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Abstract
A possible approach to extend classical logics to probabilistic
logics is to consider a probability distribution over the clas-
sical interpretations that satisfies some constraints and maxi-
mizes entropy. Over the past years miscellaneous languages
and semantics have been considered often based on similar
ideas. In this paper a hierarchy of general probabilistic se-
mantics is developed. It incorporates some interesting spe-
cific semantics and a family of standard semantics that can
be used to extend arbitrary languages with finite interpreta-
tion sets to probabilistic languages. We use the hierarchy to
generalize an approach reducing the complexity of the whole
entailment process and sketch the importance for further the-
oretical and practical applications.

1 Introduction
For representing knowledge a considerably drawback of
classical logics is that uncertainty cannot be expressed. A
formula can be true or false, but in many practical situations
this is not sufficient. Consider a medical expert system for
example. Given a set of symptoms different diagnoses can
be more or less probable. A very natural way to express such
uncertainties are probabilities.

A possible approach is to define a probability distribution
over the interpretations of the classical logic often referred
to as possible worlds (Nilsson 1986). Then to each formula a
probability can be assigned by summing up the probabilities
of their models. In most cases it is impractical to define
a complete and reasonable probability distribution. In the
ME-approach one formulates some probabilistic constraints,
so-called conditionals, and selects the satisfying probability
distribution having maximum entropy. Some rationales can
be found in (Paris 1994) and (Kern-Isberner 2001).

The ME-Inference problem can be described as the task of
determining the probability distribution satisfying the condi-
tionals and maximizing entropy. Important for applications
is primarily the ME-Entailment problem. Given a knowl-
edge base and a formula we are interested in the probability
of the formula. Considering the number of possible worlds
it is obvious that the maximization problem as well as the
computation of probabilities of formulas becomes challeng-
ing for complex scenarios. In (Paskin 2002) knowledge ex-
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pressed by classical formulas is used to reduce the number of
possible worlds in Nilsson’s framework. We show that this
approach is compatible with the conditional framework and
can be generalized to several semantics. For this purpose a
selection of ME-semantics is classified into a hierarchy of
general semantics. They differ in increasing complexity of
the satisfaction relation but yet feature a common structure.
In particular, a standard semantics is introduced that can be
used to extend arbitrary classical logical languages with fi-
nite interpretation sets to probabilistical logical languages
similar to (Nilsson 1986). The introduced hierarchy might
hopefully simplify the examination of the relationships be-
tween existing and further languages and their semantics and
provide a simple framework to prove further general results.

In Section 2 we describe the basic building blocks of ME-
languages and introduce a standard semantics for classical
and relational languages as considered in (Nilsson 1986) and
two semantics from (Kern-Isberner and Thimm 2010) that
enable the expression of both subjective and statistical in-
formation. In Section 3 a general concept of a conditional
semantics is defined. We develop a hierarchy of general se-
mantics featuring some useful properties for the inference
and entailment problem and integrate the introduced con-
crete semantics. In Section 4 we apply a well-known in-
ference result to the hierarchy and show that the procedure
proposed in (Paskin 2002) is consistent with ME-Inference
and -Entailment and transfers to a very general family of ad-
equately structured semantics.

2 Probabilistic Reasoning
Usually a logical language is built up of atomic elements.
Formulas are obtained by combining these atoms to more
complex structures using logical connectives like conjunc-
tion or negation. A classical semantics for the logic can be
obtained by an interpretation assigning truth values to the
atomic elements and defining how connected atoms have to
be evaluated. An interpretation satisfying a formula is called
a model of the formula. To abstract from the specific struc-
ture we consider a (logical) language L, i.e., a set of for-
mulas, together with a finite set of interpretations ΩL called
possible worlds, and a satisfacion relation |=L. Let the set
of classical models to a formula φ ∈ L be denoted by

ModL(φ) := {ω ∈ ΩL | ω |=L φ}.
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To assign a probabilistic semantics to L we can define a
probability distribution P : ΩL → [0, 1] assigning a degree
of belief to each possible world. P is extended to the power
set 2ΩL via

P(W ) :=
∑
ω∈W

P(ω) (1)

for all W ⊆ ΩL. Let PL denote the set of all such prob-
ability distributions over ΩL. Given an arbitrary but fixed
ordering of the possible worlds we can represent P by a
|ΩL|-dimensional vector ~P . Its components are the world-
probabilities, and we write ~Pω for the component containing
P(ω).

Example 2.1. Consider a propositional logical lan-
guage over two binary variables {A,B}. We represent
the interpretations by the ordered complete conjunctions
(AB, ĀB,AB̄, ĀB̄). We can define a probability distribu-
tion P by P(AB) := 0.2, P(ĀB) := 0.3, P(AB̄) := 0.4,
P(ĀB̄) := 0.1. Then the corresponding vector is ~P =

(0.2 0.3 0.4 0.1)T and ~PAB = 0.2. We obtain the
probability ofA by summing up the probability of its models,
i.e., P(ModL(A)) = P(AB) + P(AB̄) = 0.6.

In most cases it is impractical to define a complete and
reasonable probability distribution over the whole set of pos-
sible worlds. A usual approach is to formulate conditional
constraints instead and select the best probability distribu-
tion satisfying these constraints with respect to a particular
semantics. To begin with we define a conditional language
similar to (Lukasiewicz 1999).

Definition 2.1. Let L be a (logical) language with a finite
set of interpretations ΩL. The language

(L|L) := {(ψ|φ)[x] | φ, ψ ∈ L, x ∈ [0, 1]}.

is called conditional language over L.

The elements in (L|L) are called conditionals and can be
considered as probabilistic rules. φ is called antecedence, ψ
is called consequence of the conditional (ψ|φ)[x]. If x ∈
{0, 1} the conditional is called deterministic. A conditional
(ψ|>)[x], where > denotes a tautological formula, is called
a fact and is often abbreviated by (ψ)[x].

Example 2.2. A classical propositional example is the fol-
lowing. LetB,P, F be propositional variables, representing
the properties being a bird, being a penguin and being able
to fly. Then (F | B)[0.9], stating that birds fly with a prob-
ability of ninety percent, is a conditional and (F ∧ P )[0],
stating that penguins never fly, is a deterministic fact.

(L|L) itself can be considered as a logical language in-
terpreted by PL. Whereas in a classical logic an inter-
pretation is a model of a formula iff it makes the formula
true, a probability distribution is a model of a conditional
(ψ|φ)[x] iff the probability of ψ given φ under the given
semantics is x. Before introducing a general concept of a
conditional semantics we introduce some specific seman-
tics. For ease of notation we use ModL(φψ) as shorthand
for ModL(φ) ∩ModL(ψ) and in particular ModL(φψ) for
ModL(φ) ∩ (ΩL \ModL(ψ)) in the following.

Example 2.3. Consider a propositional conditional lan-
guage and let F,G ∈ L. An often used propositional
conditional semantics is defined by P |=S (G | F )[x]
iff P(ModL(F ∧ G)) = x · P(ModL(F )) (e.g. (Paris
1994)). If P(ModL(F )) 6= 0 this can be transformed into
x = P(ModL(F∧G))

P(ModL(F )) which is the conditional probability of
G given F .

In a similar way conditional semantics can be defined
over arbitrary logical languages. In (Nilsson 1986) for ex-
ample a probabilistic semantics for first-order formulas is
defined by summing up the probabilities of its models. By
fixing the number of constants and forbidding function sym-
bols the classical models can be represented by a finite set of
Herbrand interpretations. The extension to the conditional
framework is straightforward. If in the propositional exam-
ple above L is the classical first-order language its condi-
tional semantics can be defined in just the same way.

Conditional semantics like above will be captured by the
definition of a standard semantics in the next section. Even
though they define a very natural semantics for condition-
als, they are not appropriate for representing both statisti-
cal uncertainty and individual degrees of belief. Follow-
ing (Halpern 2003) we consider the fact (∀X(Bird(X) →
Flies(X)))[0.9] to express the belief that most birds fly. But
if we knew about a bird, that does not fly, there can be no
model for the universally quantified formula and necessarily
P (∀X(Bird(X)→ Flies(X))) = 0 for each probabilistic
interpretation P . In (Kern-Isberner and Thimm 2010) the
aggreating and averaging semantics are introduced. They
deal with this problem by defining a probabilistic semantics
for formulas containing free variables.
Example 2.4. Consider a restricted relational language L
built up over relations, constants and variables by conjunc-
tion, disjunction and negation. The interpretations ΩL are
the possible Herbrand interpretations over the given rela-
tions and constants. A Herbrand interpretation is a model
of a variable-free atom iff it contains the atom. For complex
ground formulas the definition is extended in the usual way.
For formulas containing free variables there are no classical
models.

The aggregating semantics is a conditional semantics that
uses a grounding operator gr : (L|L) → 2(L|L) map-
ping conditionals to the set of its ground instances to eval-
uate conditionals containing variables. It can be defined by
P |=S (ψ|φ)[x] iff∑

(ψgr | φgr)∈gr((ψ | φ))

P (ModL(ψgrφgr)) = x
∑

(ψgr | φgr)∈gr((ψ | φ))

P (ModL(φgr)).

Basically it puts the probabilities that antecedence and con-
sequence of a ground instance are satisfied in relation to
the probabilities that the antecedence of a ground instance
is satisfied. Note that it coincides with the definition of the
standard semantics above for ground conditionals.

Example 2.5. The averaging semantics is defined on the
same language as the aggregating semantics. Again there is
no classical interpretation of formulas containing free vari-
ables. It is defined by calculating the average of the defined
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conditional probabilities of the ground instances of condi-
tionals. That is, P |=S (ψ|φ)[x] if and only if∑

(ψgr | φgr)∈gP((ψ | φ))

P(ModL(ψgr) | ModL(φgr))

| gP((ψ | φ))|
= x,

where P(. | .) is the conditional probability and gP((ψ | φ))
is the set of groundings of the conditional (ψ|φ)[x] that sat-
isfy P(ModL(φgr)) > 0.

3 General Semantics
As we saw in the last section, conditional semantics are de-
fined by a satisfaction relation between a probability distri-
bution and conditionals. In general, the definition relies on
a computation rule for the probability of a conditional de-
pendent on the logical structure of antecedence and conse-
quence. The following definition formalizes this idea.
Definition 3.1. Let (L|L) be a conditional language with
a finite set ΩL of interpretations of L and the set PL of
probability distributions over ΩL. A satisfaction relation
|=S⊆ PL×(L|L) defines a conditional semantics S iff there
is a constraint function fc : R|ΩL| → R for each conditional
c ∈ (L|L) such that for all P ∈ PL, c ∈ (L|L) it holds
P |=S c iff fc(~P) = 0. The set of constraint functions is
denoted by FS = {fc | c ∈ (L|L)}.

That is, P satisfies the conditional c under a given se-
mantics S iff the equation corresponding to c evaluates to
0. For each conditional c ∈ (L|L) let ModS(c) := {P ∈
PL | fc(~P) = 0} denote the set of all probabilistic mod-
els under a given conditional semantics S and for a subset
RL ⊆ (L|L) let

ModS(RL) :=
⋂

(ψ|φ)[x]∈RL

ModS((ψ|φ)[x])

be the set of common models of the conditionals inRL. RL
is called a consistent knowledge base iff ModS(RL) 6= ∅.
It is important to note, that we distinguish between the clas-
sical models ModL of the logical language L and the prob-
abilistic models ModS of the conditional language (L|L)
defined by the semantics S.

To begin with we capture the standard semantics from ex-
ample 2.3 with the following definition. As it is shown later,
they are a special case of a more general class of semantics
that are indeed conditional semantics as defined above.
Definition 3.2. Let (L|L) be a conditional language over a
classical logical language L. The standard semantics over
L is defined by P |=S (ψ|φ)[x] if and only if

P(ModL(φψ)) = x · P(ModL(φ)). (2)
The standard semantics can be considered as a synthesis

of the possible world semantics in (Nilsson 1986) with the
conditional framework as considered by (Paris 1994) and
others. The aggregating and averaging semantics are not
captured by this definition, since they interpret free variables
in a non-classical way to enable a statistical semantics as
explained before. The following definition integrates some
important similarities of the aggregating semantics and the
standard semantics.

Definition 3.3. A conditional semantics S is called linearly
structured iff for each fc ∈ FS , c = (ψ|φ)[x], there are
functions Vc : ΩL → N0, Fc : ΩL → N0 such that

fc(~P) =
∑
ω∈ΩL

~Pω · (Vc(ω) · (1− x)− Fc(ω) · x). (3)

Since the factor (Vc(ω) · (1− x)−Fc(ω) · x) is indepen-
dent of the function argument ~P the constraint functions are
indeed linear. The mappings Vc and Fc can be considered
as a technical mean for incomplete classical interpretations.
They indicate if the conditional c is verified respectively fal-
sified by the considered world.
Lemma 3.1. Each standard semantics is a linearly struc-
tured semantics.

Proof. Equation (2) can be transformed into

(1− x) · P(ModL(φψ))− x · P(ModL(φψ)) = 0.

Exploiting equation (1) we can transform it into

0 =
∑

ω∈ModL(φψ)

(1− x) · ~Pω −
∑

ω∈ModL(φψ)

x · ~Pω

=
∑
ω∈ΩL

~Pω · (
∑

ω′∈({ω}∩ModL(φψ))

(1− x)−
∑

ω′∈({ω}∩ModL(φψ))

x)

=
∑
ω∈ΩL

~Pω · (Vc(ω) · (1− x)− Fc(ω) · x),

where Vc(ω) := 1 if ω ∈ ModL(φψ) and 0 otherwise.
Analogously we define Fc(ω) := 1 if ω ∈ ModL(φψ) and
0 otherwise.

Lemma 3.2. The aggregating semantics is a linearly struc-
tured semantics.

Proof. Similarly to the proof of Lemma (3.1) we obtain

0 =
∑

(ψgr | φgr)∈gr((ψ | φ))

∑
ω∈ModL(ψgrφgr)

(1− x) · ~Pω

−
∑

(ψgr | φgr)∈gr((ψ | φ))

∑
ω∈ModL(φgrψgr)

x · ~Pω

=
∑
ω∈ΩL

~Pω(Vc(ω) · (1− x)− Fc(ω) · x)

where Vc and Fc are defined as follows:
Vc(ω) = |{(ψgr | φgr) ∈ gr((ψ | φ)) | ω |=L (φgrψgr)}|,
Fc(ω) = |{(ψgr | φgr) ∈ gr((ψ | φ)) | ω |=L (φgrψgr)}|.

For the aggregating semantics Vc and Fc count the num-
ber of verified respectively falsified instances of the condi-
tional. Note that this can be only 0 or 1 for a standard se-
mantics.

If S is a linearly structured semantics, then
ModS((ψ|φ)[x]) is convex, since the solution set of a
linear equation is convex and convex sets are closed under
intersection. In (Thimm 2011) it is shown that the set of
models for the averaging semantics can be non-convex.
Hence it cannot be covered by the notion of linearly
structured semantics. Yet it still features a useful structure.
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Definition 3.4. A conditional semantics S is called struc-
tured iff for each fc ∈ FS , c = (ψ|φ)[x], there are functions
Vc : ΩL × R|ΩL| → R≥0, Fc : ΩL × R|ΩL| → R≥0 so that

fc(~P) =
∑
ω∈ΩL

~Pω(Vc(ω, ~P) · (1−x)−Fc(ω, ~P) ·x). (4)

Note that the functions Vc, Fc now depend on ~P , hence
the semantics can be non-linear. Furthermore, they map into
the non-negative real numbers.

Corollary 3.3. Each linearly structured semantics is a
structured semantics.

Lemma 3.4. The averaging semantics is a structured se-
mantics.

Proof. Similarly to the previous proofs we obtain

0 =
∑

(ψgr | φgr)∈gP((ψ | φ))

∑
ω∈ModL(ψgrφgr)

~Pω∑
ω∈ModL(φgr)

~Pω

−x · | gP((ψ | φ))|

=
∑

(ψgr | φgr)∈gP((ψ | φ))

∑
ω∈ModL(ψgrφgr)

~Pω∑
ω∈ModL(φgr)

~Pω

− 1

| gP((ψ | φ))|
∑

(ψgr | φgr)∈gP((ψ | φ))

x · | gP((ψ | φ))|

=
∑

(ψgr | φgr)∈gP((ψ | φ))

∑
ω∈ModL(ψgrφgr)

~Pω − x ·
∑

ω∈ModL(φgr)

~Pω∑
ω∈ModL(φgr)

~Pω

=
∑
ω∈ΩL

(
∑

(ψgr | φgr)∈gP((ψ | φ))

ω|=Lψgrφgr

(1− x) · ~Pω∑
ω∈ModL(φgr)

~Pω

−
∑

(ψgr | φgr)∈gP((ψ | φ))

ω|=Lψgrφgr

x · ~Pω∑
ω∈ModL(φgr)

~Pω
)

=
∑
ω∈ΩL

~Pω(Vc(ω, ~P) · (1− x)− Fc(ω, ~P) · x)

where Vc and Fc are defined as follows:

Vc(ω, ~P) =
∑

(ψgr | φgr)∈gP((ψ | φ))

ω|=Lψgrφgr

1∑
ω∈ModL(φgr)

~Pω
,

Fc(ω, ~P) =
∑

(ψgr | φgr)∈gP((ψ | φ))

ω|=Lψgrφgr

1∑
ω∈ModL(φgr)

~Pω
.

Let Standard ,LinearlyStructured and Structured de-
note the classes of the corresponding conditional semantics.
Taking together the previous results, we obtain the following
hierarchy.

Theorem 3.5. Between the general semantics it holds

Standard ⊂ LinearlyStructured ⊂ Structured .

Proof. The subset-relation follows from Lemma 3.1 and
Corollary 3.3. It is strict, since the linearly structured ag-
gregating semantics is non-standard and the structured aver-
aging semantics is non-linear as explained before.

4 Computation Properties
We return to the question how to determine a probabil-
ity distribution P ∈ PL satisfying a knowledge base RL.
As explained before we select the distribution having max-
imum entropy. Setting 0 · log 0 := 0 the entropy of a
probability distribution P : ΩL → [0, 1] is defined by
H(P) := −

∑
ω∈ΩL

P(ω) · logP(ω). Roughly speaking
the ME inference process determines that probability distri-
bution MES (RL) satisfying RL and adding only as much
information as necessary. An important requirement for a
semantics in our framework is that there is a unique solution
to the entropy maximization problem.

Definition 4.1. Let (L|L) be a conditional language as
above interpreted by a conditional semantics S and let RL
be a consistent knowledge base with respect to S. If the so-
lution of the ME-Inference problem exists and is unique S is
called ME-well-defined.

Apart from the averaging semantics all semantics intro-
duced above are known to be ME-well-defined. Indeed it is
well-known that there is a unique solution for entropy max-
imization over linear constraints.

Corollary 4.1. Each linearly structured semantics is ME-
well-defined.

Finally we state what the ME-Entailment problem is.

Definition 4.2. Let (L|L) be a conditional language as
above interpreted by a semantics S. Given a knowledge base
RL and formulas ψ, φ ∈ L the ME-Entailment problem is to
determine an x ∈ [0, 1] such that MES(RL) |=S (ψ|φ)[x].

A naive approach to solve the problem is to compute the
optimal distributionP and solve the equation f(ψ|φ)[x](~P) =

0 for fixed ~P and variable x. Unfortunately the solution for
x is not necessarily unique. Usually the problem appears if
the (grounded) antecedence has probability 0.

Example 4.1. Consider the aggregating semantics from ex-
ample 2.4. Given an arbitrary conditional (ψ|φ)[x] for∑

(ψgr | φgr)∈gr((ψ | φ)) P (ModL(φgr)) > 0 we get

x =

∑
(ψgr | φgr)∈gr((ψ | φ)) P (ModL(ψgrφgr))∑

(ψgr | φgr)∈gr((ψ | φ)) P (ModL(φgr))
.

Otherwise each value for x is possible.
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There is no simple satisfactory solution to this problem.
See (Grove, Halpern, and Koller 1994), p. 61-62, for a more
detailled discussion. If we assume P to be positive, i.e.,
P(ω) > 0 for all ω ∈ ΩL the problem disappears. We will
come back to this at the end of the paper.

In the naive solution the number of variables for the op-
timization problem, as well as the number of probabilities
that has to be summed up becomes unmanageable even for
small problems. In (Paskin 2002) a relational standard se-
mantics over a restricted set of worlds is considered. The
knowledge base is separated in formulas with probabilities
in ]0, 1[ and classical formulas. Worlds in conflict with clas-
sical formulas are removed. In the following we show that
this approach is fully compatible with our framework. More
strictly speaking, deterministic conditionals are the analo-
gon to the classical formulas considered by Paskin and we
do not change our semantics (the optimization solution) ac-
cidentally by removing deterministic conditionals and the
corresponding conflicting worlds.

To begin with the following lemma states that in some
respects under each strutured semantics deterministic condi-
tionals correspond to classical implications. That is, worlds
falsifying conditionals of probability 1 must be impossible
with respect to a valid probability distribution and analo-
gously that worlds verifying conditionals of probability 0
must be impossible.

Lemma 4.2. Let (L|L) be a logical language interpreted
by a structured semantics S. Let c = (ψ|φ)[x] ∈ RL be a
conditional and P ∈ PL with P |=S c.
1. If x = 0 then ~Pω = 0 for all ω ∈ ΩL with Vc(ω) 6= 0.
2. If x = 1 then ~Pω = 0 for all ω ∈ ΩL with Fc(ω) 6= 0.

Proof. Suppose x = 0. From the structured semantics equa-
tion (4) we obtain 0 =

∑
ω∈ΩL

~Pω ·Vc(ω, ~P). Since all ~Pω
and Vc(ω, ~P) have to be non-negative, it holds ~Pω = 0 for
all ω ∈ ΩL with Vc(ω) 6= 0, if P satisfies the conditional.
The second statement can be proved analogously.

Hence deterministic conditionals determine the probabil-
ities of some worlds independently of the remaining knowl-
edge base. We separate each knowledge base into a deter-
ministic part R=

L := {(ψ|φ)[x] ∈ RL | x ∈ {0, 1}} and
a probabilistic part R≈L := RL \ R=

L . Let NRL := {ω ∈
ΩL | ∃c = (ψ|φ)[x] ∈ R=

L : x = 0 ∧ Vc(ω) 6= 0 ∨ x =
1 ∧ Fc(ω) 6= 0} denote the set of worlds determined to be
zero by R=

L . The following proposition states that the sepa-
ration proposed in (Paskin 2002) is consistent with the con-
ditional framework under ME-well-defined structured se-
mantics.

Proposition 4.3. Let (L|L) be a conditional language as
above interpreted by a ME-well-defined structured seman-
tics S. Let RL be a consistent knowledge base. Then the
solution of the inference problem over ΩL with respect to S
and RL can be obtained by solving the inference problem
over ΩL \ NRL with respect to S andR≈L .

Proof. R≈L remains consistent with respect to ΩL \ NRL
and S since the structured equations only change by miss-

ing zero-terms. Let P ′ be the unique solution of the in-
ference problem over ΩL \ NRL with respect to S and
R≈L . We extend P ′ to a distribution P over ΩL by setting
P(ω) := P ′(ω) for all ω ∈ (ΩL \ NRL) and P(ω) := 0
for all ω ∈ NRL . Since only zero-probabilities are added
P is still a probability distribution. P satisfies R≈L since
only zero-terms are added to the structured equations. Now
consider a conditional (ψ|φ)[x] ∈ R=

L . If x = 0 from
the structured semantics equation (4) we obtain the condi-
tion 0 =

∑
ω∈ΩL

~Pω · Vc(ω, ~P). If Vc(ω, ~P) = 0 then
~Pω · Vc(ω, ~P) = 0. If Vc(ω, ~P) 6= 0 then ω ∈ NRL .
Hence ~Pω = 0 and again ~Pω · Vc(ω, ~P) = 0, hence
P |=S (ψ|φ)[x]. For x = 1 the proof is analogously. Hence
P is a valid solution for the original problem.

Suppose P is not optimal for the original problem. Then
there is a valid probability distribution Q : ΩL → [0, 1] so
that H(Q) > H(P). In particular Q satisfies Q(ω) = 0 for
all ω ∈ NRL due to Lemma 4.2. Hence the restriction of
Q to a probability distribution Q′ over ΩL \NRL supplies a
valid solution for the restricted problem. Since 0 · log 0 = 0
it holds H(Q′) = H(Q) > H(P) = H(P ′) for the re-
stricted distributions. But that is a contradiction, since P ′ is
the optimal solution for the restricted problem. Hence P has
to be the optimal solution for the original problem.

Having determined the solution over ΩL \ NRL it is not
necessary to return to the original interpretation set, since all
worlds in NRL have zero-probability and in this way do not
affect the structured equations. Hence the whole entailment
process is simplified, in that only a fraction of the original
worlds has to be considered.

Corollary 4.4. Let (L|L), S, RL be given as above and let
ψ, φ ∈ L. Then the solution of the ME-Entailment problem
over ΩL with respect to S, RL and ψ, φ can be obtained
by solving the ME-Entailment problem over ΩL \NRL with
respect to S,R≈L and ψ, φ.

Of course computingNRL can be a hard task itself, since
it will probably include the enumeration of the models of the
formulas corresponding to the verified respectively falsified
conditionals. But it is not necessary to enumerate NRL nor
to enumerate ΩL. Instead one should exploit the knowledge
obtained by Vc and Fc to enumerate ΩL \NRL in a branch-
and-bound manner.

Example 4.2. Consider a binary propositional logical lan-
guage over n binary variables {A1, A2, ..., An} under the
standard semantics. The naive approach to generate the
possible worlds is a simple recursive algorithm. If there is
only one variable left we return the positive and the negative
assignment. Given k > 1 variables we compute the assign-
ments for the first k−1 variables and combine them with the
positive and negative assignment to the k-th variable. Now
given a conditional (A1A2)[0] we can cut the recursion as
soon the assignment (A1 = 1)(A2 = 1) is obtained.

5 Discussion
We introduced a selection of semantics used for maximum
entropy reasoning and classified them into a hierarchy of

559



general semantics. The currently best investigated ME-
semantics is the propositional standard semantics. Probably
many algorithmical approaches developed in the past (e.g.
(Rödder and Meyer 1996)) can be transferred to the whole
class of standard semantics. Linearly structured semantics
still guarantee the existence of a unique solution to the infer-
ence problem and their linear structure provides some com-
putational benefits sketched at the end of this section. We
cannot guarantee existence or uniqueness of the inference
solution for structured semantics, but the structure is still
sufficient to prove interesting results that transfer immedi-
ately to the more specific semantics. As we saw the en-
tailment approach from (Paskin 2002) is compatible to each
ME-well-defined structured semantics. Hence it transfers to
each standard semantics and the aggregating semantics. If
the averaging semantics is ME-well-defined the results also
transfer to it. The hierarchy will hopefully be helpful to
prove further general results.

At present the hierarchy might appear somewhat artifi-
cial since only a handful of semantics is included. In future
work further semantics will be integrated. For example in
(Fisseler 2010) and (Loh, Thimm, and Kern-Isberner 2010)
probabilistic semantics can be found being closely related to
simple structured semantics. By integrating further seman-
tics into the hierarchy proving of standard results becomes
unnecessary. In particular the standard semantics provides a
simple framework to carry further classical languages over
to a probabilistic language with advantageous computation
properties. Lemma 4.2 indicates how the number of possible
worlds can be reduced significantly. Especially for relational
languages this becomes necessary, since the number of in-
terpretations of a single binary relation becomes unmanage-
able already for more than a handful of constants. Number
restrictions as used in some description logics (see (Baader
2009) for an overview) might be helpful to overcome these
problems (e.g., no one has more than two biological par-
ents).

Deterministic conditionals appear indeed in many appli-
cations, e.g., laws of heredity in biological domains or natu-
ral laws in technical domains. In many cases the null-worlds
captured byNRL will be all null-worlds so that the probabil-
ity distribution over ΩL\NRL will be positive. This is due to
the fact that the entropy minimizes the informative distance
to the uniform distribution. It is possible to construct coun-
terexamples by enforcing exhaustive probabilities for a sub-
set of worlds, but these are rather artificial. A positive prob-
ability distribution often avoids technical difficulties. For
example conditionals with impossible antecedence can be
identified before solving the expensive inference problem.
Without going into details, we further state that the applica-
tion of the method of Lagrange multipliers is immediately
justified for positive distributions and can be used to repre-
sent the complete ME-optimal distribution in a product of
the form P(ω) = α0

∏
c=(ψ|φ)[x]∈RL

α
Vc(ω)(1−x)−Fc(ω)x
c

for each linearly structured semantics. This product repre-
sentation is the key to several beneficial computation tech-
niques for solving the inference and entailment problem that
have been used in the expert-system SPIRIT for the propo-

sitional standard semantics (Rödder and Meyer 1996). Due
to its similarity to the factorization of graphical models in
particular refined inference methods used in the field of Sta-
tistical relational learning (Getoor and Taskar 2007) could
be applied to solve the entailment problem for linearly struc-
tured semantics more efficiently.
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