ple metastable equilibria that can be used as memories.

Another ongoing study is that of the relationships among
motor control, spatial reasoning, and the semantics of ac-
tion words. Here we address the question of what kind of
stochastic model can learn a symbolic representation of spa-
tial reasoning derived from sensorimotor function and how
can that representation be used to support the deep seman-
tics of language. We are conducting experiments to get the
robot to learn to reproduce simple hand and arm gestures
from direct demonstration and/or imitation and the spoken

descriptions of the gestures (Niehaus 2011).
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