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Abstract

Stackelberg security games form the backbone of systems
like ARMOR, IRIS and PROTECT, which are in regular use
by the Los Angeles International Police, US Federal Air Mar-
shal Service and the US Coast Guard respectively. An un-
derstanding of the runtime required by algorithms that power
such systems is critical to furthering the application of game
theory to other real-world domains. This paper identifies
the concept of the deployment-to-saturation ratio in random
Stackelberg security games, and shows that in a decision
problem related to these games, the probability that a solution
exists exhibits a phase transition as the ratio crosses 0.5. We
demonstrate that this phase transition is invariant to changes
both in the domain and the domain representation. More-
over, problem instances at this phase transition point are com-
putationally harder than instances with other deployment-to-
saturation ratios for a wide range of different equilibrium
computation methods, including (i) previously published dif-
ferent MIP algorithms, and (ii) different underlying solvers
and solution mechanisms. Our findings have at least two im-
portant implications. First, it is important for new algorithms
to be evaluated on the hardest problem instances. We show
that this has often not been done in the past, and introduce a
publicly available benchmark suite to facilitate such compar-
isons. Second, we provide evidence that this phase transition
region is also one where optimization would be of most bene-
fit to security agencies, and thus requires significant attention
from researchers in this area.

Introduction
Software security assistants built on the framework of Stack-
elberg security games (Kiekintveld et al. 2009) have been
deployed by a variety of real-world security agencies. For
example, ARMOR (Jain et al. 2010b) has been in use
by the police at Los Angeles International Airport since
2007. Similarly, IRIS (Jain et al. 2010b) and PRO-
TECT (An et al. 2011) have been in use by the US Fed-
eral Air Marshals Service and the US Coast Guard since
2009 and 2011 respectively. Many different algorithms
have been proposed for computing solutions to such prob-
lems (Conitzer and Sandholm 2006; Paruchuri et al. 2008;
Gatti 2008; Kiekintveld et al. 2009; Jain et al. 2010a;
Dickerson et al. 2010; Letchford and Vorobeychik 2011;
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Bosansky et al. 2011) with a focus on scalability to enable
the application of these models to newer and more complex
real-world domains. In this paper, we ask what structural
properties make such Stackelberg security game instances
hard to solve in practice.

Perhaps the most influential work on understanding
algorithm-independent structural properties of a combi-
natorial problem is the line of work on phase transi-
tions in uniform-random 3-SAT, pioneered by Cheeseman,
Kanefsky, and Taylor (1991) and Mitchell, Selman, and
Levesque (1992). This work showed that the probability that
a 3-SAT instance will be satisfiable exhibits a phase tran-
sition when the number of variables is fixed and the num-
ber of clauses increases. Specifically, this probability starts
near 1 for small numbers of clauses, sharply falls almost to
0 as the clauses-to-variables ratio crosses 4.26 (Crawford
and Auton 1996), and then remains near 0 as the number
of clauses grows. This phase transition in random 3-SAT
instances is important because it correlates very strongly
with computational hardness: the hardest problem instances
correspond to the point where the probability of satisfiabil-
ity is 0.5 (Mitchell, Selman, and Levesque 1992; Larrabee
and Tsuji 1993; Selman, Mitchell, and Levesque 1996;
Cook and Mitchell 1997). Phase transitions have also been
used to analyze the computational impact of problem struc-
ture in optimization problems, such as MAX-SAT (Slaney
and Walsh 2002) and TSP (Gent and Walsh 1996; Frank,
Gent, and Walsh 1998). The approach taken in this work
is to identify a phase transition in a decision version of the
optimization problem (i.e., asking whether or not a solution
exists with a given objective function value).

Our own work is concerned with an optimization problem
faced by security forces. Like this previous work, we iden-
tify a phase transition in the corresponding decision prob-
lem to understand the underlying properties of the security
domains. More specifically, we introduce the concept of the
deployment-to-saturation (d:s) ratio, show that it exhibits a
phase transition at 0.5 for random Stackelberg security game
instances, and show that the hardest such instances arise at
this point. The d:s ratio is the number of deployed defender
resources divided by the number of resources beyond which
additional resources do not provide any benefit to the de-
fender. We show that the phase transition at the d:s ratio of
0.5 is independent of the domain representation, model and
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solver. We provide evidence for this phase transition and
correspondingly hardest instances of Stackelberg security
games from three different classes of security domains, eight
different MIP algorithms (including two algorithms in the
real world), five different underlying MIP solvers, two dif-
ferent equilibrium concepts in Stackelberg security games,
and a variety of domain sizes and conditions.

We discuss two important implications of these findings.
First, new algorithms should be compared on the hardest
problem instances; we show that most previous research has
compared the runtime performance of algorithms only at low
d:s ratios, where problems are comparatively easy. Sec-
ond, we argue that this phase transition region is the point
where optimization has the greatest benefit to security agen-
cies, implying that problems in this region deserve increased
attention from researchers.

Other Related Work
Research on identifying underlying structures of optimiza-
tion problems has used insights from corresponding deci-
sion versions of the optimization problem (Slaney and Walsh
2002; Gent and Walsh 1996) . Monasson et. al (1999)
study computational hardness for MAX 2+p-SAT, since it
interpolates smoothly from the polynomial 2-SAT to the
NP-complete 3-SAT. They showed that optimization prob-
lems have their own structure and identified relationships be-
tween average clause length, constrainedness and hardness.
Thereafter, research moved towards understanding sources
of empirical hardness beyond the clauses-to-variable ra-
tio (Nudelman et al. 2004) and to graph-based NP-complete
problems (Frank and Martel 1995; Frank, Gent, and Walsh
1998). Gent et al. (1996) studied the properties of four dif-
ferent optimization problems including TSP and Boolean
circuit synthesis. They compute the optimal tour length from
the TSP optimization problem, and then use this value to de-
fine a corresponding TSP decision problem. A phase tran-
sition in the solubility of this problem corresponds to the
computationally hardest region.

In the context of game theory, phase transitions in the
probability of cooperation have been studied for evolution-
ary game theory (Hauert and Szab 2005). Phase transitions
have also been used to analyze the efficiency of markets in
adaptive games (Savit, Manuca, and Riolo 1999). To our
knowledge, our work is the first that identifies such struc-
tural properties in the context of Stackelberg security games.

Stackelberg Security Games
Stackelberg security games are played between a de-
fender and an attacker, and conform to a leader–follower
paradigm (Conitzer and Sandholm 2006; Paruchuri et al.
2008; Kiekintveld et al. 2009). The defender first commits
to a mixed strategy, to which the attacker then responds. The
actions of the defender correspond to different security mea-
sures she can undertake, and the action space of the attacker
is a choice of the targets to attack. With each target four
payoff values are associated: reward and penalty to both the
defender and the attacker for an unsuccessful and success-
ful attack. Table 1 shows an example Stackelberg security

Target 1 Target 2
Target 1 5,−5 −1, 3
Target 2 −6, 3 1,−5

Figure 1: Example security game with two targets.

game with 2 targets. The defender is the row player, and the
attacker is the column player. In this example, the defender
would get a payoff of 5 if she chose to cover (i.e., protect)
Target 1 and the attacker did attack Target 1. The solution
concept of choice in security games is the strong Stackelberg
equilibrium (SSE); it is described formally e.g., by Kiek-
intveld et al. (2009). SSE defines the optimization problem
we focus on in this paper: finding a mixed strategy for the
defender that maximizes her expected utility, given that the
attacker best responds to this mixed strategy. As previously
mentioned, a large number of algorithms are being designed
for these games, and software assistants built on these frame-
works have been successfully deployed (Jain et al. 2010b;
An et al. 2011).

A Bayesian Stackelberg security game extends the frame-
work to multiple types of attackers, with each such type
identified by its own payoff matrix. The defender does not
know which attacker type she will face in a given instance,
but knows the probability distribution from which the at-
tacker’s type is drawn.

Phase Transitions in Security Games
In this section, we demonstrate the existence of a phase tran-
sition in a decision version of the SSE optimization problem
at d:s = 0.5, and also show that this point corresponds to
the hardest random instances for a range of problem for-
mulations and algorithms. We begin by defining the deci-
sion version of the SSE optimization problem, which we de-
note SSE(D). SSE(D) asks whether there exists a defender
strategy that guarantees expected utility of at least the given
value D.

The deployment-to-saturation (d:s) ratio is defined in
terms of defender resources, a concept whose precise def-
inition differs from one domain to another. Given such a
definition, deployment refers to the number of defender re-
sources available to be allocated, and saturation refers to the
minimum number of defender resources such that the addi-
tion of further resources beyond this point yields no increase
in the defender’s expected utility.

We want to claim that a phase transition in the decision
problem correlates with the hardest random problem in-
stances. However, we obtain different phase transitions for
different values of D. We define D∗ as the median objec-
tive function value achieved in the SSE optimization prob-
lem when the d:s ratio is set to 0.5. We can estimate D∗ by
sampling random problem instances at d:s = 0.5, and com-
puting the sample median of their objective function values;
denote such an estimate D̂∗. In our experiments, we com-
puted D̂∗ by taking 100 samples.

Claim 1 As the d:s ratio varies from 0 to 1, the probability p
that a solution exists to SSE(D∗) exhibits a phase transition
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Figure 2: Average runtime of computing the optimal solution for a SPNSC problem instance, along with the probability p that
the corresponding decision problem is solvable. The vertical dotted line shows d:s = 0.5.

at d:s = 0.5. This phase transition is independent of the se-
curity domain or its representation. Furthermore, the com-
putationally hardest problem instances are those for which
d:s = 0.5, independent of the representation or solver.

To support this claim, we show results for three dif-
ferent classes of security domains, including results using
eight different MIP algorithms (including two deployed al-
gorithms), five different underlying MIP solvers, two dif-
ferent equilibrium concepts in Stackelberg security games,
and a variety of domain sizes and conditions. All the results
shown below are averaged over 100 samples, and were col-
lected on a machine with a 2.7GHz Intel Core i7 processor
and 8GB main memory. In all graphs, the x-axis shows the
d:s ratio, the solid lines show the runtime, and the proba-
bility p is drawn with dashed lines. Experiments were con-
ducted using CPLEX 12.2 unless otherwise noted.

SPNSC Domain
SPNSC (Security Problems with No Scheduling Con-
straints) refers to a security domain with distinct targets, a
set of defender resources and many attacker types. Each de-
fender resource can defend any one target, and there are no
scheduling constraints on the defender. In this domain, the
d:s ratio is the ratio of the number of available defender re-
sources to the number of targets. An real-world application
of SPNSC is setting up vehicular inspection checkpoints at
the Los Angeles International Airport, as implemented in
ARMOR (Jain et al. 2010b). We now examine two different
representations of the SPNSC domain.

General sum representation This representation models
every possible combination of actions of the defender’s re-

sources as a pure strategy for the defender. Thus, the number
of defender pure strategies for this domain is exponential in
the number of defender resources. Three algorithms, Multi-
pleLPs (Conitzer and Sandholm 2006), DOBSS (Paruchuri
et al. 2008) and HBGS (Jain, Kiekintveld, and Tambe 2011),
have been proposed to compute SSE for this representation.

We conducted experiments varying the algorithm, number
of attacker types and number of targets. The results are plot-
ted in Figures 2(a), 2(b) and 2(c). The payoffs for the two
players were selected uniformly at random: the rewards for
success were selected from the range [1, 10], and the penalty
for failure was picked from the range [−10,−1].

Figure 2(a) shows that the runtime required by all three
algorithms peaks at d:s = 0.53. (While we would like to
have observed peaks at exactly d:s = 0.5 in all of our ex-
periments, we typically observed values that were slightly
different. The explanation that might come first to mind is
variance due to having measured an insufficient number of
samples; indeed, that does explain noise we observed in our
measurement of p. However, there is also a more critical
issue, which indeed arises here. Because our numbers of
resources and targets are discrete, we were not able to mea-
sure every d:s value. Here, 8 resources and 15 targets corre-
sponded to d:s = 0.53.) This set of experiments considered
2 attacker types and 15 targets. The graph shows a phase
transition in p, with values spiking from 0 to 1 within a nar-
row range of d:s values. The value of p at the d:s ratio of
0.53 was 0.51. (Of course, we could not measure p at ex-
actly d:s = 0.5 either. The vertical line in Figure 2(a) really
is at d:s = 0.5. However, because the dashed line represent-
ing p interpolates between datapoints we actually observed,
the crossing point between the vertical line and the dashed

23



line is imprecise.) Notice that our calculation of p is a mea-
surement about the domain itself which is independent of
any algorithm or solver. Moreover, all the three algorithms
required the maximum runtime when the d:s ratio was 0.53.
For example, MultipleLPs required 27.9 seconds to compute
the optimal solution. We learn from this experiment that (i)
the computation is hardest when the d:s ratio is about 0.5,
and (ii) there is a phase transition in p that lines up with
these hardest instances.

The next two experiments study the phase transition when
the number of targets and the number of types in the domain
vary. Figure 2(b) varies the number of targets in the do-
main from 10 to 15. Similarly, Figure 2(c) varies the num-
ber of types from 2 to 3 in the security domain. For exam-
ple, Dobss took 1.8 seconds on average for instances with
3 attacker types at the d:s ratio of 0.5 (5 resources and 10
targets), As with the previous results, the d:s ratio of 0.5
corresponds with p = 0.51 as well as the computationally
hardest instances.

We also ran experiments with BRASS, which computes
an ε-Stackelberg equilibrium (Pita et al. 2010). We de-
fined ε-SSE(D) in the obvious way, and again varied d:s. In
Figure 2(d), we show that a phase transition also exists for
the ε-Stackelberg equilibrium solution concept. The hard-
est instances for BRASS in a domain with 15 targets corre-
sponded to a d:s ratio of 0.53 (8 resources), with BRASS
taking 17 seconds. As hypothesized, the corresponding
probability p was 0.50. Thus, the presence of the phase tran-
sition is independent of the solution concept as well.

Security game compact representation This representa-
tion computes the probability of the defender protecting a
target (Kiekintveld et al. 2009). It does not model joint dis-
tributions of multiple defender resources, but only operates
on the marginal probability of the defender covering a target.
ERASER (Kiekintveld et al. 2009) is the only algorithm for
this compact representation that computes optimal solution
for Bayesian Stackelberg security games.

We conducted experiments with ERASER that varied the
number of targets and the number of attacker types. We gen-
erated payoffs for the players as before. Figure 2(e) shows
our results for problem instances with 2 attacker types and
both 50 and 75 targets. For example, the runtime required
for 75 targets for the d:s ratio of 0.49 (37 resources) was
1.8 seconds, while the probability p was 0.48. This was the
computationally hardest point for 75 targets. This experi-
ment again shows the presence of a phase transition in p at
the d:s ratio of 0.5, and that the computationally hardest in-
stances occur when p is equal to 0.5. We also varied the
number of types, and those results also confirmed our claim.
These results can be found in Figure 2(f). This figure also
shows a phase transition in p at the d:s ratio of 0.5, and it
corresponds to the computationally hardest instances.

Our next experiment investigated the effect on ERASER’s
runtime of changing its underlying solver and solution
mechanism. In Figure 3, we plot the runtime required by
ERASER with CPLEX Primal Simplex, CPLEX Dual Sim-
plex, CPLEX Network Simplex, CPLEX Barrier and GLPK
Simplex methods. Again, we generated the payoffs and

game instances as before. A sample result is that, for the d:s
ratio of 0.50 (25 targets), the runtime required by CPLEX
Dual Simplex was 0.9 seconds and the runtime required by
GLPK Simplex was 1.6 seconds. This was the computation-
ally hardest point for all solver/solution methods and it cor-
responded to p = 0.51. These experiments again show the
phase transition and its correspondence with the computa-
tionally hardest instances hold across a range of underlying
solver and solution mechanisms for the SPNSC domain.
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Figure 3: The figure shows the average runtime of comput-
ing the optimal solution using Eraser in a domain with 50
targets, 2 attacker types with different solvers and solution
mechanisms, along with the probability of finding a solution
of the decision problem.

SPARS Domain
The SPARS (Security Problems with ARbitrary Schedules)
domain (Jain et al. 2010a) models a setting in which de-
fender resources may not be homogeneous, and are required
to satisfy scheduling constraints. A practical example is the
scheduling problem faced by the US Federal Air Marshals
Service, where every air marshal is a defender resource who
has to obey spatio-temporal and logistical constraints in se-
lecting flight tours. In a SPARS problem instance, a resource
(e.g., an air marshal) selects a schedule (e.g., a flight tour),
where each schedule can cover multiple targets (e.g., flight
tour spans multiple flights). Thus, each resource is capable
of protecting multiple targets. ASPEN (Jain et al. 2010a) is
the only algorithm that has been proposed to compute opti-
mal solutions for SPARS instances; it is based on a branch-
and-price algorithm (Barnhart et al. 1994).

We conducted experiments varying the length of a sched-
ule, the number of targets and the number of schedules. As
before, payoffs for the two players were selected uniformly
at random; the rewards for success were selected uniformly
at random from the interval [1, 10], and the penalty for fail-
ure uniformly at random from the interval [−10,−1].

Figure 4(a) shows our results for SPARS problem in-
stances with 100 targets and 500 schedules, when the num-
ber of targets covered by each schedule varied. For exam-
ple, the runtime required for |S| = 2 at the d:s ratio of 0.50
(20 deployed resources, 40 required for saturation) was 6.4
seconds, with a corresponding p = 0.51. This was com-
putationally the hardest point for |S| = 2. For |S| = 4,
the computationally hardest point required 28.9 seconds at

24



0	  

0.5	  

1	  

1	  

10	  

100	  

0	   0.2	   0.4	   0.6	   0.8	   1	  

Pr
ob

ab
ilit

y	  p
	  

Ru
n7

m
e	  
(se

co
nd

s)	  
	  

d:s	  ra7o	  

Aspen	  Run7me	  
100	  Targets,	  500	  Schedules	  

|S|	  =	  4	   |S|	  =	  2	  
Probabiilty	  p	  (|S|	  =	  4)	   Probability	  p	  (|S|	  =	  2)	  

(a)

0	  

0.5	  

1	  

0	  

2	  

4	  

6	  

8	  

0	   0.2	   0.4	   0.6	   0.8	   1	  

Pr
ob

ab
ilit

y	  p
	  

Ru
n7

m
e	  
(se

co
nd

s)	  

d:s	  ra7o	  

Aspen:	  100	  Targets,	  	  
2	  Targets	  per	  schedule	  

400	  Schedules	   500	  schedules	  

Probability	  p	  (400	  schedules)	   Probability	  p	  (500	  schedules)	  

(b)

0	  

0.5	  

1	  

0	  

2	  

4	  

6	  

8	  

0	   0.2	   0.4	   0.6	   0.8	   1	  

Pr
ob

ab
ilit

y	  p
	  

Ru
n7

m
e	  
	  (s
ec
on

ds
)	  

d:s	  ra7o	  

Aspen:	  500	  Schedules,	  	  
2	  Targets	  Per	  Schedule	  

100	  Targets	   50	  Targets	  

Probability	  p	  (100	  Targets)	   Probability	  p	  (50	  Targets)	  

(c)

Figure 4: Average runtime of computing the optimal solution for a SPARS game using ASPEN, along with the probability p.
The vertical dotted line shows d:s = 0.5. Graphs with multiple data series also have multiple vertical lines; however, these tend
to overlap, and so appear to be a single line.

d:s = 0.5 (10 available resources, 20 required for satura-
tion), and again corresponded to a probability of p = 0.51.
(Note that throughout Figure 4, the highest probability is
strictly less than 1. This is because some of the decision
problems were infeasible, due to a constraint requiring that
multiple resources not cover the same target.)

Figure 4(b) shows the results for SPARS problem in-
stances with 100 targets and 2 targets per schedule, con-
sidering 400 and 500 schedules. For example, the runtime
required for 500 schedules for the d:s ratio of 0.50 (20 re-
sources, 40 required for saturation) was 6.4 seconds, while
the probability p was 0.51. Figure 4(c) shows the results
for SPARS problem instances with 500 schedules, 2 targets
per schedule for 50 and 100 targets. For example, the run-
time required for 50 targets for the d:s ratio of 0.50 (10 re-
sources, 20 required for saturation) was 1.9 milliseconds,
while the probability p was 0.52. As expected, d:s = 0.5
corresponded to p = 0.5, and the computationally hardest
instances in both experiments.

SPPC Domain
We now introduce a new domain: Security Problems with
Patrolling Constraints (SPPC). This is a generalized secu-
rity domain that allows us to consider many different facets
of the patrolling problem. The defender needs to protect a
set of targets, located geographically on a plane, using a lim-
ited number of resources. These resources start at a given
target and then conduct a tour that can cover an arbitrary
number of additional targets; the constraint is that the total
tour length must not exceed a given parameter L. We con-
sider two variants of this domain featuring different attacker
models.

1. There are multiple independent attackers, and each target
can be attacked by a separate attacker. Each attacker can
learn the probability that the defender protects a given tar-
get, and can then decide whether or not to attack it.

2. There is a single attacker with many types, modeled as a
Bayesian game. The defender does not know the type of
attacker she faces. The attacker attacks a single target.

These variants were designed to capture properties of pa-
trolling problems studied by researchers across many real-
world domains (An et al. 2011; Bosansky et al. 2011;

Vanek et al. 2011). An example for the Bayesian single
attacker setting is the US Coast Guard patrolling a set of tar-
gets along the port to protect against potential threats. The
defender’s objective is to find the optimal mixed strategy
over tours for all its resources in order to maximize her ex-
pected utility. In this case, the deployment-to-saturation ra-
tio corresponds to the ratio between the allowed tour length
and the minimum tour length required to cover all targets
with the given number of defender resources.

Payoff Structure With each target in the domain are asso-
ciated payoffs, which specify the payoff to both the defender
and the attacker in case of an successful or an unsuccessful
attack. The attacker pays a high penalty for getting caught,
where as the defender gets a reward for catching the attacker.
On the other hand, if the attacker succeeds, the attacker gets
a reward where as the defender pays a penalty. Both the
players get a payoff of 0 if the attacker chooses not to at-
tack. The payoff matrix for each target is given in Table 1.
Thus, the defender gets a reward of τs units if she succeeds
in protecting the attack on target s, i.e. if the defender is
covering the target s when it is attacked. On the other hand,
the attacker pays a penalty of −P on being caught. Simi-
larly, the reward to the attacker is Rs for a successful attack
on site s, whereas the corresponding penalty to the defender
for leaving the target uncovered is −Rs.

No Attack Attack
Covered 0, 0 τs,−P

Uncovered 0, 0 −Rs, Rs

Table 1: Payoff structure for each target: defender gets a re-
ward of τs units for successfully preventing an attack, while
the attackers pays a penalty −P . Similarly, on a successful
attack, the attacker gains Rs and the defender loses −Rs.
Both players get 0 in case there is no attack.

Multiple Attackers In this game model, there are as many
attackers as the number of targets in the domain. Each at-
tacker can choose to attack or not attack a distinct target.
Each attacker can observe the net coverage, or probability
of the target being on a defender’s patrol, for the target that
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the attacker is interested in. In our formulation, we assume
that the attackers are independent and do not coordinate or
compete. Figure 5 shows an example problem and solutions
for this example. There are just two targets, A and B, which
are placed 5 units away from the home (starting) location of
the defender’s resources. There are two attackers, one for
each target. The tour length allowed in this example was 10
units, that is, the defender can only patrol exactly one target
in each patrol route. The penalty P was set to 70 units where
as the reward R for a successful attack to the attacker was
100 units. For this particular example, the defender cannot
protect the attacks on both sites and the optimal defender
strategy is to cover one target with probability 0.588, cover
the other target with probability 0.412 with the optimal de-
fender reward being −50.588.

5 time units 5 time units 

Attacker Penalty P = 70 
Time Bound = 10 time units 
Number of inspectors  = 1 
Inspector Reward = -50.588 

R = 100 
 λ = 20 

R = 100 
 λ = 20 

A	   0.588	  

B	   0.412	  

A B 

Inspector Strategy 

Figure 5: Example 1

Solution Methodology: We propose a branch and price
based formulation to compute optimal defender strategies in
this domain. Branch and price is a framework for solving
very large mixed integer optimization problems that com-
bines branch and bound search with column generation.
Branch and bound search is used to address the integer vari-
ables: each branch sets the values for some integer variable,
whereas column generation is used to scale up the computa-
tion to very large input problems.

There is a binary variable associated with each attacker:
either an attacker chooses to attack or he does not. Binary
variables are non-linear and are a well-known challenge for
optimization. This challenge is handled using a branch and
bound tree, where each branch of this tree assigns a specific
value to each attacker variable. Thus, each leaf of this tree
assigns a value for every attacker, that is, for every binary
variable.

Column Generation: Column generation is used to
solve each node of the above branch and bound tree. The
problem at each leaf is formulated as a linear program,
which is then decomposed into a Master problem and a
Slave problem. The master solves for the defender strategy
x, given a restricted set of tours T . The objective function
for the slave is updated based on the solution of the master,
and the slave is solved to identify the best new column to
add to the master problem, using reduced costs (explained
later). If no tour can improve the solution further, the col-
umn generation procedure terminates.

Master Formulation: The master problem solves for the

Variable Definition
S Set of sites (targets)
T Set of tours
L Upper bound on the length of a defender tour
x Probability distribution over T
q Attack vector
zst Binary value indicating whether or not s ∈ T
d Defender reward
k Adversary reward
P Penalty to attacker
Rs Reward to attacker at site s
τs Defender reward for catching attacker on site s
M Huge Positive constant

Table 2: Notation

best probability distribution x that maximizes the defender’s
expected utility given a limited number of patrol tours T.
The defender’s expected utility is a sum of defender utilities
ds over all the targets s. The master formulation is given in
Equations (1) to (7). The notation is described in Table 2.
Equations (3) and (4) capture the payoff the defender. They
ensure that ds is upper bounded by the payoff to the defender
at target s, Equation (3) capturing the payoff when the at-
tacker chooses to attack s (i.e. qs = 1) whereas (4) captures
the defender’s payoff when the attacker chooses to not at-
tack s (i.e. qs = 0). Similarly, Equations (5) and (6) capture
the payoff of the attacker. They ensure that the assignment
qs = 1 is feasible if and only if the payoff to the attacker
for attacking the target s, (

∑
t∈T xtzst)(−P −Rs) +Rs, is

greater than 0, the attacker’s payoff for not attacking target
s. Equations (2) and (7) ensure that the strategy x is a valid
probability distribution.

min
x,y,d,q

−
∑
s∈S

ds (1)

s.t.
∑
t∈T

xt ≤ 1 (2)

ds −
∑
t∈T

xtzst(τs +Rs) +Mqs ≤M −Rs (3)

ds −Mqs ≤ 0 (4)

Mqs(P +Rs) +
∑
t∈T

xtzst(P +Rs) ≤M +Rs (5)

−Mqs(P +Rs)−
∑
t∈T

xtzst(P +Rs) ≤ −Rs (6)

xt ∈ [0, 1] (7)

Slave Formulation: The slave problem find the best pa-
trol tour to add to the current set of tours T. This is done
using reduced cost, which captures the total change in the
defender payoff if a tour is added to the set of tours T. The
candidate tour with the minimum reduced cost improves the
objective value the most (?). The reduced cost ct of variable
xt, associated with tour T , is given in Equation 8, where w,
y, v and h are dual variables of master constraints (3), (5), (6)
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and (2) respectively. The dual variable measures the influ-
ence of the associated constraint on the objective, and can
be calculated using standard techniques:

ct =
∑
s∈S

(ws(τs +Rs) + (vs − ys)(P +Rs))zst − h (8)

…
 

…
 

…
 

… 

Target 1 

Target N  

…
 

Virtual  
Source 

Virtual  
Sink 

Not Attack 

Target 1 

Target N  

Level 1 Level 2 Level N 

(1,1) 

(1,2) 

(1,N) 

(2,1) 

(2,2) 

(2,N) 

(N,1) 

(N,2) 

(N,N) 

Figure 6: This figure shows an example network-flow based
slave formulation. There are as many levels in the graphs as
the number of targets. Each node represents a specific target.
A path from the source to the sink maps to a tour taken by
the defender.

One approach to identify the tour with the minimum re-
duced cost would be to iterate through all possible tours,
compute their reduced costs, and then choose the one with
the least reduced cost. However, we propose a minimum-
cost integer network flow formulation that efficiently finds
the optimal column (tour). Feasible tours in the domain map
to feasible flows in the network flow formulation and vice-
versa. The minimum cost network flow graph is constructed
in the following manner. A virtual source and virtual sink
are constructed to mark the beginning and ending locations,
i.e. home base, for a defender tour. These two virtual nodes
are directly connected by an edge signifying the ”Not attack”
option for the attacker. As many levels of nodes are added
to the graph as the number of targets. Each level contains
nodes for every target. There are links from every node on
level i to every node to level i+ 1. Each node on every level
i is also directly connected to the sink. Additionally, the
length of the edge between any two nodes is the Euclidean
distance between the two corresponding targets. Constraints
are added to the slave problem to disallow a tour that covers
two nodes corresponding to the same target (i.e. a network
flow going through node (1,1) and (2,1) in the figure would
be disallowed since both these nodes correspond to target 1).
An additional constraint is added to the slave to ensure that
the total length of every flow (i.e. sum of lengths of edges
with a non-zero flow) is less than the specified upper bound
L. Thus, the slave is setup such that there exists a one-to-
one correspondence between a flow generated by the slave
problem and patrol route that the defender can undertake.
Figure 6 shows an example graph for the slave.

Each node representing a target is split into two dummy
nodes with an edge between them. Link costs are put on
these edges. The costs on these graphs are defined by de-
composing the reduced cost of a tour, ct, into reduced costs
over individual targets, ĉs. We decompose ct into a sum of

cost coefficients per target ĉs, so that ĉs can be placed on the
edges between the two dummy nodes of each target. ĉs are
defined as follows:

ct =
∑
s∈S ĉszst − h (9)

ĉs = (ws(τs +Rs) + (vs − ys)(P +Rs)) (10)

Results: We present the results of experiments with this
algorithm in Figure 7. Figure 7(a) shows the results for the
SPPC domain with 1 defender resource, and with the num-
ber of targets varying from 6 to 8. For example, for the d:s
ratio of 0.50, the algorithm took 108.2 seconds to compute
the optimal solution, and the value of p was 0.54 for 8 tar-
gets. Figure 7(b) shows the runtime required to compute
the optimal solution for the SPPC domain with 8 targets. It
varies the number of defender resources from 1 to 2. For
example, for the d:s ratio of 0.50, the algorithm took 144.0
seconds to compute the optimal solution for 2 resources, and
the probability p was equal to 0.49. Additionally, p again
shows a phase transition as the d:s ratio is varied from 0 to
1.

Bayesian Single Attacker The second game model is a
standard Bayesian game with a single attacker who could
be of many types. Each attacker type is identified by a dif-
ferent payoff matrix. The defender does not know the type
of the attacker she would be facing, however, the defender
does know a prior probability of facing each type. The at-
tacker knows his type as well the defender strategy, and then
computes his best response. The results presented in this
section show that the easy-hard-easy computation pattern is
not restricted to just one domain representation but to other
representations as well.

Solution Methodology: We modified the branch-and-
price formulation to compute optimal solutions for this vari-
ant of the domain. Here, again, the branch-and-price formu-
lation is composed of a branch and bound module and a col-
umn generation module. Again, the actions of the attacker
are modeled as an integer variable. The branch and bound
assigns a value (i.e. a specific target to attack) to this inte-
ger in every branch. The solution at each node of this tree
is computed using the column generation procedure. The
master and the slave problems for this column generation
procedure are described below.

Master Formulation: The objective of the master formu-
lation is to compute the probability distribution x over the
set of tours T such that the expected defender utility is max-
imized. The master formulation is given in Equations (11)
to (16). Λ specifies the set of adversary types, and is sub-
scripted using λ. Again, Equation (13) computes the payoff
of the defender. Equations (14) and (15) compute the payoff
of the attacker, while ensuring that qλs = 1 is feasible if and
only if attacking target s is the best response of the attacker
of type λ. Equations (12) and (16) ensure that x is a valid
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Figure 7: Average runtime for computing the optimal solution for a patrolling domain, along with the probability p. The vertical
dotted line shows d:s = 0.5.

probability distribution.

min
x,d,q
−

∑
λ∈Λ

dλ (11)

s.t.
∑
t∈T

xt ≤ 1 (12)

dλ −
∑
t∈T

xtzst(τ
λ
s +Rλs ) +Mqλs ≤M −Rλs (13)

−kλ −
∑
t∈T

xtzst(P
λ +Rλs ) +Rλs ≤ 0 (14)

kλ +
∑
t∈T

xtzst(P
λ +Rλs ) +Mqλs −Rλs ≤M(15)

xt ∈ [0, 1] (16)

Slave: The objective of the slave formulation is the com-
pute the next best tour to add to the set of tours T. This is
again done using a minimum cost integer network flow for-
mulation. The network flow graph is constructed in the same
way as before. The updated reduced costs for this variant
of the domain are computed using the same standard tech-
niques and are given in the Equation (17). Here, wλ, yλ,
vλ and h represent the duals of Equations (13), (14), (15)
and (12) respectively.

ct =
∑
λ∈Λ

∑
s∈S

(wλs (τλs +Rλs ) + (vλs − yλs )(Pλs +Rλs ))zst−h

(17)
This reduced cost of a tour ct is again decomposed into re-
duced costs per target in the following manner:

ct =
∑
s∈S ĉszst − h (18)

ĉs =
∑
λ∈Λ(wλs (τλs +Rλs ) + (vλs − yλs )(Pλs +Rλs ))(19)

These reduced costs per target, ĉs, are then put as the costs
on the links of the minimum cost network flow formulation.

Results: Figure 8 shows the runtime required for our al-
gorithm to compute an optimal solution for this domain with
8 targets and 1 defender resource, along with the probability
p that the decision problem is solvable. It varies the num-
ber of types from 1 to 2. For example, for the d:s ratio of
0.50, the algorithm took 2.0 seconds to compute the optimal
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Figure 8: Average runtime for computing the optimal so-
lution for a Bayesian Single Attacker patrolling domain,
along with the probability p. The vertical dotted line shows
d:s = 0.5.

solution for 1 type, and the probability p was also equal to
0.47. Additionally, p again shows a phase transition as the
d:s ratio varies from 0 to 1.

Implications
We have provided evidence that the hardest random Stack-
elberg game instances occur at a deployment-to-saturation
ratio of 0.5. This finding has two key implications.

First, it is important to compare algorithms on hard prob-
lems. If random data is used to test algorithms for secu-
rity domains, it should be generated at a d:s ratio of 0.5.
There has indeed been a significant research effort focus-
ing on the design of faster algorithms for security domains.
Random data has often been used; unfortunately, we find
that it tends not to have come from the d:s = 0.5 region.
(Of course, the concept of a deployment-to-saturation ratio
did not previously exist; nevertheless, we can assess previ-
ous work in terms of the d:s ratio at which data was gen-
erated.) For example, Jain, Kiekintveld, and Tambe (2011)
compared the performance of HBGS with DOBSS and Mul-
tipleLPs, but they only compared d:s ratios between 0.10
and 0.20. Similarly, Pita et al. (2010) presented runtime
comparisons between different algorithms, varying the num-
ber of attacker types in the security domain; all experiments
in this paper were fixed at d:s = 0.30 (10 targets, 3 re-
sources). Jain et al. (2011) showed scalability results for
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RUGGED, testing at d:s ratios of 0.10 and (mostly) 0.20.
Runtime results have also been presented in other secu-
rity settings (Dickerson et al. 2010; Vanek et al. 2011;
Bosansky et al. 2011); these algorithms compute defender
strategies for networked domains. Their experiments keep
the number of resources fixed and increase the size of the
underlying network; however, none of these papers provides
enough detail about how instances were generated to allow
us to accurately compute the d:s ratio.

To make it easier for future researchers to test their al-
gorithms on hard problems, we have written a benchmark
generator for security games that generates instances from
d:s = 0.5. This generator is written in Java, and will be pro-
vided on request. It allows users to generate instances for all
domains described above, as well as to execute all the algo-
rithms mentioned in this research. It also allows switching
between GLPK and CPLEX.

Second, we observe that intermediate values of the d:s
ratio, the computationally hard region, is also the region
where optimization is most valuable and hence where se-
curity officials are most likely to seek help in optimizing
their resource deployment. If the d:s ratio is large, there are
enough resources to protect almost all targets, and perform-
ing a rigorous optimization offers little additional benefit. If
d:s is small, there are not enough resources for optimized
deployment to have a significant impact. We show an exam-
ple from random data from the SPNSC domain in Figure 9.
We present results for 50 and 75 targets, each averaged over
100 random instances. The x-axis plots the d:s ratio, and
the y-axis shows the difference between the defender utili-
ties obtained by the optimal strategy and a naı̈ve randomiza-
tion strategy. A low utility difference implies that the naı̈ve
strategy is almost as good as the optimal strategy, whereas a
high difference shows that it is worthwhile to invest in com-
puting the optimal strategy. The naı̈ve strategy we use here
prioritizes targets based on attacker’s payoff of successfully
attacking a target. It then uniformly distributes its resources
over twice as many top targets as the number of resources.
For example, at a d:s ratio of 0.5, for 50 targets, the differ-
ence in utilities between the optimal solution and the solu-
tion from the randomized strategy was 5.07 units, whereas it
was 0.21 units at a d:s ratio of 1. This suggests that compu-
tationally hard settings are also those where security forces
would benefit the most from adopting nontrivial strategies;
hence, researchers should concentrate on these problems.

Conclusions
Stackelberg security games are an widely studied model of
security domains, with important deployed applications. We
introduced the concept of the deployment-to-saturation (d:s)
ratio, a domain-spanning measure of the density of defender
coverage in any security problem. We showed that the com-
putationally hardest random instances of such games occur
at a d:s ratio of 0.5. We further demonstrated that this hard
region corresponds to a phase transition in the probability
that a corresponding decision problem for the Stackelberg
security game has a solution. Our evidence for this correla-
tion of the computationally hardest instances with the phase
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Figure 9: The difference between expected defender utili-
ties from ERASER and a naı̈ve randomization policy. The
vertical line shows d:s = 0.5.

transition was based on eight different algorithms, two de-
ployed in real-world applications, and in each case varia-
tions in the number of targets, attacker types, solvers used
to solve them, and/or different underlying solution mecha-
nisms; our results were amazingly robust across all of these
settings. We argued that our results have two important im-
plications. First, researchers comparing and benchmarking
algorithms for Stackelberg security games on random data
should concentrate on problems with d:s = 0.5 (as, unfor-
tunately, much previous work has failed to do); we wrote
a free benchmark generator to help researchers do this in
the future. Second, we argued that problems of real-world
interest are likely to arise in the computationally hardest re-
gion, around the d:s ratio of 0.5, and backed up this claim
by showing that an extremely naı̈ve defender strategy works
almost as well as the optimal strategy at both large and small
d:s values.
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