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“to learn something well, you must learn it many different ways” 

         - Marvin Minsky 
 

 
Abstract 

The importance of diversity in reasoning and learning 
to successfully address complex problems is 
examined.  We discuss an approach by which a 
multiagent framework with decentralized control 
mechanisms provides diverse perspectives and 
hypotheses addressing a class of complex problems.  
We introduce the SNARE multiagent system.  
SNARE performs tasks to gain situational awareness 
of situations of interest in a Social Media Space.  It 
applies a decentralized control mechanism for each 
agent; this mechanism enables an agent to interact 
with other agents to reason and learn.  This approach 
facilitates dynamic agent organizations that adapt the 
topologies of interactions between agents based on the 
problem context. 

 

 Research Statement   
We are interested in complex problems spaces that require 
multi-strategy reasoning and learning techniques to 
effectively identify and respond to emerging situations of 
interest.  Our approach investigates the utility of 
independent reasoning agents, each agent being a distinct 
expert; these agents collaborate in various groupings. 
 
Specifically we are investigating formal representations for 
classes of problems that fit and are tractable to leverage 
Decentralized Partially Observable Markov Decision 
Processes (DEC-POMDPs) to enable multi-strategy 
reasoning and learning by collaborating sets of agents. 
Further, we are examining formal representations that will 
allow extending the complexity and scale of various 
problem spaces that our reasoning/learning techniques 
address. 
 
We will discuss our work on SNARE: Social Network 
Analysis and Reasoning Environment.  SNARE is a 
distributed computing system of collaborating human 
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analysts and independent specialized intelligent software 
components (a.k.a. software agents).  Our current 
investigation involves leveraging SNARE in the domain of 
social media to obtain anytime situational awareness of 
social media spaces; a social media space is an excellent 
candidate problem space due to the fluid nature of its 
complex domain features. 

Motivating Discussion 

Complex problems that require expressive problem solving 
strategies suggests: (1) the utility of gaining multiple 
perspectives of a given problem solving situation, (2) 
formulating and evolving one or more hypotheses of the 
situation, and (3) providing one or more explanations of 
each hypothesis.  The need for a diversity of 
reasoning/learning techniques and knowledge 
representations when addressing complex problems 
continues to be an important research topic [McCarthy, 
2002]. 
 
We will consider a sequence of work that provides the 
grounding of our control and reasoning mechanisms in 
SNARE.  First, prior work on the M system [Riecken, 
1994] provides an example of collaborating agents that 
generate multiple perspectives, hypotheses, and 
explanations of a problem space.  Each agent is a complex 
expert in a specific reasoning modality (e.g., temporal, 
causal, etc…).  M demonstrated an expressive performance 
of its agents collaborating via a centralized blackboard 
control mechanism. 
 
Next, work on the RESIN system [Yue, 2009] will be 
discussed to highlight extending the M work by applying a 
centralized Markov Decision Process (MDP) [Bertesekas, 
2006] to implement RESIN’s blackboard control 
mechanism.   This work lays the groundwork to advance 
the use of MDPs as an approach towards a decentralized 
control mechanism that would enable each agent with its 
own ability to manage collaboration with other agents 
versus a centralized controlling architecture.   
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Finally, we highlight our use of DEC-POMDPs and the 
SNARE system.  We explain our formalized representation 
of DEC-POMDPs and how they fit our applied work in 
social media.  The SNARE architecture leverages 
decentralized collaborating agents as an effective approach 
to: (1) reason from multiple perspectives, (2) provide a 
means by which each agent manages it reasoning and 
learning in collaboration with other agents, and (3) create a 
dynamic technique for agents to join and exit “agent 
communities”.    

M System 
M was developed to support human interactions in a 
Computer Supported Collaborative Work (CSCW) 
environment referred to as a Virtual Meeting Room 
(VMR); M was developed at Bell Labs Research for an 
AT&T virtual meeting service.  M served to provide 
personalized support for each person working in a VMR.  
It observed, identified, and classified the actions performed 
and artifacts created by persons working on a team in a 
VMR in order to hypothesize about situations in the VMR.   
 
Since VMR situations are feature rich, M was designed 
with distinct modal expert agents.  Each agent is a 
specialized modal reasoner; several examples include: 
temporal reasoner, spatial reasoner, structural reasoner, 
functional reasoner, and causal reasoner.  As actions occur 
in a VMR, one or more reasoners would identify and 
hypothesize on the situations occurring.  A temporal 
reasoner might identify and hypothesize that a set of 
actions and corresponding artifacts are related based on the 
temporal sequencing of the actions.  Further, the spatial 
and functional reasoners may subsequently complement 

the temporal reasoner by elaborating on this situation of 
actions/artifacts as occurring in a specific location in the 
VMR and the artifacts all serve a similar function, thereby 
elevating the hypothesis classifying the actions/artifacts as 
being related.  Each modal agent was engineered with its 
specific modal knowledge of VMR actions and artifacts.  
Also, over time, each agent learned the personalized 
behaviors of each user’s typical performance and needs 
when using a VMR.   
 
The agents collaborated as blackboard knowledge sources 
via a set of blackboards managed by a centralized 
blackboard controller.  Blackboards were dynamically 
allocated and de-allocated to support one or more 
hypotheses; one blackboard per hypothesis under 
consideration by M. The controller used several different 
analytic machine learning techniques to learn management 
strategies to provide ordered access to the blackboard by 
the agents. 
 
Given the combinatorics of user behaviors along with the 
expressive grammar of legal actions/objects in a VMR, 
M’s architecture of modal agents was an effective solution 
providing two advantages.  First, leveraging collaborating 
“expert agents” was an effective means to obtain multiple 
perspectives and hypotheses during problem solving; thus 
providing an extended, expressive range of reasoning 
ability.  Second, each agent was designed leveraging the 
most expressive knowledge representation(s) (KRs) and 
algorithms appropriate for its respective modal reasoning.  
Examples of KR algorithmic treatment included: rule-
based, frame-based, case-based, semantic networks, 
scripting, and numerous analytic learning techniques.  

 

Figure 1: Architectural Diagram of the M architecture 

Figure 2: RESIN Control Flow 
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In prior work such as the Wolfgang system [Riecken, 
1989] that reasoned and learned to compose music and the 
M system, these systems were based on centralized control 
to manage the diversity of expert agents.   In our current 
work we are interested to enable collaboration of agents 
via a decentralized technique; thus allowing the agents to 
learn to collaborate based on context and reward 
mechanisms. 
 

Evolving From Centralized Blackboards to DEC-
POMDPs 
In our previous work [Yue, 2009], we designed and 
developed a visual analytic RESource bounded 
INformation gathering agent (RESIN) to facilitate access 
of investigative analysts to (a) automated support for  
predictive analytics and decision making; (b) the capability 
for finding non-myopic alternate solution paths; and (c) a 
tool to investigate outliers. Figure 2 describes the control 
flow of RESIN. 
 
RESIN harnesses a blackboard to maintain a clear 
evidential path for supporting and contradicting 
information while allowing for explicit modeling of 
concurrent top-down and bottom-up processing. The 
blackboard contains reasoning results from processing 
existing information, which includes raw data, various 
problem-solving states, partial solutions and current goals. 
Providing clear explanations in support of the decision 
making process is critical to gain and maintain the 
analyst’s trust in the system. 
 
In addition to the blackboard, RESIN consists of a TÆMS 
[Decker, 1993] task structure library, a centralized MDP 
solver and heterogeneous knowledge sources  (KSs).   
TÆMS are hierarchical abstractions of multiagent problem 
solving processes that describe alternative ways of 
accomplishing a desired goal; they represent major 
problems, the decision points and interactions between 
problems, but they do not describe the intimate details of 
each primitive action. The MDP is a probabilistic model, 
which captures the essence of sequential processes and is 
used to compute policies that identify, track, validate and 
reject hypothesis. The TÆMS task structure is translated 
into a MDP  by initializing a state set [Wagner, 2006], 
identifying the possible actions to determine the optimal 
action choices, and expanding each possible outcome 
which is characterized by discrete quality, cost and 
duration values [Liu, 2007], The KSs  are independent 
specialist computational modules that include visual 
analytics databases and tools of varying complexities that 
contain the domain knowledge needed to solve a problem. 
The agent control handles several decisions including 
selecting databases of high dimensional data for analysis, 
determining appropriate interactive visualizations for these 

data, reasoning about the problem solving process; to 
generate and validate hypothesis.   
 
In SNARE, we will harness our experience in building 
multiagent architectures with a centralized decision 
theoretic control mechanism to design a multiagent 
framework with decentralized control.  
 
A DEC-POMDP [Bernstein, 2002] is a tuple: M = S, A, P, 
R, Ω, O, where 
• S is a set of states with a designated initial state 
distribution b0 
• _A = A1 X ... X An specifies each agent’s finite set of 
actions 
• P(s’ |s,a) is the probabilistic state transition model 
• R(s,a) is the reward model 
• Ω = Ω 1 X ... X Ωn specifies each agent’s finite set of 
observations 
•  O(o|s’,a) is the stochastic observation model 
 
In the DEC-POMDP model, every agent chooses at each 
step an action based on its local observation histories (or 
internal belief state), resulting in a stochastic change in the 
state of the system, an immediate reward, and an 
observation for each agent. The true state of the system is 
unknown and histories of observations represent the 
knowledge agents have about their environment (including 
other agents). Reward functions capture both the utility of 
achieving a task as well as the costs associated 
intermediate actions.  Solutions to DEC-POMDPs are a set 
of policies where each policy dictates to the corresponding 
agent the action choice -based on its local observations. A 
DEC-MDP is a DEC-POMDP with joint full observability. 
The complexity of DEC-POMDPs and DEC-MDPs for a 
multiagent system with just 2 agents has been shown to lie 
in the NEXP-Complete space.   The complexity decreases 
to NP-Complete when joint full-observability as well as 
transition and observation independence is assumed.  If 
there is single global goal or many decomposable global-
goals, the problem complexity reduces to P [Goldman, 
2004]. One other way we plan to investigate is to 
approximate the global reward using a local factored 
reward function that leverage information about neighbor 
states; this approach is based on our earlier work in a 
multiagent weather tracking system [Cheng, 2010]. 

SNARE Framework for Anytime Situational 
Awareness 

Obtaining anytime situational awareness in a social media 
space encompasses identifying a compelling range of 
contextual features, cues, and cultural content. The 
identification of context for a situation of interest is 
embedded in a complex fluid space of features and data.  
This suggests that a range of methods and strategies are in 
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order to obtain multiple perspectives and identify situations 
of interest.  For example, identifying a given situation 
could require detecting a set of objects/events of interest by 
applying SNARE agents that collaborate along with human 
analysts; each agent providing a specialized reasoning 
ability such as: (1) evidence identification, (2) temporal 
classification, (3) threat detection, (4) topic modeling, (5) 
topic propagation, (6) sentiment prediction, and (7) hypothesis 
explanation generation. 
 
Each SNARE agent is a complex expert in a given domain 
such as topic modeling or rumor detection or a particular 
modality of reasoning such as functional or causal 
reasoning.  As each agent reasons and learns, it uses a 
DEC-POMDP model as its control mechanism to manage 
its collaboration with other agents. 

Cognitive Model of Human Information Analysts 
Pirolli and Card [Pirolli, 1999] developed a general model 
of cognitive task analysis as performed by human analysts. 

They identified two main, overlapping loops in the 
analyst’s problem solving approach, a foraging loop and a 
sensemaking loop. Figure 3 depicts this process. In the 
foraging loop, three processes interplay: exploring 
(monitoring), enriching (narrowing), and exploiting (more 
thorough analysis). The sensemaking loop involves 
hypothesis building, the maintaining of competing 
hypotheses, and the construction and passing of reasoning 
artifacts between components of the analysis and 
hypothesis-building structure between system and users. 

Assumptions and evidence gathered from the foraging 
phase, which are frequently highly organized, are used to 
build hypotheses; attempts at confirmation subsequently 
reshape evidence gathering and the hypotheses themselves.  
 
The Pirolli and Card cognitive model fits well with 
SNARE’s task process model of collaborating SNARE 
agents.  SNARE is designed to perform monitoring of 
complex environments similar in fashion to a human 
information analyst. 
  
Problem solving in the social media space is complex 
because the problem context and data are constantly 
changing.  Moreover, the data is massive and is typically 
incomplete, unreliable and/or conflicting. This implies 
there is a need for deciding which data sources to query, 
and what types of analysis to use for collecting, 
assimilating and abstracting the data into evidence. 
Further, the analysis tasks are usually time critical.  

SNARE Architecture 
Based on the Pirolli and Card cognitive task model, the 
SNARE architecture divides its agents into two functional 
groups; Data specialists (representing the cognitive 
foraging loop) and Hypothesis specialists (representing the 
cognitive sensemaking loop).  Figure 4 depicts SNARE’s 
architecture.  One of our design goals is for SNARE to 
detect such situations as: user specified topics, deception 
and misinformation, campaigns intended to persuade and 
influence, and various threats. 
 
Snare’s architecture of specialized Data and Hypothesis 
agents consists of the following elements: 
 
(1) A set of Data agents, each with expertise in directly 
accessing and processing social media content  (e.g., blogs, 
Twitter feeds, Facebook, etc…) and performing a specific 
task (e.g., topic modeling/drift detection, group detection, 
deception detection, sentiment detection, etc…).   Each 
agent’s performance to collaborate, reason and learn is 
managed by a DEC-POMDP control mechanism and each 
agent will communicate with other agents via SNARE’s 
Hypothesis Space. 
 
(2) The Hypothesis Space is a collection of data 
structures/knowledge representations (e.g., “blackboards”, 
“frames”, etc…) to enable sharing of information between 
the all agents (and human analysts) as they collaborate. 
 
(3) A set of Hypothesis agents generate and track 
hypothesis. They serve to apply multi-strategy reasoning 
functions to evidence and information in the Hypothesis 
Space.  Unlike the Data agents that access social media 
resources, Hypothesis agents do not. Like the Data agents, 
each Hypotheses agent’s performance to collaborate, 
reason and learn is managed by a DEC-POMDP control  

Figure 3: Pirolli and Card Task Analysis 
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mechanism and each agent will communicate with other 
agents via SNARE’s Hypothesis Space. 
 
(4) An open API that enables read-write access into the 
shared Hypothesis Space for the collaborating (Data and 
Hypothesis) agents and applications supporting the human 
analysts.   
 
(5) Our framework enables human analysts to operate in 
real-time with the collaborating SNARE agents as social 
media situations are emerging and being examined.  An 
important goal of this design is to investigate applying a 
model of mixed-initiative interaction within our 
framework.  Human analysts will be able to collaborate, 
annotate and influence the real-time processing of 
SNARE’s agents. 
 
We wish to underscore that each SNARE agent can 
typically be a sophisticated expert agent.  For example, 
several of the Data agents that forage specialize in: 
  

 

 
 
• detecting the spread of ideas and concepts 

o detecting, measuring, and tracking emerging 
patterns 

o identifying network patterns of interest 
• socially conditioned topic modeling 
• rumor detection 
• deception detection 
• persuasion detection 
• participant identification 

o human mobility and measurement 
 
 
As we progress our work, we are focused on DEC-POMDP 
performance for reasoning and learning; meaning what 
baseline characteristics are achieved and what 
improvements can be identified.  Also, we look to progress 
a mixed-initiative model of bi-lateral collaboration 
between humans and agents. 
 
 

Figure 4: SNARE Architecture of specialized agents 
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Looking Ahead 

The Role of Minsky’s K-lines in Dynamic Agent 
Organization 
We now address the question of how to dynamically form 
optimal sub-networks of SNARE agents to handle an 
emerging social media space problem.  We design a 
mechanism that is similar to the formation of knowledge–
lines (K-lines) in Minsky’s theories of the human mind 
[Minsky, 1986].   A K-line is defined as a wire-like 
structure that attaches itself to whichever mental agents 
and/or groups of agents that are active when you solve a 
problem. When the K-line is activated later, the agents 
associated with it are awakened leading a mental state that 
is similar to the one the agents were in when the problem 
was solved previously. 
 
In SNARE, each agent will trigger when certain key state 
features in their DEC-POMDP are assigned particular 
values called "trigger" values.  When a social media space 
scenario is encountered for the very first time, the scenario 
would result in   certain scenario-specific feature values 
being set. In SNARE, each agent will trigger when certain 
key state features in their DEC-POMDP are assigned 
particular values called "trigger" values.  When a social 
media space scenario is encountered for the very first time, 
the scenario would result in   certain scenario-specific 
feature values being set. The agents whose trigger values 
overlap with these scenario-specific feature values will be 
awakened and will form a problem solving agent sub-
network.  The formation of the sub-network will then 
trigger a K-line agent that is looking for this 
particular combination of agents to be awakened; thus, a 
new K-line is formed! This K-line and trigger values 
combination will be stored in memory and will be 
reactivated the next time the same set of features are 
triggered. 
 
We suspect this line of investigation will provide 
opportunities to grow societies of diverse agent 
communities that are dynamically interacting within and 
across societies of agents forming heterarchical topologies.  
This would provide opportunities to examine and measure 
such concepts as Level Bands and Transframes as 
described in Minsky’s work. 
 
 
Explanation Generator 
 
Explanation generation in an analytical agent must be 
autonomous; it should include justifications and 
explanations of the conclusions and decision-making 
process and knowledge; and be tunable to the different 
goals of various human customers.  An agent's self-
explanation describes the agent's reasoning in reaching a 
conclusion. For example, in investigative analysis, an 

automated assistant may provide a description of its 
decision-making process. A self-explanation in general 
may have three components [Chandrasekaran, 1991]: (1) 
justification of conclusions; (2) explanation of the 
decision-making process; and (3) justification of the 
decision-making knowledge. In investigative analysis, for 
example, the evidence for and against it may justify a 
conclusion about a specific pattern of activity; the 
decision-making process may be explained in terms of the 
steps of the process; and the decision-making knowledge 
may be justified in terms of past cases of investigative 
analysis. The decision-making process can be explained in 
many ways, each with its own benefits and drawbacks. We 
plan to leverage our prior experience in developing 
explanations of decision-making in the context of 
intelligence reports [Goel, 2009; Raja, 2007] to the social 
media space. 
 
Threat-level Manager  
 
We now discuss an outline for a smart, common-sense 
detection methodology for seeking and validating or 
rejecting hypotheses that we plan to pursue in parallel to 
above-mentioned methods. Specifically we discuss 
hypotheses about threats in the following paragraphs and 
will extend these ideas to other types of hypotheses about 
persuasion campaigns, influence operations and deception 
tracking.  
 
A sound procedure for seeking valid threats is a nontrivial 
exercise.   Johnson [Johnson, 2010] points out how close to 
detecting the intersection between one pilot seeking to 
learning to fly a jumbo jet without learning to land, and the 
approximately twenty students seeking similar training. If 
this pattern had been detected, 9/11 could have been foiled.  
Of course, no matter where one draws the line on searches 
for threats, valid threats may lie just outside a candidate 
date.  But a smart set of policies can minimize missed 
threats. 
  
First, the key problem for detection of threats is pairs of 
items that match or are unusual or marked in some way.  
Single items --- unless totally explicit about their threat --- 
are seldom a factor.  Triples of items are of possible 
interest, but only after some initial screening.  Second, 
after finding pairs of interest, we need to validate the 
potential threat, and choose whether to keep the item 
active.  Whenever possible, we plan to use machine 
learning to improve screening coverage, and look for 
opportunities for continual improvement for detection and 
matching of threats. Dependence upon human memory and 
reason is inadequate and wasteful of resources because 
humans are likely to forget or miss important items. 
 
Third, we need tools for delineating and then winnowing 
down a set of candidates to a manageable number of 

47



hypotheses to consider seriously. Using information 
theoretic measures and various means for generating sets 
for comparison, we can automatically generate and order 
candidate sets of hypotheses for significant matches.  (This 
process might, of course, involve successively enlarging 
and winnowing, or other processes.)  The processing 
should have a natural pace of progress, so that the 
candidacy set for each search step fits in search space with 
enough processing time for handling a normal processing 
cycle with all false alarms.  Fourth, for candidate threats 
with sufficient interest1, we would initiate other steps, 
ending, potentially in a custom, deep and reasoned search, 
or ending in the elimination of candidates as false alarms. 
 
Fifth, we need criteria for forgetting items, and heuristics 
for dropping items from the lists of potential threats.  Items 
should be pruned based on the prominence or significance 
of the threat, the recency of the threat, the number of 
connections or intersections between threats, connections 
based on short chains of inference, etc. 

Conclusions 

To conclude, we described SNARE, a multiagent 
framework that has a diversity in reasoning and learning.  
We discussed the intellectual challenges we have 
encountered and the progress we have made in the design 
and development of this framework. 
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