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Abstract

Illegal extraction of forest resources is fought, in many devel-
oping countries, by patrols through the forest that seek to de-
ter such activity by decreasing its profitability. With limited
resources for performing such patrols, a patrol strategy will
seek to distribute the patrols throughout the forest, in space
and time, in order to minimize the resulting amount of ex-
traction that occurs or maximize the degree of forest protec-
tion, according to one of several potential metrics. We pose
this problem as a Stackelberg game. We adopt and extend the
simple, geometrically elegant model of (Albers 2010). First,
we study optimal allocations of patrol density under gener-
alizations of this model, relaxing several of its assumptions.
Second, we pose the problem of generating actual schedules
whose site visit frequencies are consistent with the analyti-
cally computed optimal patrol densities.

Introduction
Illegal extraction of fuelwood or other natural resources
from forests is a problem confronted by officials in many
developing countries, with only partial success (MacKinnon
et al. 1986; Dixon and Sherman 1990; Clarke, Reed, and
Shrestha 1993; Robinson 2008). To cite just two examples,
Tanzania’s Kibaha Ruvu North and South Forest Reserves
are “under constant pressure from the illegal production of
charcoal to supply markets in nearby Dar es Salaam,”1 and
illegal logging is reportedly “decimating” the rosewood of
Cambodia’s Central Cardamom Protected Forest (see Fig.
1). In many cases, forest land covers a large area, which
the local people may freely visit. Rather than protecting the
forest by denying extractors entry to it, therefore, protec-
tive measures take the form of patrols throughout the forest,
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1http://www.tfcg.org/ruvu.html

Figure 1: “A truck loaded with illegally cut rosewood passes
through Russey Chrum Village...in the Central Cardamom
Protected Forest.” Photo from (Boyle Dec 21 2011).

seeking to observe and hence deter illegal extraction activ-
ity (Lober 1992; Sinclair and Arcese 1995). With limited
resources for performing such patrols, a patrol strategy will
seek to distribute the patrols throughout the forest, in space
and time, in order to minimize the resulting amount of ex-
traction that occurs or maximize the degree of forest protec-
tion, according to one of several potential metrics.

Although in some cases patrols may catch would-be ex-
tractors as they are about to perform the extraction, and
therefore will directly prevent extraction from occurring, we
primarily focus on the extraction that the patrols deter. That
is, the leader wishes to arrange the potential troublemaker’s
environment so as to render his choice of engaging in this
behavior as expensive to him as possible.2 More precisely,

2We follow the convention of referring to leader as she and fol-
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given the continuous nature of this setting, we wish mini-
mize to the amount of extraction that will yield a positive net
return in his cost-benefit analysis. (To cite two real-life ex-
amples of this phenomenon, when the New York City Police
Department issued zero-tolerance policies on “squeegeeing”
and subway fare-beating, arrests for these crimes report-
edly went down rather than up (Kleiman and Kilmer 2009;
Kleiman 2009).) Therefore we pose the problem as a Stack-
elberg game in which the policymaker or leader publicly
chooses a (mixed) patrol strategy; in response, the extrac-
tor or follower then chooses whether or not to extract, or to
what degree. The problem we study is of computing optimal
leader strategies in such a game.

Economists have studied the relationship generally be-
tween enforcement policy for protecting natural resources
and the resulting incentives for neighbors of the PA (Mil-
liman 1986; Robinson 2008; Sanchirico and Wilen 2001).
A number of models and problem formulations of forestry
protection specifically have been proposed, including dy-
namic models (Robinson, Albers, and Williams 2008), forest
shape modification to increase protection (Robinson, Albers,
and Williams 2011), and combinations of forest protection
with local economic activity such as bee-keeping (Albers
and Robinson December 2011). Our point of departure in
this paper is the simple, geometrically elegant forest protec-
tion model of (Albers 2010), in which there is a circular for-
est surrounded by villages (hence potential extractors); the
task is to distribute the patrols’ probability density across
the region of interest; the objective is to minimize the dis-
tance by which the extractors will trespass into the forest and
hence (since nearby villagers will extract as a function of
this distance (Skonhoft and Solstad 1996; Albers and Grin-
spoon 1997; MacDonald, Adamowicz, and Luckert 1998;
Hofer et al. 2000)) maximize the size of the resulting pris-
tine forestland. We probe the probabilistic assumptions of
this model and consider a number number of more realistic
extensions to it. One example is permitting spatial variation
in patrol density. As has been observed (Albers 2010), ex-
ogenous restrictions on patrol strategies, whether adopted
for simplicity or to comply with legal restrictions, can
degrade protection performance (MacKinnon et al. 1986;
Hall and Rodgers 1992). We extend what is known analyti-
cally about the core model to these new settings and provide
new results. We also pose the problem of computing actual
patrol paths consistent with the desired densities.

The forest patrol problem we study here is an instance
of the leader-follower Stackelberg game model, which has
been the topic of much recent research and has been ap-
plied to a number of real-world security domains, includ-
ing the Los Angeles International Airport (Paruchuri et al.
2008), the Federal Air Marshals Service (Tsai et al. 2009),
and the Transportation Security Administration (Pita et al.
2011). See (Tambe 2011) for an overview.

The problem setting we address here differs from those
considered in these previous works in several crucial ways.
The biggest difference is that this setting is essentially con-
tinuous rather than discrete, both spatially and in terms of

lower as he.

Figure 2: The forest, with the pristine area shaded.

player actions. In the existing problems there are a finite
number of discrete locations or segments to protect (e.g.,
modeled as nodes of a graph), whereas in the our setting
ideally the entire forest area would be protected from ex-
traction. As such, our primary focus is, at least initially, on
the choice of distribution for patrol density over the two-
dimensional forest region, i.e. a probability distribution from
which to select patrols. (Of course, the continuous space can
be discretized by overlaying a grid on it, but any choice of
grid granularity will involve some level of approximation
and error.) Second, the followers make choose a distance
based on a cost-benefit analysis, considering both their ex-
pected returns and their labor costs based on distance.

The rest of the paper is organized as follows. After re-
viewing the model of (Albers 2010), including several pro-
posed patrol density strategies, we will consider several ex-
tensions and generalizations to the model, including relaxing
assumptions on both the problem setting and the permitted
patrol strategies. Second, we consider the problem of com-
puting actual patrol strategies consistent with the computed
patrol densities, i.e., computing (sets of) walks within the
region whose frequencies of visiting locations correspond
(approximately) to those locations’ patrol densities. We con-
clude with directions for ongoing and future work.

Core models
In this section we review and extend the model of (Albers
2010). The forest is a circular region of radius 1, with vil-
lagers uniformly distributed about its perimeter (see Fig. 2).
A villager’s action is to choose some distance d to walk on a
line from the perimeter towards the forest center before re-
turning his starting point, extracting on the return trip. Note
that in this setting, due to symmetries and the fact that vil-
lagers’ decisions are uncoordinated, the problem is essen-
tially one-dimensional; we may assume that the extractor
extracts only on the return trip from the forest. Villagers
gain a benefit if not caught and incur a cost, based on a de-
creasing marginal benefit function b(d) and an increasing
marginal cost function c(d). If caught, the villager’s ben-
efit is 0 (the extracted resources are confiscated) but the
cost is unchanged (the extractor’s traveled distance does not
change; there is no positive punishment beyond the confis-
cation itself and being prevented from engaging in further
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Figure 3: Shaping the extractor’s cost-benefit analysis.

extraction while leaving the forest3). Thus a given patrol
strategy will reduce the extractor’s expected benefit for an
incursion of distance d from b(d) to some value B′(d).

For a sufficiently fast-growing cost function relative to the
benefit function, there will be a “natural core” of pristine for-
est even with no patrolling at all (Albers 2010); that is, the
optimal value d∗ will be less than 1, since the marginal cost
of extraction will eventually outweigh the marginal bene-
fit, corresponding to the point at which the curves b(d) and
c(d) intersect (see Fig. 3). The overall result of choosing
a given patrol strategy therefore is to transform the benefit
curve b(d) into a lower benefit curve B′(d), thus reducing
the extractor’s optimal incursion distance (see see Fig. 3).

The leader has a budget E specifying (perhaps after ap-
plication of a suitable normalization constant) a bound on
the total detection probability mass that can be distributed
across the region. The task is to choose an allocation in order
to minimize the extractor’s resulting optimal trespass dis-
tance d∗.

Detection probability models
Let φ be the detection probability chosen by the leader, con-
stant over some subregion R of the forest. In the model of
(Albers 2010) (a version of which we present in this para-
graph, motivated slightly differently), the detection proba-
bility for a walk of distance d is equal to dφ. This setting
is best understood as one operating under a time model in
which the patrol units move much less quickly than the ex-
tractors, and so patrols can be modeled as stationary from
the extractor’s point of view. We assume that an extractor is
detected if he comes within some distance ∆ of the patrol.
Then indeed the probability of detection for an extraction
path of length d (when there is a single patrol unit) will be
proportional to φd, specifically φd2∆/|R|, where |R| indi-
cates the area ofR and the total area within distance ∆ of the
length-dwalk is approximated as d·2∆. Intuitively, the more
steps the extractor takes undetected, the higher the probabil-
ity he will be detected on the next step. (Here we assume the
patrol unit is not visible to the extractor.) Suppose the avail-
able patrol budget determines the sensing range ∆; this is

3Observe that since extraction occurs only on the return trip and
given the nature of the punishment, we may restrict our attention to
detection on the return trip.

equivalent to it determining the detection probability φ.
Alternatively, we may consider settings in which ∆ is

constant and the budget can be spent on multiple patrol
units. If there are some number of units u, then detec-
tion probability φ is the joint result of them together, i.e.,
φ = 1−(1−φu)u, where φu is the detection probability due
to each particular unit. Then the probability of capture from
a length-d extraction path becomes 1− (1− φud2∆/|R|)u.

An alternate time model is one in which the extractor
moves much less quickly than the patrol units, and so from
the extractor’s point of view the patrol units are newly as-
signed random locations (with replacement) at each mo-
ment. If we approximate a walk of length d as consisting
of n = d/∆ separate “trials”, then the detection probability
will be 1−(1−φ)n, regardless of whether there is one patrol
unit or many.

Patrol allocations
We describe three patrol allocation strategies have previ-
ously been considered:

• Homogeneous: Patrol density distributed uniformly over
the entire region.

• Boundary: Patrol density distributed uniformly over a
ring (of some small width w) at the forest boundary.

• Ring: Patrol density distributed uniformly over a some
ring (again of width w) concentric with the forest.

It is observed in (Albers 2010) that boundary patrols will
often be superior to homogenous patrols, since homoge-
neous patrols waste enforcement on the natural core. It is
interesting to note that this need not always be the case. Con-
sider the variable ∆ setting, and let the budget be E; assume
the homogenous-induced core radius is less than 1− d, w is
very small, and the trip length d satisfies w < 1/2 < d ≤ 1.
With homogenous patrols, the detection probability will be
simply E/π · d. With boundary patrols, however, the detec-
tion probability will be E

π−π(1−w)2 · w = E/π · w
1−(1−w)2 ,

which approaches E
2π as w → 0. In this case, homoge-

neous patrols will actually outperform boundary patrols. In-
tuitively, this is because a patrol in the interior will “inter-
sect” more trips from boundary to center than a patrol on the
boundary will.

It would be interesting to classify the situations under
which one patrol allocation is superior to another, for the
different probability settings. The best ring strategy can only
be better than boundary patrols, since the latter is a special
case of the former.

Other extensions
A number of additional potential extensions suggest them-
selves.

• Asymmetry: The core problem setting is highly sym-
metrical; the symmetry assumptions could be relaxed by
degrees. We could allow the weight of villager popula-
tions to vary around the forest perimeter, for example.
More dramatically, we could allow other, noncircular for-
est shapes.
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• Nonuniform importance: Currently, all the forest area is
equally important, both to the extractor and to the protec-
tor. Each of these assumptions could be relaxed, indepen-
dently.

• Continuity: As discussed above, an essential feature of
this problem setting is the continuity of space. Without
subverting this, we could introduce obstacles to move-
ment within the forest. With enough obstacles, however,
the forest may become “sparse” enough to be repre-
sentable by a graph.

Computing patrols
On whatever particular problem setting model is chosen
above, once a patrol distribution is chosen, the ultimate task
is to choose patrols in such a way that the frequencies with
which they visit locations within the forest are consistent
with the specified probability mass values of those locations.
This algorithmic problem, which can be seen as sampling
from a distribution or as a form of rounding, is the primary
open problem to solve here.

Conclusion
In this position paper, we have presented a Stackelberg secu-
rity game setting that differs significantly from those settings
previously considered in the AI literature. In ongoing work,
we plan to explore more realistic problem settings and tackle
the problem of generating actual patrol schedules consistent
with the optimal patrol probability density distributions.

Eventually, we aim to deploy the resulting patrol distribu-
tions and and schedules in real-world settings. In the past,
one of us (H.J. A.) has worked with the forest managers and
guards at Tanzania’s aforementioned Kibaha Ruvu North
and South Forest Reserves, which could provide one poten-
tial site for future research transition, as well as with the
marine park managers of Mnazi Bay Ruvuma Estuary Ma-
rine Park. It may be possible to implement these models in
the mangrove forests within that park, which exhibits a pat-
tern typical among the forests prompting this work: the man-
groves there are a source of wood and fuelwood/charcoal for
local people but such use of them decreases the forest’s abil-
ity to trap sediment, to clean water, and to provide a habitat
to juvenile fish.
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