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Abstract 
In this paper, we investigate the application of data mining 
to existing techniques for quality control/anomaly detection 
on weather sensor observations. Specifically we adapt the 
popular Barnes Spatial interpolation method to use time
series distance rather than spatial distance to develop an 
online algorithm that uses readings from similar stations 
based on current and historical observations for 
interpolation and we demonstrate that this new algorithm 
exhibits less model error than the Barnes Spatial 
interpolation based method. We focus on interpolation, 
which is a basis for this popular quality control method and 
other related methods, and examine a dataset of over 233 
million temperature observations from California and 
surrounding areas. Our approach shows improved 
performance as indicated by mean squared error reduced by 
approximately one half for predicted values versus reported 
values.  

 Introduction   
With the advancement of computing and communication 
capability, the near-real-time information available from 
weather station sensors has increased dramatically in 
recent years and will continue to increase. These stations 
range from those maintained meticulously by the National 
Weather Service at airports nationwide to personal weather 
stations operated and maintained by individuals at their 
homes. The quality and accuracy of readings from these 
sensors can vary dramatically, as no system is immune to 
failure or mis-calibration. It may be desirable for certain 
applications, including basic assessment of conditions, to 
use as much of the sensor information available as 
possible.  
 There are many challenges associated with the problem 
of quality control (anomaly detection) for weather sensors 
because the types and sources of error are many. An error 
source may be a faulty sensor, but the error may not 
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become apparent for some time if the readings drift slowly 
away from expected values. A sensor may be buried in 
snow or ice, reporting the temperature of the snow or ice 
rather than the ambient air temperature. A controller may 
have faulty logic and produce incorrect output. A weather 
station may have incorrect metadata associated with it and 
report an incorrect location while the readings its sensors 
produce are otherwise valid.  
 There are a number of automated quality control 
techniques that have been applied to assess the quality of 
individual sensor readings. Many of the more advanced 
techniques are geo-spatial in nature, based on spatial and 
temporal consistency assumptions, as well as an implicit 
assumption that most sensors provide accurate readings. 
Interpolation methods using readings in a geographically-
defined neighborhood can be used to compute expected 
readings, and expected readings can then be compared to 
actual readings. In the event of a large deviation between 
actual and expected, a reading will be flagged as failing 
quality control or suspect of failing. General shortcomings 
include the challenge of selection of suitable tolerance 
levels and other parameters or bounds to determine outliers 
and the consequential balance of false positives (accurate 
readings classified as inaccurate) and false negatives 
(inaccurate readings classified as accurate). 
 We hypothesize that given historical data from stations 
and sensors, existing techniques can be enhanced using 
only the historical sensor data and data mining techniques 
to give better results in terms of mean-squared error (MSE) 
for interpolation of values.  We hypothesize specifically 
that grouping stations based on similarity of sensor time-
series and weighting observations from these stations 
accordingly results in lesser error when interpolating to 
predict the value at given station. We focus our attention in 
this study on temperature sensor readings, although the 
methods investigated should generalize to other weather 
sensor reading types that exhibit some degree of spatial 
and temporal consistency.  
 In this paper we present background, our approach, 
results, conclusions and future work. 
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Background 
The WeatherShare system (http://www.weathershare.org/) 
was developed by the Western Transportation Institute at 
Montana State University in partnership with the 
California Department of Transportation (Caltrans) to 
provide a single, all-encompassing source for road weather 
information throughout California. Caltrans operates 
approximately 170 Road Weather Information Systems 
(RWIS) along state highways, thus their coverage is 
limited. With each deployment costing in the neighborhood 
of $100,000, it is unrealistic to expect pervasive coverage 
of the roadway from RWIS alone. WeatherShare 
aggregates weather data from other third-party aggregation 
sources such as NOAA’s Meteorological Assimilation 
Data Ingest System (MADIS) (http://madis.noaa.gov/), 
along with Caltrans RWIS to present a unified view of 
weather data from approximately 2,000 stations within 
California. A primary benefit of the system is far greater 
spatial coverage of the state, particularly roadways, when 
compared to the Caltrans RWIS network alone. A 
secondary benefit of the system is the ability to compare 
RWIS readings with those of other nearby sensors to assess 
accuracy. Formal, automated quality control procedures 
have been implemented in the WeatherShare system to 
assess sensor accuracy for not only Caltrans RWIS, but 
also all other sensor readings stored in the system. (Richter 
et al. 2009)  
 The WeatherShare system has not fully achieved the 
secondary goal of increasing Caltrans ability to assess 
RWIS sensor accuracy in an efficient manner guided by 
automated procedures. This shortcoming stems from both 
limitations in implemented procedures, as well as 
unrealized potential to deliver this information through an 
easy to use and informative interface.  
 MADIS is an online database of real time and archived 
weather data including sensor readings from nearly 40,000 
stations in North America, including Hawaii and Central 
America.  For the meteorological surface dataset, MADIS 
implements three levels of automated quality control. The 
“Level 1” quality control checks are also referred to as 
“validity checks” or “range checks”. They check that a 
sensor reading is within a range of predetermined values 
indicating the “tolerance limits” of that sensor reading 
type. The range for air temperature is given as [-60° F, 
130° F]. There are three “Level 2” quality control checks: 
“internal consistency,” “temporal consistency,” and 
“statistical spatial consistency.”  
 The Level 3 quality control check is referred to as the 
“spatial consistency” or “buddy” check, and is a variant of 
the Optimal Interpolation (OI), technique (Belousev et al 
1968). For a given station and observation, an interpolated 
value is determined for that station using neighboring 
stations and excluding the station being analyzed. If the 

difference between the actual value and the interpolated 
value is “small,” then the station is considered to be in 
agreement with its neighbors and it passes the spatial 
consistency check. However, if the difference is not small, 
then the interpolation and analysis is repeated with one of 
the neighboring observations removed. If the removal of 
the neighbor results in a small difference between the 
interpolated and observed value, then the observation is 
flagged as “good” and the neighboring observation is 
flagged as “bad”.  
 The Clarus initiative (http://www.clarusinitiative.org/) 
was established in 2004 by USDOT Federal Highway 
Administration Road Weather Management Program and 
the Intelligent Transportation Systems Joint Program 
Office to “reduce the impact of adverse weather conditions 
on surface transportation users.” Specifically, Clarus was 
built to collect atmospheric and pavement observations 
from state-owned road weather information systems in 
near real time. 
 The Clarus System (http://www.clarus-system.com/) 
provides ESS data from participating states and Canadian 
provinces. At present, there are 38 participating states and 
4 participating provinces. Data is available for California 
and it is provided by Caltrans to the Clarus system in the 
same manner that it is provided to WeatherShare. Current 
data is provided via an online graphical user interface, and 
archived data is also available for download. Clarus 
implements nine quality control algorithms including a 
Barnes Spatial Test (Pisano et al. 2007). The Barnes 
Spatial Test is based on the Barnes Spatial Interpolation 
Scheme (Barnes 1964), which uses a Gaussian filter to 
interpolate values over a two dimensional area using 
known readings within that area.  
 The Barnes Interpolation Scheme is used as a basis for 
the Barnes Spatial Quality Control test, as applied by the 
Oklahoma Mesonetwork (Shafer et al. 2000), which uses 
one pass of the Barnes Interpolation Scheme to estimate 
values for each observation. The Barnes Interpolation 
Scheme does not account for elevation. Since it was 
developed in Oklahoma, its application to areas with little 
variation in terrain may be reasonable. However, its use 
may be limited in areas with mountain terrain. 
 There are other notable approaches to modeling weather 
sensor data for the purposes of quality control and anomaly 
detection. The Utah Mesonet (Mesowest) uses linear 
regression (Split et al) to incorporate elevation into an 
interpolation model and subsequent quality control checks 
for temperature, dewpoint and pressure. PRISM 
(Precipitation-elevation Regressions on Independent 
Slopes Model), developed at Oregon State University, 
accounts for elevation and general topographic impact on 
weather variation, creating a grid of estimated precipitation 
using station readings that fall within topographically-
similar facets (Daly et al. 1994). 
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Our Approach 
For our experiment, we investigated air temperature 
observations only. Data were used from MADIS covering 
a rectangular region that includes all of California and 
portions of Oregon, Nevada, Idaho and Arizona. We 
restricted our attention to stations for which their locations, 
including elevation, were consistent throughout the entire 
period for which data was available. Note that locations of 
many individual stations changed over time. This is a 
consequence either of stations being mobile in nature, 
including ship-based maritime stations, as well as stations 
for which locations were not and may still not be reported 
accurately. We used temperature data from July 2001 
through December 2010. 
 Table 1 shows quality control descriptors associated 
with each sensor reading in the MADIS data set. The 
dataset provides additional detail indicating which tests 
were applied and which resulted in failure for the reading. 
 

Table 1: MADIS Quality Control Descriptors 

B subjective bad 
C coarse pass, passed level 1 
G subjective good 
Q questioned, passed level 1, failed level 2 or level 3 
S screened, passed level 1 and level 2 
V verified, passed level 1, level 2 and level 3 
X Rejected/erroneous, failed level 1 
Z preliminary, no quality control check 

  
 Although not an emphasis of this study, we pre-
processed data using a [-60° F, 130° F] range check, in 
conformance to that used for MADIS. It is recognized that 
such preliminary checks and filters are key to the 
performance of the more advanced (Level 3) spatial 
checks. In effect, this pre-processing removed all 
observations having an "X" quality control descriptor. 
There were some observations in the data set having 
quality control descriptors other than "X" which also failed 
this range test and these were removed also. 
 None of the techniques documented so far in this paper 
are perfect, and there may be room for improvement in 
each. In this project, we selected one of these methods, the 
Barnes Spatial Interpolation Scheme, for comparison and 
prospective enhancement using data mining techniques. In 
general, California offers an ideal setting for the evaluation 
of quality control procedures because of its geographic and 
meteorological diversity. California includes coastal areas, 
mountains, deserts, rain forests, and both the highest and 
lowest points in the contiguous 48 states. While the Barnes 
Spatial Interpolation Scheme is widely applied, it is also 
susceptible to the challenges of varying terrain. 

For our work, we represent a temperature observation  
as a 3-tuple , consisting of the 
station, time and the value (° F) of the observation. Since 
the time and frequency of observations vary from station to 
station, we adopt a convention for interpolation at time  of 
using the most recent reading  from any given 
station  at time  and within a time cutoff :  

. 
 
For the experiments presented here we use 

. We compute the distance between two 
stations , as the great circle distance between the 
stations. 
 The Barnes Spatial Interpolation Scheme uses a 
Gaussian filter to interpolate values over a two dimensional 
area using known readings within that area. Using our 
notation and conventions from above, then the value 
interpolated to correspond to an observation  is: 
 

 

 

where  is the filter and  
 

 
 
is the set of stations for which there are observations within 
the time cutoff  and within a distance cutoff . We use 

 as the distance cutoff. The parameter k 
determines the shape (wide versus narrow) of the filter. 
Guidance is given in selecting k by using the equation 

, where r is the radius of influence and 
 is the desired influence. Selection of E=4 results in 

approximately 98 percent influence ( ). We use 
the corresponding value . 

Note that our objective here for quality control 
assessment is not the interpolation over the entire area of 
interest but rather interpolation at the location of each 
observation to compare the interpolated value against the 
actual value of the observation. If the interpolated value 
deviates greatly from the actual value, then the actual value 
may be flagged as suspect. Further note that Barnes applied 
multiple iterations of interpolation to improve the fit of the 
model to the underlying data. We follow the convention of 
others in using a single iteration of interpolation for quality 
control assessment. 
 Background information appears to be a key to dealing 
with diversity of terrain and climate in some methods. The 
PRISM system, while using a very simple model at grid 
point level, makes extensive use of background 
information to improve its accuracy, including the 
incorporation of human intervention and tuning. As a 
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whole, it is a rather complex model. We believe that with 
the ever increasing number and distribution of 
environmental sensors, there is an opportunity to develop 
comparable models based solely on historical data for the 
purpose of quality control. We further believe that such an 
approach is advantageous because it does not require a 
domain expert for development, interpretation or tuning. 
 Given basic assumptions of spatial and temporal 
consistency, and given some reasonable assumption about 
the trusted operation of a high proportion of sensors in a 
probabilistic sense or perhaps a lesser number of trusted 
stations and sensors distributed throughout a region, the 
generation of such models should be dependent only on the 
amount of historical data available and the spatial 
distribution and density of the sensors. We believe that 
with nearly 2,000 stations in California, there is sufficient 
density for application in a large portion of the state. 
Further, we recognize that the number of available stations 
will increase over time, particularly if data from unofficial, 
personal weather stations is used.  
 We believe such an approach can be advantageous over 
the other methods that make extensive use of background 
information and also over methods that make assumptions 
related to uniform spatial consistency. For these methods, 
the naïve assumptions of uniform spatial proximity might 
be replaced with time-series distance to indicate 
(dis)similarity of stations based on historical data. Further, 
stations can be grouped based on this same time-series 
distance or (dis)similarity measure to form a radius-based 
or nearest neighbor-based grouping, per station, as is used 
by the Barnes Spatial and Optimal Interpolation methods, 
respectively. 
 Time series distance can be computed in many different 
ways. In our experiment, we implemented an online 
approach, which continually updates the time series 
distance between stations as new observations are reported 
by using the sum-of-squares difference between each 
observation and the most recent observations from other 
stations. We define the time series distance  between 
stations  and  at time  as: 
 

 

 
where  is the set of all 
observations from station  at or prior to time . 
 Using this measure, we developed a new method called 
Time-Series-Distance-Filter Interpolation (TSDFI) as a 
variation of the Barnes Spatial method by replacing the 
station to station distance measure  with . Then the 

interpolated value  corresponding to an observation  
is: 
 

 

 

where  is the filter and  
 

 
 
is the set of stations for which there are observations within 
the time cutoff  and within a time series distance cutoff . 
We use  corresponding to a station-to-station root-
mean-squared error of 5.  is computed 
accordingly. 
 Both the Barnes Spatial method and our new TSDFI 
method use Gaussian Filters to interpolate values, creating 
a model of reported data. Both were implemented in an 
online fashion, with the dataset processed chronologically, 
modeling each sensor value in the dataset. The error of 
reported versus predicted was recorded for each sensor 
value and subsequently aggregated as mean-squared-error 
for comparison.  

Results 
Over 233 million temperature observations from 2001-
2010 and the corresponding predicted values using Barnes 
Spatial (Barnes) and the Time Series Distance Filter 
Interpolation (TSDFI) methods were analyzed. The TSDFI 
method had an overall mean-squared error of less than half 
that of Barnes over the entire data set.  The mean-squared 
error for TSDFI is consistently less than that for Barnes 
Spatial over time by nearly a factor of two. Figure 1 shows 
peaks and troughs in the MSE for both methods, with 
peaks occurring in proximity to June of each year and 
troughs in proximity to December. Further investigation is 
necessary to determine if this is a consequence of normal 
seasonal variability in the underlying data and whether 
there is a need to account for such variability in the 
models. For instance, should there be separate summer and 
winter models? 
 The mean-squared errors for the Barnes and TSDFI 
methods yield promising results when grouped by 
observations according to the MADIS quality control 
descriptors. Recall that all readings flagged with quality 
control descriptor X, rejected/erroneous, were removed 
prior to application of the interpolation methods. For those 
readings that passed all three levels of MADIS quality 
control, labeled V, Table 2 shows that the mean-squared 
error for TSDFI is very small, and approximately one-third 
that of the Barnes Spatial method. For those flagged Q for 
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questionable, having failed level 2 or level 3 in MADIS, 
the MSE for the TSDFI method is very high and 
comparable to that of Barnes Spatial. This is not 
problematic since the high MSE is attributable to 
questionable and likely erroneous sensor readings rather 
than model error, and would be indicative of such readings. 
Results corresponding to other MADIS quality control 
descriptors show similar results and appear to indicate that 
the TSDFI method may discriminate valid versus 
erroneous readings relatively well. 
 

 
Figure 1: MSE (°F2) Over Time for Barnes versus TSDFI. The 

MSE for TSDFI is approximately half that for Barnes. 

Table 2: MSE for Barnes versus TSDFI by MADIS QC 
Indicator. The MSE for TSDFI is less than that for Barnes in 
every case and less than one fourth that for Barnes for verified 

(V) readings. 

Barnes TSDFI 
Count MSE MSE 

B 300 55.82 60.54 
C 439,630 109.88 51.57 
G 206,873 23.01 15.52 
Q 13,709,191 246.13 158.28 
S 21,337,164 38.93 16.32 
V 197,415,497 25.86 8.01 
Z 28,862 49.12 22.42 

 Overall 40.17 17.70 
 
 By comparing TSDFI error to Barnes Spatial error for 
individual stations, we can speculate on reasons for large 
differences, including those that may be attributable to 
quality control problems for stations. Most stations have 
modest MSE values (less than 100) for both Barnes and 
TSD. There are some that have large MSE for both. See 
Figure 2 and Figure 3.   

 
Figure 2: Plot of Barnes Spatial and TSDFI Mean Squared 
Errors by Station. The MSE for TSDFI is less than that for 
Barnes with very few exceptions. Note some large errors for 

both methods. 

  
Figure 3: Collapsed Plot of Barnes Spatial and TSDFI Mean

Squared Errors by Station. 

 Consider station F2988, for which the reported location 
is 37.07°N, 119.03°W. MADIS reports an elevation near 
zero for this station, which is odd since the 
latitude/longitude corresponds to a point in the Sierra 
Nevada mountain range. The MSE for Barnes Spatial for 
this station is 89.321. The MSE for TSDFI for this station 
is 1.513. This indicates that other stations in proximity to 
this station do not match it well while there are other 
stations which are better matches. This seems to indicate 
that the reported station location is incorrect. However, 
there are only 22 readings for this station, and this 
discrepancy may simply be a consequence of lack of data. 
For station SCNC1, the MSE for Barnes Spatial is 
5,155.291 and the MSE for TSDFI is 5,097.405. This 
station is located on San Clemente Island, which is over 60 
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miles off the California coast. While there are several other 
stations located on San Clemente Island, there are very few 
additional stations in proximity. Either this station is 
problematic in general or there are not enough stations in 
proximity for comparison using either method. In fact, the 
"closest" station in terms of time series distance is station 
F1426, which is located at Camp Pendleton, north of San 
Diego and over 60 miles away. 

Conclusions and Future Work 
The TSDFI method shows sufficient promise to merit 
subsequent research and development into a related 
method for anomaly detection. TSDFI reduces overall 
model error in comparison to Barnes Spatial by grouping 
stations based on similarity of sensor time series and 
weighting them accordingly rather than by using spatial 
distance. Intuitively this approach should not be prone to 
problems of over-fitting, which could mask sensor error. 
The results presented used parameters for Barnes Spatial 
that are cited in other efforts but that have not been 
optimized, and arbitrary parameter value choices for 
TSDFI. There is further room for improvement by 
optimizing parameters for these models, including the 
potential to vary parameters on a per-station basis. And, it 
would be worthwhile to investigate a hybrid method that 
combines both time-series distance and spatial distance. 
Elevation might also be accounted for directly using 
similar approaches. 
 It would also be desirable to investigate varying time 
periods for both time series distance calculation and 
prediction. In our investigation we used data from June 
2001 through December 2010. It is important to determine 
how much data is necessary to develop a model that is 
applicable year-round and to subsequent years. We suspect 
that seasonal patterns will have an impact on performance. 
 We believe that these techniques should be applicable to 
other sensor reading types – wind and precipitation, for 
example. These reading types will certainly exhibit 
behavior different than temperature, although some degree 
of spatial and temporal consistency will still be assumed. 
Such readings may not be available from as many stations 
as for temperature and we note that not all stations offer 
the same suite of sensor types. Such challenges present 
further opportunity. It would be beneficial to investigate 
combining different sensor type readings to better 
characterize similarities between stations, and subsequently 
analyze individual readings for their validity. 
 Finally we note that ensemble methods may be 
applicable. Prior work indicates motivation for each of the 
models discussed relative to the original area in which it 
was applied – Barnes Spatial was developed in Oklahoma, 
which is relatively flat; Optimal Interpolation is said to be 

more robust than Barnes Spatial in that it forces 
comparison with stations in all directions; the regression 
techniques used by Mesowest and PRISM incorporate 
elevation into their models to account for the impact of 
terrain; and, PRISM incorporates other information to 
create “facets” containing related stations. It may be the 
case that an ensemble of several or all of these approaches 
would be more accurate. We believe, though, that a 
technique similar to the one we present in this study could 
be equally effective given sufficient historical data and 
spatial coverage. 
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