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Abstract

As businesses seek to monetize their data, they are leveraging
Web-based delivery mechanisms to provide publicly avail-
able data sources. Also, as analytics becomes a central part
of many business functions such as customer segmentation,
competitive intelligence and fraud detection, many businesses
are seeking to enrich their internal data records with data from
these data sources. As the number of sources with varying
degrees of accuracy and quality proliferate, it is a non-trivial
task to effectively select which sources to use for a particu-
lar enrichment task. The old model of statically buying data
from one or two providers becomes inefficient because of the
rapid growth of new forms of useful data such as social me-
dia and the lack of dynamism to plug sources in and out. In
this paper, we present the data enrichment framework, a tool
that uses data mining and other semantic techniques to au-
tomatically guide the selection of sources. The enrichment
framework also monitors the quality of the data sources and
automatically penalizes sources that continue to return low
quality results.

Introduction
As enterprises become more data and analytics driven, many
businesses are seeking to enrich their internal data records
with data from data sources available on the Web. Consider
the example, where the consumer database of a company
might have the name and address of its consumers. Being
able to use publicly available data sources such as LinkedIn,
White Pages and Facebook to find information such as em-
ployment details and interests, can help the company collect
additional features for tasks such as customer segmentation.
Currently, this is done in a static fashion where a business
buys data from one or two sources and statically integrates
with their internal data. However, this approach has the fol-
lowing shortcomings:

1. Inconsistencies in input data: It is not uncommon to
have different set of missing attributes across records in
the input data. For example, for some consumers, the
street address information might be missing and for oth-
ers, information about the city might be missing. To ad-
dress this issue, one must be able to select the data sources

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

at a granular level, based on the input data that is available
and the data sources that can be used.

2. Quality of a data source may vary, depending on the
input data: Calling a data source with some missing val-
ues (even though they may not be mandatory), can result
in poor quality results. In such a scenario, one must be
able to find the missing values, before calling the source
or use an alternative.

In this paper, we present an overview of a data enrichment
framework which attempts to automate many sub-tasks of
data enrichment. The framework uses a combination of data
mining and semantic technologies to automate various tasks
such as calculating which attributes are more important than
others for source selection, selecting sources based on infor-
mation available about a data record and past performance
of the sources, using multiple sources to reinforce low con-
fidence values, monitoring the utility of sources, as well as
adaptation of sources based on past performance. The data
enrichment framework makes the following contributions:

1. Dynamic selection of data sources: We have developed
a novel approach to automatically select the appropriate
sequence of data sources to call, based on the available
data.

2. Automated assessment of data source utility: Our data
enrichment algorithm measures the quality of the output
of a data source and its overall utility to the enrichment
process.

3. Automated adaptation of data source usage: Using
the data availability and utility scores from prior invo-
cations, the enrichment framework penalized or rewards
data sources, which affects how often they are selected.

Motivation
We motivate the need for data enrichment through three real-
world examples gathered from large Fortune 500 companies
that are clients of Accenture.

Creating comprehensive customer models: Creating
comprehensive customer models has become a holy grail in
the consumer business, especially in verticals like retail and
healthcare. The information that is collected impacts key de-
cisions like inventory management, promotions and rewards,
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and for delivering a more personal experience. Often busi-
nesses engage customers to register for programs like reward
cards or connect with the customers using social media. This
limited initial engagement gives them the access to basic in-
formation about a customer, such as name, email, address,
and social media handles. However, in a vast majority of
the cases, such information is incomplete and the gaps are
not uniform. For example, for a customer John Doe, a busi-
ness might have the name, street address, and a phone num-
ber, whereas for Jane Doe, the available information will be
name, email, and a Twitter handle. Leveraging the basic in-
formation and completing the gaps, also called as creating a
360 degree customer view has many applications, including:

1. Personalized and targeted promotions: The more infor-
mation a business has about its customer, the better it can
personalize deals and promotions. Further, business could
also use aggregated information (such as interests of peo-
ple living in a neighborhood) to manage inventory and run
local deals and promotions.

2. Better segmentation and analytics: The provider may
need more information about their customers, beyond
what they have in the profile, for better segmentation and
analytics. For example, a certain e-commerce site may
know a persons browsing and buying history on their site
and have some limited information about the person such
as their address and credit card information. However, un-
derstanding their professional activities and hobbies may
help them get more features for customer segmentation
that they can use for suggestions or promotions.

3. Fraud detection: The provider may need more informa-
tion about their customers for detecting fraud. Providers
typically create detailed customer profiles to predict their
behaviors and detect anomalies. Having demographic and
other attributes such as interests and hobbies helps build-
ing more accurate customer behavior profiles. Most e-
commerce providers are typically under a lot of pressure
to detect fraudulent activities on their site as early as pos-
sible, so that they can limit their exposure to lawsuits,
compliance laws or even loss of reputation.

Current approaches to addressing this challenge largely re-
volve around subscribing to data sources like Experian. This
approach has the following shortcomings:

1. The enrichment task is restricted to the attributes provided
by the one or two data sources that they buy from. If they
need some other attributes about the customers, it is hard
to get them.

2. The selected data sources may have high quality infor-
mation about attributes, but poor quality about some oth-
ers. Even if the e-commerce provider knows about other
sources, which have those attributes, it is hard to manually
integrate more sources.

3. There is no good way to monitor if there is any degrada-
tion in the quality of data sources.

Using the enrichment framework in this context would al-
low the e-commerce provider to dynamically select the best
set of sources for a particular attribute in particular data en-
richment task. The proposed framework can switch sources

across customer records, if the most preferred source does
not have information about some attributes for a particular
record. For low confidence values, the proposed system uses
reconciliation across sources to increase the confidence of
the value. The enrichment framework can also continuously
monitor and downgrade sources, if there is any loss of qual-
ity.

Capital Equipment Maintenance: Companies within
the energy and resources industry have significant invest-
ments in capital equipments (i.e. drills, oil pumps, etc.).
Accurate data about these equipments (e.g. manufacturer,
model, etc.) is paramount to operational efficiency, proper
maintenance, etc.

The current process for capturing this data begins with
manual entry. Followed by manual, periodic “walk-downs”
to confirm and validate this information. However, this pro-
cess is error-prone, and often results in incomplete and inac-
curate data about the equipments.

This does not have to be the case. A wealth of structured
data sources (e.g. from manufacturers) exist that provides
much of the incomplete, missing information. Hence, a so-
lution that can automatically leverage these sources to enrich
existing, internal capital equipment data can significantly
improve the quality of the data, which in turn can improve
operational efficiency and enable proper maintenance.

Competitive Intelligence. The explosive growth of ex-
ternal data (i.e. data outside the business such as Web data,
data providers, etc.) can enable businesses to gather rich in-
telligence about their competitors. For example, companies
in the energy and resources industry are very interested in
competitive insights such as where a competitor is drilling
(or planning to drill); disruptions to drilling due to accidents,
weather, etc.; and more.

To gather these insights, companies currently purchase
relevant data from third party sources – e.g. IHS and Dod-
son are just a few examples of third party data sources that
aggregate and sell drilling data – to manually enrich exist-
ing internal data to generate a comprehensive view of the
competitive environment. However, this current process is
manual one, which makes it difficult to scale beyond a small
handful of data sources. Many useful, data sources that are
open (public access) (e.g. sources that provide weather data
based on GIS information) are omitted, resulting in gaps in
the intelligence gathered.

A solution that can automatically perform this enrichment
across a broad range of data sources can provide more in-
depth, comprehensive competitive insight.

Overview of Data Enrichment Algorithm
Our Data Enrichment Framework (DEF) takes two inputs –
1) an instance of a data object to be enriched and 2) a set
of data sources to use for the enrichment – and outputs an
enriched version of the input instance.

DEF enriches the input instance through the following
steps. DEF first assesses the importance of each attribute in
the input instance. This information is then used by DEF to
guide the selection of appropriate data sources to use. Fi-
nally, DEF determines the utility of the sources used, so it
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can adapt its usage of these source (either in a favorable or
unfavorable manner) going forward.

Preliminaries
A data object D is a collection of attributes describing
a real-world object of interest. We formally define D as
{a1, a2, ...an} where ai is an attribute.

An instance d of a data object D is a partial instanti-
ation of D – i.e. some attributes ai may not have an in-
stantiated value. We formally define d as having two el-
ements dk and du. dk consists of attributes whose values
are known (i.e. instantiated), which we define formally as
dk = {< a, v(a), ka, kv(a) > ...}, where v(a) is the value
of attribute a, ka is the importance of a to the data object D
that d is an instance of (ranging from 0.0 to 1.0), and kv(a) is
the confidence in the correctness of v(a) (ranging from 0.0
to 1.0). du consists of attributes whose values are unknown
and hence the targets for enrichment. We define du formally
as du = {< a, ka > ...}.

Attribute Importance Assessment
Given an instance d of a data object, DEF first assesses (and
sets) the importance ka of each attribute a to the data object
that d is an instance of. DEF uses the importance to guide
the subsequent selection of appropriate data sources for en-
richment (see next subsection).

Our definition of importance is based on the intuition that
an attribute a has high importance to a data object D if its
values are highly unique across all instances ofD. For exam-
ple, the attribute e-mail contact should have high importance
to the Customer data object because it satisfies this intuition.
However, the attribute Zip should have lower importance to
the Customer object because it does not – i.e. many instances
of the Customer object have the same zipcode.

DEF captures the above intuition formally with the fol-
lowing equation:

ka =

√
X2

1 +X2
(1)

where,

X = HN(D)(a)

(
U(a,D)

|N(D)|

)
(2)

and
HN(D)(a) = −

∑
v∈a

PvlogPv (3)

U(a,D) is the number of unique values of a across all
instance of the data object D observed by DEF so far,
and N(D) is all instances of D observed by DEF so far.
HN(D)(a) is the entropy of the values of a across N(D),
and serves as a proxy for the distribution of the values of a.

We note that DEF recomputes ka as new instances of the
data object containing a are observed. Hence, the impor-
tance of an attribute to a data object will change over time.

Data Source Selection
DEF selects data sources to enrich attributes of a data object
instance d whose values are unknown. DEF will repeat this

step until either there are no attributes in d whose values are
unknown or there are no more sources to select.

DEF considers two important factors when selecting the
next best source to use: 1) whether the source will be able
to provide values if called, and 2) whether the source targets
unknown attributes in du (esp. attributes with high impor-
tance). DEF satisfies the first factor by measuring how well
known values of d match the inputs required by the source.
If there is a good match, then the source is more likely to re-
turn values when it’s called. DEF also considers the number
of times a source was called previously (while enriching d)
to prevent “starvation” of other sources.

DEF satisfies the second factor by measuring how many
high-importance, unknown attributes the source claims to
provide. If a source claims to provide a large number of these
attributes, then DEF should select the source over others.
This second factor serves as the selection bias.

DEF formally captures these two considerations with the
following equation:

Fs =
1

2M−1
Bs

∑
a∈dk∩Is

kv(a)

|Is|
+

∑
a∈du∩Os

ka

|du|
(4)

where Bs is the base fitness score of a data source s being
considered (this value is randomly set between 0.5 and 0.75
when DEF is initialized), Is is the set of input attributes to
the data source, Os is the set of output attributes from the
data source, and M is the number of times the data source
has been selected in the context of enriching the current data
object instance.

The data source with the highest score Fs that also ex-
ceeds a predefined minimum threshold R is selected as the
next source to use for enrichment.

For each unknown attribute a′ enriched by the selected
data source, DEF moves it from du to dk, and computes the
confidence kv(a′) in the value provided for a′ by the selected
source. This confidence is used in subsequent iterations of
the enrichment process, and is computed using the following
formula:

kv(a′) =

 e

(
1
|V

a′ |
−1
)
W , if kv(a′) = Null

eλ(kv(a′)−1) , if kv(a′) 6= Null
(5)

where,

W =

∑
a∈dk∩Is

kv(a)

|Is|
(6)

W is the confidence over all input attributes to the source,
and Va′ is the set of output values returned by a data source
for an unknown attribute a′.

This formula captures two important factors. First, if mul-
tiple values are returned, then there is ambiguity and hence
the confidence in the output should be discounted. Second,
if an output value is corroborated by output values given by
previously selected data sources, then the confidence should
be further increased. The λ factor is the corroboration factor
(< 1.0), and defaults to 1.0.
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In addition to selecting appropriate data sources to use,
DEF must also resolve ambiguities that occur during the en-
richment process. For example, given the following instance
of the Customer data object:

(Name: John Smith, City: San Jose, Occupation:
NULL)

a data source may return multiple values for the unknown
attribute of Occupation (e.g. Programmer, Artist, etc).

To resolve this ambiguity, DEF will branch the original
instance – one branch for each returned value – and each
branched instance will be subsequently enriched using the
same steps above. Hence, a single data object instance may
result in multiple instances at the end of the enrichment pro-
cess.

DEF will repeat the above process until either du is empty
or there are no sources whose score Fs exceeds R. Once
this process terminates, DEF computes the fitness for each
resulting instance using the following equation:∑

a∈dk∩dU

kv(a)ka

|dk ∪ du|
(7)

and returns top K instances.

Data Source Utility Adaptation
Once a data source has been called, DEF determines the util-
ity of the source in enriching the data object instance of in-
terest. Intuitively, DEF models the utility of a data source as
a “contract” – i.e. if DEF provides a data source with high
confidence input values, then it is reasonable to expect the
data source to provide values for all the output attributes
that it claims to target. Moreover, these values should not
be generic and should have low ambiguity. If these expecta-
tions are violated, then the data source should be penalized
heavily.

On the other hand, if DEF did not provide a data source
with good inputs, then the source should be penalized mini-
mally (if at all) if it fails to provide any useful outputs.

Alternatively, if a data source is able to provide unam-
biguous values for unknown attributes in the data object in-
stance (esp. high importance attributes), then DEF should re-
ward the source and give it more preference going forward.

DEF captures this notion formally with the following
equation:

Us =W

 1

|Os|

 ∑
a∈O+

s

e
1
|Va|
−1kPT v(a)

a −
∑
a∈O−s

ka


(8)

where,

PT (v(a)) =

{
PT (v(a)) , if |Va| = 1
argmin
v(a)∈Va

PT (v(a)) , if |Va| > 1 (9)

O+
s are the output attributes from a data source for which

values were returned, O−s are the output attributes from
the same source for which values were not returned, and
PT (v(a)) is the relative frequency of the value v(a) over the

past T values returned by the data source for the attribute a.
W is the confidence over all input attributes to the source,
and is defined in the previous subsection.

The utility of a data source Us from the past n calls are
then used to adjust the base fitness score of the data source.
This adjustment is captured with the following equation

Bs = Bs + γ
1

n

n∑
1

Us(T − i) (10)

whereBs is the base fitness score of a data source s, Us(T −
i) is the utility of the data source i time steps back, and γ is
the adjustment rate.

System Architecture

Figure 1: Design overview of enrichment framework

The main components of DEF are illustrated in Figure 1.
The task manager starts a new enrichment project by in-
stantiates and executes the enrichment engine. The enrich-
ment engine uses the attribute computation module to cal-
culate the attribute relevance. The relevance scores are used
in source selection. Using the HTTP helper module, the en-
gine then invokes the connector for the selected data source.
A connector is a proxy that communicates with the actual
data source and is a RESTful Web service in itself. The en-
richment framework requires every data source to have a
connector and that each connector have two operations: 1)
a return schema GET operation that returns the input and
output schema, and 2) a get data POST operation that takes
as input the input for the data source as POST parameters
and returns the response as a JSON. For internal databases,
we have special connectors that wrap queries as RESTful
end points. Once a response is obtained from the connec-
tor, the enrichment engine computes the output value con-
fidence, applies the necessary mapping rules, and integrates
the response with the existing data object. In addition to this,
the source utility is also computed. The mapping, invocation,
confidence and source utility value computation steps are re-
peated until either all values for all attributes are computed
or if all sources have been invoked. The result is then written
into the enrichment database.
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In designing the enrichment framework, we have adopted
a service oriented approach, with the goal of exposing the
enrichment framework as a “platform as a service”. The core
tasks in the framework are exposed as RESTful end points.
These include end points for creating data objects, import-
ing datasets, adding data sources, and for starting an enrich-
ment task. When the “start enrichment task” task resource
is invoked and a task is successfully started, the framework
responds with a JSON that has the enrichment task identi-
fier. This identifier can then be used to GET the enriched
data from the database. The framework supports both batch
GET and streaming GET using the comet (Mahemoff 2006)
pattern.

Data mapping is one of the key challenges in any data in-
tegration system. While extensive research literature exists
for automated and semi-automated approaches for mapping
and matching (Madhavan et al. 2003; Doan, Domingos, and
Halevy 2001) it is our observation that these techniques do
not guarantee the high-level of accuracy required in enter-
prise solutions. So, we currently adopt a manual approach,
aided by a graphical interface for data mapping. The source
and the target schemas are shown to the users as two trees,
one to the left and one to the right. Users can select the at-
tributes from the source schema and draw a line between
them and attributes of the target schema. Currently, our map-
ping system supports assignment, merge, split, numerical
operations, and unit conversions. When the user saves the
mappings, the maps are stored as mapping rules. Each map-
ping rule is represented as a tuple containing the source
attributes, target attributes, mapping operations, and condi-
tions. Conditions include merge and split delimiters and con-
version factors.

Challenges and Experiences
Data sources (exposed as RESTful services and/or Web
APIs) are an integral part of the data enrichment framework.
Even though data sources have been available for many
years, their traction within the enterprise has been minimal.
During the development of the enrichment framework, we
got a few insights into the reasons for this lack of adop-
tion. Rate limiting (especially in the number of calls that
can be made within a short interval of time) and lack of
syndication processes, make it hard to reliably use a data
source, especially in client deployments. Further, many of
the data sources do not offer explicit SLA driven contracts,
thus making them unattractive. Poor API documentation is
another reason. Often times, when a developer is using an
API, they find that some of the capabilities that are present
in the UI driven version of the service (such as LinkedIn API
vs LinkedIn.com) are either absent or are not sufficiently
documented. This makes it harder to understand the actual
capabilities of an API. Further, the data formats for the in-
put and output are often described in text (as opposed to
having a JSON / XML snippet), adding to the complexity.
API providers do not “push” API changes to the developer.
In most cases, developers find out about the change after a
failed call to the API. We feel that the above mentioned rea-
sons play a significant role in impeding the adoption of data
sources APIs in enterprise software development.

Related Work
Mashups or Web application hybrids (Merrill 2006) have
emerged as the popular approach for integrating data from
different data sources on the Web. Plethora of tools such
as (Maximilien et al. 2007; Fagan 2007; Software” ) have
been developed for creating mashups. However, in a tradi-
tional mashup, the data sources used and the order in which
they are invoked are static. In the context of data enrichment,
such a static approach may not yield desired results, since
the gaps in a dataset are often not homogeneous. The granu-
lar selection and ordering of sources that we advocate in this
paper is the main difference between our work and the stan-
dard mashup techniques. An evaluation of approaches for
data mediation in mashup tools is presented in (Di Lorenzo
et al. 2009). While this paper compares different approaches,
it does not in itself advocate a novel method. (Maximilien et
al. 2007) present a domain specific language for developing
mashups. The paper proposes a manual mediation approach,
similar to the approach discussed in this work. However, the
DSL driven platform does not support run-time source se-
lection based on available attributes and does not support
source adaptation.

Conclusion
In this paper we present a framework for data enrichment
using data sources on the Web. The salient features of our
system include the ability to dynamically select the appro-
priate sequence of data sources to use, based on the available
data. We also discuss approaches for automatically comput-
ing the utility of data sources and adapting to their usage.
The framework is exposed (internally) as a “platform as
a service”, accessible via RESTful APIs. We are currently
in the process of piloting the system in the energy and re-
sources domain.
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