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Abstract

The paper discusses how a human-robot team can remain “co-
hesive” while performing under stress. By cohesive the paper
understands the ability of the team to operate effectively, with
individual members being interdependent-yet-autonomous in
carrying out tasks. For a human-robot team, we argue that this
requires robots to (1) have an adequate sense of that interde-
pendency in terms of the social dynamics within the team, and
to (2) maintain transparency towards the human team mem-
bers in terms of what it is doing, why, and to what extent it can
achieve its (possibly jointly agreed upon) goals. The paper re-
ports of recent field experience showing that failure in trans-
parency results in reduced acceptability of robot autonomous
behavior by the human team members. This reduction in ac-
ceptability can have two negative impacts on cohesiveness:
Humans and robots fail to maintain common ground, and as
a result they fail to maintain trust.

Introduction
We envision humans and robots to team up, work together.
And not just that. We intend them to do so under circum-
stances that are physically, mentally, stressful. Military mis-
sions. Search and rescue missions. These are missions that
typically demand the utmost from those involved.

Teams survive these ordeals because, or rather – when,
they stick together. This is a matter of leadership, this is a
matter of bonding between the members of the team; See
for example (Siebold 2000; Kolditz 2007). The stronger the
social fabric and moral fibre of the team, the more resilient
it is against adverse circumstances. That is much to ask. But
it is something we can train people, teams, to achieve.

How could we ever achieve that in human-robot teams?
Why would we ever even need to achieve that?
The question of social fabric in human-robot teams can

only be asked if we can consider robots to be, at least to
some degree, autonomous actors. If they are not, we should
strictly speaking not consider them as team-members, but
simply as tools. This notwithstanding the human tendency to
anthropomorphize robots (Duffy 2003); See (Singer 2009)
for interesting anecdotes from soldiers bonding with their
packbot robots during deployments in the Iraq theatre. Co-
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hesiveness is about the strength between actors, between
whom there exists an interdependency.

This naturally does raise the question whether robots
ought to be autonomous, whatever the degree, and what-
ever precisely we might understand by that notion; See e.g.
(Parasuraman, Barnes, and Cosenzo 2007). The literature
shows this to be a matter of what the robot is supposed to
be capable of doing autonomously. For robots with lethal
capability, opinions point to restricting autonomy, always
keeping the human (soldier) in full control (Moshkina and
Arkin 2007). On the other hand, for robots to be deployed in
search & rescue missions, increased autonomy is often seen
as highly desirable (Birk and Carpin 2006). The contention
here is that, without some degree of autonomy in the robot,
there is no human-robot team to speak of.

But back to interdependency. In a human-robot team,
there is an interdependence between the different actors
(Johnson et al. 2011). Shared control is a relation between
a human and a robot; See also (Bradshaw et al. 2004). Au-
tonomy is not just a matter of the behavior of an individual
robot. It is how this behavior is interleaved with human be-
havior, human task assignments and delegations. Humans
and robots together build up a common ground, providing
complementary information, playing by a common set of
rules and agreements for a joint activity (Klein et al. 2004b;
2004a; Bradshaw, Feltovich, and Johnson 2011).

One way to model a perspective on interdependency is
to use policies which (directly) govern action- and interac-
tion behavior of a robot; See e.g. (Johnson et al. 2006).
Here we would like to complement that (fairly low-level)
perspective with a (higher-level) characterization of the so-
cial structure of a human-robot team. This social structure
is based on an analysis of possible roles within a human-
robot team, following up on the communicative analysis of
(Burke et al. 2004; Murphy and Burke 2010). A role for an
actor essentially specifies the functions it is responsible for
(action, interaction) and with which other roles these func-
tions are connected (relational view); under what conditions
these functions can be performed (integrity limits); and what
information is required, and provided, by the role. We would
like to argue that the advantages of the role-based perspec-
tive are the following:
• Human-robot teaming can be modeled from an event-

driven, systemic viewpoint on the entire socio-technical
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system; See (Stanton, Baber, and Harris 2008).

• Context-driven demands on functioning within the team
can be explicitly tied to social structure: roles between
actors, and context-specific information demands, yield-
ing a distributed notion of situation awareness which is
necessary for modeling geographically distributed teams;
See (Salmon et al. 2009).

• An explicit model of social structure and distributed sit-
uation awareness, coupled to explicitly modeled and ac-
tively measurable integrity limits, aid in providing means
for active trust management in the team (particularly from
the human to the robot); See (Fitzhugh, Hoffman, and
Miller 2011).

How Could We Model?
This paper does not provide a model. There is no fully func-
tional model of human-robot teaming yet, particularly not of
human-robot teams performing under stress. The point we
are trying to make is that we need to construct an explicit
account of the social dynamics within a human-robot team.
A robot needs to be able to reason with social structure. It
needs to understand why, when, and how it is to work with
others. Otherwise it cannot adapt its own behavior to best
fit the circumstances – particularly if it just does not have
enough (certain) information to act upon in a particular situ-
ation.

For this to work we need to ground these social dynamics
in a notion of distributed situation awareness. Human-robot
teams are often distributed across a larger area. Typically
robots are deployed in a hostile area, whereas human opera-
tors are at a remote command post, or work in line-of-sight
of the robot but not necessarily directly next to it. This in and
by itself already means there is a variation in the perspec-
tives the various actors develop on “the” situation, an issue
further compounded by the way roles might imply differ-
ent (possibly mediated) views on reality (Murphy and Burke
2010). Furthermore, not everybody needs to know the same,
needs to have the same situation awareness. This very much
depends on their assignments, the roles they play (Murphy
and Burke 2010). Situation awareness is distributed between
the actors, depending on who they are connected “socially”
through the roles they play; a notion quite different from the
individualistic or everybody-is-sharing notions of situation
awareness, See (Salmon et al. 2009).

Finally, tracking the dynamics of role assignments and -
shifts within a human-robot team provides a context within
which we can consider active trust management (Fitzhugh,
Hoffman, and Miller 2011). Trust between a human and a
complex technological artifact such as a semi-autonomous
robot can not be considered a static notion. Trust of the
human in the robot, i.e. with the robot being the object of
trust, is very much dependent on context. Fitzhugh et al
mention multiple dimensions: Trust in the technology per se
(trust in reliability of the platform, sensors, to network in-
frastructure); trust in decision-making (trust in the robot to
deal accurately with incomplete and uncertain information);
trust in the sociotechnical work system (trust in the robot
and the overall system to assist the human); and, trust in the

overall capability of the human-robot to be able “to get the
job done.” An important issue is then, how to provide the
quantitative means for a robot to measure its performance,
to communicate that to the user to guide trust management,
and to actively communicate and resolve issues in trust. This
is where the interdependency comes in again: If a robot is
uncertain, it can (and should) indicate this, and solicit the
human in helping to resolve it; See e.g. (Kruijff, Brenner,
and Hawes 2008).

To facilitate this, we have been working on a model of
team structure. We close this paper by briefly outlining
its main structure. At the core of the model is the notion
of a role. A role defines several dimensions which are in-
tended to cover the requirements for raise for collaborative
role models for robots in C2 activities, following (Klein et
al. 2004b) and (Murphy and Burke 2010).

• Scope of Action: A role needs to define what actions it performs
in information- and decision-management processes, (relative to
one or more C2 activities). This outlines the scope of the contri-
butions this role can make to the overall effort.

• Bandwith of Autonomy: A role needs to define the lower-
and upper limits on its autonomy in acting in information- and
decision-management processes (LOA, (Parasuraman, Sheri-
dan, and Wickens 2000)).

• Integrity Limits: Complementary to the LOA bandwidth for
specific actions a role needs to define a notion of “integrity lim-
its.” These need to describe the limits to which contributions can
be made, and provide for contingency management e.g. through
strategies for direct reporting to identified (active) roles in the
team (“who should know when I fail”).

In highly interdependent settings like a team, the behavior
of the individual actors needs to be transparent to others (mu-
tual predictability). It needs to be clear why someone is per-
forming a particular action, so that outcomes and follow-up
behavior can be predicted. This is necessary for interdepen-
dent action and coordination to be efficiently plannable and
executable. Challenges here include predictability itself, the
ability of an agent to make pertinent aspects of his actions
and intentions clear to others, and the ability to observe and
interpret such signals from others.

• Direct Reports on Acting: To: A role needs to define strategies
for reporting its actions and its reasons for performing them, to
one or more roles in a team. This is connected to the Bandwidth
of Autonomy, and the issue of keeping the human in the loop.

• Direct Reports on Acting: From A role needs to define con-
ditions that reflect interdependence of its own role on others, in
terms of information- and decision-making state.

Mutual directability involves both the capability to assess
and modify the actions of other agents, and to be responsive
to the influence of others on one’s own actions. This involves
the ability to be directable, to negotiate goals, and to support
a continual approach to collaboration. The latter reflects the
need to allow for the actions and plans to be collaboratively
adjusted, as the situation demands. Finally, actors must be
able to participate in managing attention, particularly to be
able to align perspectives on situations (Murphy and Burke
2010; Zender, Kruijff, and Kruijff-Korbayová 2009; Zender
et al. 2010).
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Again, from the viewpoint of collaborative role models
and keeping the human in the loop, this requires roles to
combine an upper limit to autonomy in decision processing,
with reporting (and negotiating) on decision status, as indi-
cated above. Furthermore, a role needs to make dynamic
and role-based authority explicit.
• Authority A role needs to make explicit authority relations:

from what roles it accepts directability, what goals it can nego-
tiate with other roles (and when), and for what actions (states)
it has authority to decide (which may include actions associated
with other roles). Authority may be inherent to the role itself,
or be derived from the adoption of a role in the current team
context (e.g. being designated team leader over other agents).

• Attention A role needs to define strategies for directing the at-
tention of others in specific roles, on the basis of signals, activi-
ties and changes in its own state. Any attention-direction action
needs to be mediated through the viewpoints associated with the
roles in question.

Finally, effective coordination between team members re-
quires them to establish and maintain a form of common
ground, distributed situation awareness capturing (activated)
knowledge, beliefs, and intentions.
• Viewpoints A role needs to define its own viewpoint(s) (Mur-

phy and Burke 2010) and the modalities through which these
viewpoints are mediated.

We formulate a role as a tuple (PossibleActors, Func-
tions,Relations,Viewpoints). PossibleActors is a set of actors
(types) that can take on this role. Functions is a set of func-
tion primitives. The function primitives identify what they
operate on (information INFO, actions ACT) , and (where
relevant) with respect to what (ENVIRONMENT), or whom
(the role’s primary actor SELF, or other actors ACTOR). AC-
TORs are identified by roles. ACTs have assigned ACTORs
including SELF. Table 1 lists the primitives we consider.
The list is an extension of the RASAR-CCS scheme pre-
sented in (Burke 2003). For a function, the role also speci-
fies a bandwidth of autonomy indicating what level(s) of au-
tonomy are required for performing this function, and which
integrity limits condition the possible execution of the func-
tion. Relations is a set of directed links between the role,
and other roles. Each link indicates how an actor “playing”
this role can construct connections to other roles active in
the team. Finally, viewpoints specify from what (mediated
or non-mediated) perspectives an actor in this role perceives
the situation; See (Murphy and Burke 2010).

We are currently working on a logical formalization of
the role-based model of social dynamics. The model is
grounded in logical-probabilistic models of multi-agent sit-
uation awareness, and is coupled to an explicit account of
trust (Kruijff and Janı́ček 2011); See also (Herzig et al.
2010). One of the current challenges is to provide a notion
of situatedness which allows us to accurately capture trust as
an active concept, with the possibility to vary the attribution,
reliance, and management of trust within a team with the de-
gree of stress under which the human actors are operating.

Recent experience
Over 2011, we have been deploying systems for robot-
assisted Urban Search & Rescue in various realistic settings.

Function Explanation
1. SEEKINFO Ask for INFO from an ACTOR
2. REPORT Share INFO about SELF, ENVI-

RONMENT, or other ACTOR
3. CLARIFY Make previous INFO more pre-

cise
4. CONFIRM Affirm previous INFO, or (se-

lected) ACT
5. CONVEYUNC Express doubt, disorientation,

or loss of confidence in INFO
6. PROVIDEINFO Share INFO other than REPORT,

either in response to a SEEK-
INFO request from another AC-
TOR, or to provide unsolicited
information

7. PLAN Project future, spatially situated
GOALs, or ACTs to GOALs

8. SELECT Select ACT
9. EXECUTE Execute ACT
10. ORDER Authority: Order another AC-

TOR to ACT, or allow another
ACTOR to order SELF

11. INTERVENE Authority: Allow another AC-
TOR to intervene in ACT

12. PROPOSE Propose ACT(s) to ACTOR

Table 1: Function primitives for robot collaborative role
models; (1–7 from Burke et al/RASAR-CCS).

In an initial deployment at the training center of the Fire De-
partment of Dortmund (FDDO; January 2011), first respon-
ders were given the task to explore a tunnel accident-like
setting, using a fully tele-operated robot(ActivMedia P3-AT,
with 2D laser and omni-directional camera). The setting was
built up in a large garage, and involved several crashed cars,
debris, and a motor bike. Victims were distributed over the
entire setting, inside and outside cars, and near the motor-
bike. The exploration was conducted under time pressure.

We observed relatively constant, average cognitive load
for each subject (subjective rating), although subjects did
display heightened stress signals as soon as the robot would
be operating under smokey conditions. Subjects were able
to build up a relatively accurate assessment of the situation,
despite difficulties in observing for example victims in cars.
(For more detailed discussions, see (Larochelle et al. 2011;
Mioch, Smets, and Neerincx 2012).)

Adding more robots into the setting to provide for more
flexibility in operating in the environment would make it
necessary though for more humans to become involved;
See also the discussion in (Murphy and Burke 2010). To
study human-robot teaming in more detail, we first orga-
nized NJEx 2011, a joint exercises event.1 During this event,
teams consisting of several humans, a microcopter (UAV)
and a rover (UGV) would explore several complex environ-
ments, including a multi-story residential building “on fire.”
Team members included both first responders and scientists.
Both human and robot team members were geographically
dispersed. Human team members in the roles of Mission
Commander, UGV Operator, and UGV/UAV Mission Spe-

1Video: http://youtu.be/MTtEEsoEhnw

30



(a) (b) (c)

Figure 1: Human-robot teams at a control post (a; FDDO Dortmund); team interface setup, at the table at the wall in the back
(b; SFO Montelibretti); UGV operator GUI showing different 2D and 3D map information, as well as panoramic and zoomable
camera views (c)

cialist were located in a remote control post (Fig. 1(a)),
whereas the UAV Operator remained in-field within line-of-
sight of the UAV to fly it.

For NJEx 2011 we particularly focused on human-human
interaction within the human-robot team, as the robots were
fully tele-operated. To this end, we recorded all the radio
traffic between human members which were distributed over
the area. Interesting observations here were that communi-
cation particularly concerned the communication of situa-
tion awareness (“we see a victim under the shelves in the
room at the end of corridor, right”), and goals (“we are
going to look under the staircase, at the end of the corri-
dor, left”). All of these messages were explicitly situated
(or located) in the environment. The Mission Commander
mostly communicated situation awareness, to maintain com-
mon ground within the team, whereas the UGV operator
would indicate what next actions the UGV would perform
(and where). Planning exploration tasks was typically done
within the control post. Coordination with the in-field team
members was done through the Mission Commander. The
UAV Operator would be tasked to fly the UAV to a partic-
ular point, with an explicitly communicated purpose – typi-
cally, what kinds of observations the control post would like
to make. Video feeds from the UAV were inspected by the
UAV Mission Specialist in the command post, with the Mis-
sion Commander providing feedback to the UAV Operator.

For safety reasons each team included two Safety Direc-
tors, one for the UGV and one for the UAV. The Safety Di-
rectors had the best awareness of the situations around the
robots, as they were right there. The protocol was such that
they were not allowed to describe the environment, just in
some cases they could give hints about how to get a robot
out of a tight spot. In practice, as no situation awareness
was allowed to come from a Safety Director (protocol), the
team members in the remote control post often decided to
rely on their own insights.

Altogether we collected over 12 hours of audio data (ra-
dio traffic) during NJEx. This data has been segmented, and
annotated for speaker roles, and perceived stress. Analy-
sis so far has yielded that the Mission Commander and the
UGV Operator generate the most radio traffic, with one or
the other taking on a leading role. (In the most effective
teams, this was always the Mission Commander.) Further-
more, variations in stress levels can be detected acoustically

in this data in real time, currently with a correct classification
rate of 74% (Charfuelan, p.c.). Stress variation was partic-
ularly observable for team members with high radio traffic,
i.e. the Mission Commander, UGV Operator, and the UGV
Safety Commander.

We took these insights into account for the end user evalu-
ations we performed mid-December 2011, at the SFO train-
ing area of the Vigili del Fuoco, in Montelibretti (Italy).
At these evaluations, experiment subjects took the role of
UGV Operator, in a team consisting of a Mission Comman-
der doubling as UAV Mission Specialist, an UAV Opera-
tor, an UGV, and a UAV. The Mission Commander and the
UGV Operator were in a remote command post, whereas
the robots and the UAV Operator were in-field. The task of
the team was to explore a complex tunnel accident involving
multiple cars, debris, and a truck, set up in a real-life tunnel
structure.2 Operating in the tunnel happened under strong
variations in lighting conditions, and(artificial) smoke.

The team members in the control post had access to va-
riety of information views, in a multi-screen multi-modal
graphical user interface. Fig. 1(b) shows the overall setup.
Views included robot-specific interfaces, for example Fig.
1(c) illustrates the view for the UGV Operator, and (quali-
tative) views for team-level situation awareness. Communi-
cation between the command post and the in-field UAV Op-
erator was via hand-held radio, through the Mission Com-
mander. The UGV Operator communicated with the in-field
UGV using the multi-modal GUI (touchscreen) and possibly
spoken dialogue. The UGV was capable of autonomous nav-
igation, and could use spoken dialogue to inform the UGV
Operator about observations, and to provide basic feedback
on actions (action-possibility, action-onset).

Altogether the exploration task was run with 7 subjects
over the course of a week. Each subject took about 4 hours
to instruct, run the task with, and debrief. The exploration
task itself took about 45 minutes. For each subject several
objective biometric data (heart rate, facial expression, task-
and communication observation protocols) were recorded,
as well as subjective ratings of cognitive load (intrusive, ev-
ery 2 minutes). For 4 subjects we recorded audio of their
interactions with the robot, and with other team members.
In addition, logs were created for the entire user interface,
and the UGV. These logs enable a complete replay of each

2See e.g. http://youtu.be/1hWEIV0XL 4
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run of the UGV.
All this data (approximately 200GB) is currently still un-

der analysis. At the same time, we have been able to make
some initial observations. Robots can assist humans in com-
plex missions like Urban Search & Rescue (Murphy et al.
2008). To make this possible, we arguably need more au-
tonomy in the robot (Birk and Carpin 2006) – whereby we
must understand “autonomy” as a complex notion, spanning
a wide variety of capabilities, ranging from perception to
navigation. However. Disaster areas are harsh places, for
humans and robots alike. In practice we always experience
what Woods et al (Woods et al. 2004) termed “(Robin) Mur-
phy’s Law: any deployment of robotic systems will fall short
of the target level of autonomy, creating or exacerbating a
shortfall in mechanisms for coordination with human prob-
lem holders.”

Things break down. Inevitably. Adaptive autonomy or
shared control might be one way out of this (Parasuraman,
Barnes, and Cosenzo 2007; Miller and Parasuraman 2007),
but the problem really goes much deeper than that. All au-
tonomy is for naught if the humans in the team do not ac-
cept a robot’s autonomous capabilities and intelligence. Re-
cent experience in Fukushima (S. Tadokoro, p.c.) and in our
own end user evaluations at SFO underline this. A robot’s
abilities, behavior, and possible achievements need to be
transparent to a human operator: Whether the robot is do-
ing something, what it is doing and why, whether it thinks it
has achieved a goal (or not). If an operator is unclear about
what to expect from the robot, he or she is unlikely to dele-
gate control to the robot. Instead, no matter what the robot is
able to do on its own, the operator reverts to tele-operation.

That’s not quite what anybody wants. But currently, this is
where we seem to stand. There is an issue of (lacking) trans-
parency in experience, behavior and intentions (Clark 1996;
Thomaz and Breazeal 2008). As this directly impacts user
expectations, a lack of transparency can seriously affect the
interaction (Lohse 2011; Komatsu and Yamada 2011); cf.
also (Dautenhahn 2007). All of this results in a lack of ac-
ceptability, thus serving as a possible explanation for why
human-robot interaction appears to be a bottleneck in USAR
(Murphy 2004). This problem gets exacerbated in the con-
text of USAR. Even though the subjects at the SFO exper-
iments indicated average cognitive workload, other (more
objective) observations indicated that there was frustration,
stress. Partly this was due to technical failures, but in a
not insignificant way this was also due to things simply be-
ing unclear to the users. As soon as that would happen,
they would regain control of the UGV, and operate it un-
der much more stringent levels of autonomy: For example,
users would move from waypoint navigation back to small
movement commands, or even revert to basic tele-operation.

Thus, if we want humans and robots to operate as a team,
transparency is key to achieving effective communication,
coordination, and collaboration.
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