
Applying Kernel Methods to Argumentation Mining

Niall Rooney, Hui Wang
AI & Applications Research Group

School of Computing & Mathematics
University of Ulster

email:{nf.rooney, h.wang}@ulster.ac.uk

Fiona Browne
Northern Ireland Technology Center

Queen’s University Belfast
email:f.browne@qub.ac.uk

Abstract

The area of argumentation theory is an increasingly impor-
tant area of artificial intelligence and mechanisms that are
able to automatically detect the argument structure provide
a novel area of research. This paper considers the use of ker-
nel methods for argumentation detection and classification. It
shows that a classification accuracy of 65%, can be attained
using Natural Language Processing based kernel approaches,
which do not require any heuristic choice of features.

Introduction
Argumentation involves the detection of various elements
of an argument as outlined in Toulmin’s influential model
of argumentation (Toulmin 1958). An argument is a set of
premises, pieces of evidence (e.g. facts), offered in support
of a claim. The claim is a proposition, an idea which is either
true or false, put forward by somebody as true. The claim
of an argument is also normally called its conclusion. Ar-
gumentation may also involve chains of reasoning, where
claims are used as premises for deriving further claims. In
the argumentation process, relationships between these ele-
ments are built by leveraging Natural Language Processing
and Computational Reasoning. A number of important ap-
proaches have been applied within the field to formalize the
process of argumentation. In Classical Logic approaches to
argumentation, arguments are represented as a set of facts
and conclusion(s) that follows from the given facts (Bench-
Capon and Dunne 2007). As there is no variation in the
weight an individual fact can have, uncertainty can be repre-
sented as disjunctions. Classical Logic is a well-established
formalism which allows the use of tools such as highly ma-
ture and efficient theorem provers. Once a knowledge base
has been created, a range of operations can be performed.
For each argument, counterarguments can be found.

Similar to (Palau and Moens 2009; 2011), we consider an
argument as a set of elementary units or propositions, being
all of them premises, except the ultimate one,which is the
conclusion and our focus is being able to automatically de-
tect the premises and conclusion from all sentences of the
free text containing the argument. As a sentence (particu-
larly in a formal argument) is normally composed of main

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and/or subordinate clauses, with the argumentation element
contained within one or more of the clauses, our classifi-
cation approach focuses on whether a sentence contains in
part or whole an argumentative element or not. Rather than
consider a range of possible NLP (Natural Language Pro-
cessing) based features often chosen based on heuristic con-
siderations, we consider the use of convolution kernels for
this task, which have been shown to yield good performance
for a range of NLP tasks (Zhang, Zhang, and Li 2010). A
kernel provides a mechanism for calculating the similarity
between two objects e.g. a document, a paragraph, sentence
etc. Formally a kernel k(x, y) is a similarity measure defined
by an implicit mapping Φ, from the original space to a vec-
tor space (feature space) such that: k(x, y) = Φ(x) · Φ(y).
A convolution kernel is a recursively constructed kernel for
a structured object such that the kernel is the composition
of kernels applied to parts of the object (Collins and Duffy
2001).

Kernel Methods
There has been a number of directions of research into the
use of convolution kernel methods for NLP based on the se-
quence output from tagging or constituency and/or depen-
dency tree output parsing. In this paper we consider only
the former but the reader should refer to extensive work by
Moschitti for the latter over a range of tasks such as rela-
tion extraction (Nguyen, Moschitti, and Riccardi 2009) to
cite but one. One approach for representing the similarity
of one sentence or sub-sentence (or clause) to another is to
compare the sequence of tagged features for each word to
another sequence, where possible tags (or symbols) may re-
fer to the word form itself, its root and its Part of Speech
(POS). Sequence kernels ((Lodhi et al. 2002; Cancedda et
al. 2003)) assess similarity by counting the number of (pos-
sibly non-contiguous) matching subsequences of tags. Let
x be a sequence of |x| symbols drawn from an alphabet Σ
e.g. in the case of word forms, Σ denotes the set of possible
word forms. A subsequence sx of length n is identified by a
set of n symbol indices constrained to be strictly increasing
sx = x[i] with i ∈ {1, .., |x|} and i[1] < i[2] · · · < i[n]. Let
Sn(x) be the set of subsequences of size n associated to x
and we denote as g(sx) as the number of gaps contained in
the subsequence sx. The gap-weighted subsequence kernel
of order n is defined as :

272

Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference

kn(x, y) =
∑

sx∈Sn(x)

∑
sy∈Sn(y)

1(sx = sy)λg(sx)λg(sy) (1)

where λ is referred to as the gap penalization factor.
When λ tends to zero, the influence of non-contiguous sub-
sequences is diminished. For λ = 1, every subsequence con-
tributes equally to the kernel regardless of whether it is con-
tiguous or not.

For all subsequences up to and including size n,
the”blended” kernel K is defined as:

(2)K =
n∑

i=1

µiki(x, y)

The value of µi is set to one in the context of this paper
so that all kernel contributions for different orders of size
are equally weighted, as there is no particular preference for
matching subsequences of different sizes.

Cancedda and Mahé (2009) extended the concept of se-
quences to include p multiple dimensions or factors. Under
this representation, a symbol u is formally defined as a tuple
of p factors {u(d)}d=1:p each drawn from a different alpha-
bet Σd .

It can be shown that:

(3)

kfactn (x, y) =
∑

sx∈Sn(x)

∑
sy∈Sn(y)

λg(sx)λg(sy)

n∏
i=1

p∑
d=1

wd1(s(d)x [i] = s(d)y [i])

where d denotes each dimension and wd is the weighting
for each dimension. s(d)x [i] denotes the factor value at posi-
tion i in the subsequence for dimension d. For the purposes
of this work, the factors are based on the symbols or tags
representing the word form, its root or lemma and POS in
that order, so that the value of p is 3.

For efficiency of computation, rather than calculate the
gaps in a sequence, we determines the length of the subse-
quence in the original sequence according to the proposed
mechanism of Bunescu and Mooney (2005) so that

(4)

kfactn (x, y) =
∑

sx∈Sn(x)

∑
sy∈Sn(y)

λl(sx)λl(sy)

n∏
i=1

p∑
d=1

wd1(s(d)x [i] = s(d)y [i])

where l(sx) is the length of the subsequence indices in
the original sequence x i.e. l(sx) = i[n] − i[1] + 1. This
means that there is a penalization even for subsequences
of length 1, however it is still diminished in comparison to
longer (sparser) sub-sequences.

For all subsequences up to size n, the factored sequence
kernel KFact is defined as:

(5)KFact =
n∑

i=1

µik
fact
i (x, y)

Experimental Evaluation
In this section, we describe the corpus, the evaluation of ar-
gumentation mining carried out and the results/analysis of
our experiments.

Corpus
The AraucariaDB (Reed et al. 2008) was developed as part
of a project at the University of Dundee (UK) and comprises
a range of argumentative examples drawn from a number of
different regions and sources. Each document has been an-
notated; marked up in an XML style format using Araucaria
, a software tool according to known argumentation schemes
(Walton, Reed, and Macagno 2008). In total there is at the
time of this study, 662 documents. An example of the argu-
ment elements drawn from a sample argument document is
shown in Figure 1.

<ARG>
<AU>

<PROP i d e n t i f i e r = 'A ' m i s s i n g = ' no '>
<PROPTEXT o f f s e t = ' 10 '> i t m a t t e r s i f WMD a r e found</ PROPTEXT>
<INSCHEME scheme= ' Argument from t h e C o n s t i t u t i o n o f

P r o p e r t i e s ' s c h i d = ' 0 ' />
</ PROP>
<LA>

<AU>
<PROP i d e n t i f i e r = 'B ' m i s s i n g = ' no '>

<PROPTEXT o f f s e t = ' 39 '>The r e a s o n g i v e n f o r i n v a d i n g I r a q
now was b e c a u s e t h e y were an imminent t h r e a t

b e c a u s e o f t h e i r weapons o f mass d e s t r u c t i o n
</ PROPTEXT>

<INSCHEME scheme= ' Argument from t h e C o n s t i t u t i o n o f
P r o p e r t i e s ' s c h i d = ' 0 ' />

</ PROP>
</AU>
<AU>

<PROP i d e n t i f i e r = 'C ' m i s s i n g = ' yes '>
<PROPTEXT o f f s e t = ' 1 '>I f t h e r e a s o n g i v e n f o r i n v a d i n g

I r a q was t h a t i t s WMD were an imminent t h r e a t , i t
m a t t e r s i f WMD a r e found

</ PROPTEXT>
<INSCHEME scheme= ' Argument from t h e C o n s t i t u t i o n o f

P r o p e r t i e s ' s c h i d = ' 0 ' />
</ PROP>

</AU>
</LA>

</AU>
<EDATA>

<AUTHOR>Mark</AUTHOR>
<DATE>2 0 0 3 0 9 0 5</DATE>
<SOURCE>BBC News , Have your say , 'WMD: Should t h e r e be an

i n d e p e n d e n t i n q u i r y ? ' 10 J u l y 2003 .</SOURCE>
<COMMENTS />

</EDATA>
</ARG>

Figure 1: Sample Araucaria argument listing

AU denotes an argument element where the first argu-
ment refers to the Conclusion and all subsequent argument
elements if the attribute ”missing” has value no, refers to
known premises. So in the given example , there is only
one premise: “The reason given for invading Iraq now was
because they were an imminent threat because of their
weapons of mass destruction”. We processed this corpus us-
ing GATE (Cunningham et al. 2002) to annotate premises
and conclusions in the corpus and to determine each sen-
tence and its associated label. A sentence in the text of any
document is labelled as a “Premise” if it contains a part or
all of a premise only, a “Conclusion” if it contains part or

273

all of a Conclusion only, or “None” indicating that the sen-
tence does not belong to any argumentative element. The
evaluation label “PremiseConclusion” denotes a sentence
that is both part of a Premise and part of a Conclusion, as
Premise and Conclusion boundaries do not necessarily co-
incide with Sentence boundaries. Also the classification of
“Conclusion” is more difficult than a “Premise” as the level
of distinct-ness amongst conclusions is higher as an argu-
ment has at most only one argument whereas it may have
many premises. Table 1 shows the number of sentence in-
stances containing each label.

Label Number of instances
None 1686
Conclusion 304
Premise 1299
PremiseConclusion 161

Table 1: Number of instances of each argumentative element
label

Evaluation
We developed a GATE plugin in order to run 10 fold cross
validation to apply a SVM classifier using a kernel function
based on the normalized factored sequence kernel in order to
classify the label of a sentence, based on the previously men-
tioned labels. In the case of the factored sequence kernel,
we considered different settings for the maximum length of
subsequence, the gap weighting penalization factor and the
relative weighting setting for each factor, by varying each
parameter while keeping the other parameters constant, to
determine the effect on classification performance.

Figure 2: The effect on cross validation accuracy by varying
the gap penalization size

Figure 2 shows the effect on the cross validation accu-
racy by varying λ where wd for each factor is 1 and size
n is 2. Noticeably the accuracy for “Conclusion” is low , a
reflection of the fact that as Table 1 shows there is large im-
balance in the number of sentences that are “Conclusion” to

sentences containing label “None” or “Premise”. A similar
effect is shown with the sentences labelled as “PremiseCon-
clusion”. In terms of the overall accuracy (as an average of
various labellings) , there did not seem to be any benefit of
having a gap weighting penalization factor less than 1, how-
ever it did not have a large detriment on the performance.

Figure 3: The effect on cross validation accuracy by varying
the maximum size of n

Based on a gap penalization factor of 1, we investigated
the effect of different sizes of n from 1 to 3. Figure 3 shows
the outcome of this evaluation. It is clear that increasing the
effect of n has only a slight improvement in accuracy, in-
dicating that sentences in different arguments, do not have
relatively high level of commonality in their higher order
subsequences, in comparison to subsequences of only 1 ele-
ment.

Figure 4: The effect on cross validation accuracy for differ-
ent weighting factors (w1 (word),w2 (root), w3 (pos))

Potentially this may be due to the high level of diversity
of content due to the varying sources for arguments, and that
higher order sub-sequences may only make a difference for
content drawn only from specific sources such as court re-
ports. This also explains to some extent the lack of a pro-

274

nounced gap weighting effect. It may be neccessary to con-
sider the classification of smaller units of text such as the use
of clauses (Palau and Moens 2009).

Furthermore, based on a gap penalization factor of 1, we
investigated the effect of different weightings for each of the
given factors. Figure 4 shows the outcomes for three differ-
ent weightings. An interesting effect that can be observed
from the given figure is that the use of the POS is relatively
inconsequential in its effect on performance, as shown by the
weighting of zero. Including the factor results in only a slight
increase in performance. Increasing the relative weighting of
the word to the root, appears benefical for certain categories
but detrimental for others.

Conclusions
We have investigated the use of convolution kernel methods
for classifiying whether a sentence belongs to an argumen-
tative element or not. Using gap-weighted subsequence ker-
nels, we achieved an accuracy of 65%. This is less than the
value of 73% stated in (Palau and Moens 2009). However
we had the advantage that we did require the specialized se-
lection of different lexical or syntactic based features, the
selection of which are based on ad hocs choices. Where ar-
gumentative elements are drawn from the same domain it
is probable that kernel approaches will prove more benefi-
cal as more shared structures are involved either in terms of
higher order sub-sequences in the case of sequence kernels,
which we intend to look at more closely in future work. An-
other avenue of research is to consider classifying smaller
argumentative units of text such as clauses.

References
Bench-Capon, T. J. M., and Dunne, P. 2007. Argumentation
in artificial intelligence. Artificial Intelligence 171:619–641.
Bunescu, R., and Mooney, R. J. 2005. A shortest path de-
pendency kernel for relation extraction. In HLT/EMNLP
2005, Human Language Technology Conference and Con-
ference on Empirical Methods in Natural Language Pro-
cessing, Proceedings of the Conference, 6-8 October 2005,
Vancouver, British Columbia, Canada. The Association for
Computational Linguistics.
Cancedda, N., and Mahé, P. 2009. Factored sequence ker-
nels. Neurocomputing 72(7-9):1407–1413.
Cancedda, N.; Gaussier, E.; Goutte, C.; and Renders, J.
2003. Word-sequence kernels. Journal of Machine Learning
Research 3(6):1059–1082.
Collins, M., and Duffy, N. 2001. Convolution kernels
for natural language. In Advances in Neural Information
Processing Systems 14 [Neural Information Processing Sys-
tems: Natural and Synthetic, NIPS 2001, December 3-8,
2001, Vancouver, British Columbia, Canada], 625–632.
Cunningham, H.; Maynard, D.; Bontcheva, K.; and Tablan,
V. 2002. Gate: an architecture for development of robust hlt
applications. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, ACL ’02, 168–
175. Stroudsburg, PA, USA: Association for Computational
Linguistics.

Lodhi, H.; Saunders, C.; Shawe-Taylor, J.; Cristianini, N.;
and Watkins, C. 2002. Text classification using string ker-
nels. Journal of Machine Learning Research 2:419–444.
Nguyen, T.; Moschitti, A.; and Riccardi, G. 2009. Con-
volution kernels on constituent, dependency and sequential
structures for relation extraction. In Proceedings of the
2009 Conference on Empirical Methods in Natural Lan-
guage Processing: Volume 3-Volume 3, 1378–1387. Asso-
ciation for Computational Linguistics.
Palau, R. M., and Moens, M. 2009. Argumentation mining:
The detection, classification and structure of arguments in
text. In Proceedings of the 12th International Conference
on Artificial Intelligence and Law, 98–107.
Palau, R., and Moens, M.-F. 2011. Argumentation mining.
Artif. Intell. Law 19(1):1–22.
Reed, C.; Mochales Palau, R.; Rowe, G.; and Moens, M.
2008. Language resources for studying argument. In Pro-
ceedings of the International Conference on Language Re-
sources and Evaluation, LREC 2008, 26 May - 1 June 2008,
Marrakech, Morocco.
Toulmin, S. E. 1958. The Uses of Argument. Cambridge
University Press.
Walton, D.; Reed, C.; and Macagno, F. 2008. Argumentation
Schemes. Cambridge University Press.
Zhang, M.; Zhang, H.; and Li, H. 2010. Convolution kernel
over packed parse forest. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics,
875–885. The Association for Computational Linguistics.

Acknowledgments
The DEEPFLOW project is funded by Invest Northern Ire-
land ref: RD1208002 and SAP (AG). We acknowledege the
contribution of Fergal Monaghan and Zhiwei Lin of SAP
who provided the foundation for this work.

275

