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Abstract

Decision making has proposed multiple methods to help the
decision maker in his analysis, by suggesting ways of for-
malization of the preferences as well as the assessment of the
uncertainties. Although these techniques are established and
proven to be mathematically sound, experience has shown
that in certain situations we tend to avoid the formal approach
by acting intuitively. Especially, when the decision involves a
large number of attributes and outcomes, and where we need
to use pragmatic and heuristic simplifications such as con-
sidering only the most important attributes and omitting the
others. In this paper, we provide a model for decision mak-
ing in situations subject to a large predictive uncertainty with
a small learning sample. The high predictive uncertainty is
concretized by a countably infinite number of prospects, mak-
ing the preferences assessment more difficult. Our main re-
sult is an extension of the Maximum Entropy utility (MEU)
principle into an asymptotic maximum entropy utility prin-
ciple for preferences elicitation. This will allow us to over-
come the limits of the existing MEU method to the extend
that we focus on utility assessment when the set of the avail-
able discrete prospects is countably infinite. Furthermore, our
proposed model can be used to analyze situations of high-
cognitive load as well as to understand how humans handle
these problems under Ceteris Paribus assumption.

Keywords: Decision Theory, Uncertainty, Maximum En-
tropy, Ceteris Paribus, Bounded Rationality

1 Introduction
Decision making involves generally two principal compo-
nents. One dealing with the judgements about the uncer-
tainties in the given world, whereas the other is related to
the preferences over a set of possible consequences or out-
comes. Several techniques have been proposed to help the
decision maker in his analysis, by suggesting ways of for-
malization of the preferences as well as the assessment of the
uncertainties. Although these techniques are established and
proven to be mathematically sound, experience has shown
that in certain situation we tend to avoid the formal approach
by acting intuitively (R.L. Keeney 1994). Especially, when
the decision involves a large number of attributes and out-
comes. In this case, most of the decision makers tend to use
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pragmatic and heuristic simplifications such as considering
only the most important attributes and omitting the others
(Gigerenzer, Todd, and Group 1999).
In this paper, we provide a model for decision making in sit-
uations subject to a small learning sample and with a large
predictive uncertainty with regards to the outcomes. We pro-
vide a formulation of this situation using an Information
Theory approach and more precisely through the Maximum
Entropy (ME) principle for preferences elicitation (Abbas
2006). The considered situation is characterized by a “High-
cognitive Load” (Sterelny 2006; Chow 2011) or Bounded
Rationality (Rubinstein 1997). In fact, we think that the
bounded rationality or the cognitive limits of the mind (of
the decision maker, or the agent) could be re-interpreted
as the inability to grasp the large number of alternatives,
attributes, outcomes and uncertainties. Thus, the bounded-
rationality is caused by the unbounded possibilities that the
decision maker is facing, which yields a huge amount of in-
formation to be considered. This amount of information is
intractable and yet infinite for a simple optimization tech-
nique that seeks an optimal choice given the available infor-
mation. Especially, when the decision has to be made in a
finite amount of time despite the infinite number of possibil-
ities. It is worth mentioning that this problem could be seen
as an instance of the Frame Problem (Mccarthy and Hayes
1969), in the context of preferences elicitation. In such situ-
ations, the elicitation of a good utility function is not a real-
istic option and one should resort to other, less quantitative
forms of preference representation. For instance, adopting a
Ceteris Paribus preferential statements might be an option,
as it was widely discussed in Philosophical Logic and Ar-
tificial Intelligence (Domshlak 2002). In fact, we ought to
focus on what needs to be known (and represented) about a
given environment and to omit what can be safely omitted. It
is under such Ceteris Paribus assumption that we will pro-
pose our model to deal with the infinity of outcomes. Our
main result could be seen as an extension of the ME princi-
ple whenever the set of prospects is countably infinite, and
involving uncertainties. We think that using entropy meth-
ods enables us to capture the characteristics of such decision
problems, as well as to the way solutions are realistically es-
tablished by humans.
In the context of utility representation, several models were
provided. For instance, (Chajewska and Koller 2000) pro-
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posed a model which takes into consideration the uncertain-
ties over the utilities by considering a person’s utility func-
tion as a random variable, with a density function over the
possible outcomes. In the work of (Abbas 2006), probabil-
ity and utility are considered with some analogy, thus yield-
ing the notion of joint utility density function for multiple
attributes. The application of Information Theory to Utility
Theory gave a new interpretation of the notion of utility de-
pendence, but most importantly, it allowed the elaboration of
the MEU principle (Abbas 2006) as a way to assign utility
values when only partial information is available. The same
author assumed a continuous entropy measure on a contin-
uous bounded domain of outcomes, which is true when the
support of the distribution is finite. However, this continuity
hypotheses does not hold when the support is countably infi-
nite, which makes the information measure discontinuous in
all probability distributions with countably infinite support
(Ho and Yeung 2009). In other words, when the number of
plausible outcomes that could be elicited by the ME utility
function is countably infinite. In our approach, we adopted
the same ME utility elicitation, but after establishing the be-
havior of the entropy with regard to the infinity of the out-
comes.
The remainder of the paper is structured as following. In sec-
tion 2, we provide the necessary concepts concerning the
probability-utility formalism as well as the definition of the
notion of utility convergence. In section 3, we describe the
asymptotic case of the ME utility principle with its underly-
ing continuity propositions. In the same section, we provide
an example of realization of such situation, and we provide
the solution to the asymptotic case. In section 4, we provide
the conclusions and outline the future work.

2 Convergence of preferences

We start by providing our main framework, by adopting the
utility-probability analogy and its usage for entropy maxi-
mization. We also provide a utility-based interpretation of
the notion of convergence. Therefore, we start by stating it
probabilistically, and then use utility increment vectors to
define the utility convergence. Then, we define the continu-
ity of the Shannon entropy with respect to a distance metric
DU . These are the first steps before treating in the next sec-
tion the ME principal for countably infinite prospects.

2.1 Probability-Utility analogy

The analogy between probability distributions and utility
was established in (Abbas 2006). Therefore, we use the same
formalism as to name the utility vectors and the utility den-
sity functions. As in (Abbas 2006), we assume that the utility
values are represented as a vector, namely a utility increment
vector ∆Ui referring to a discrete utility function with one
attribute i. As in (1), the vector ∆Ui contains the utility val-
ues {∆uj}kj=0 of the k + 1 ordered and discrete outcome
{xj}kj=0, starting from the lowest outcome x0 to the highest
outcome xk, named x∗. We also define the sequence ∆U(n)

of n utility increment vectors as in (2).

∆Ui = (∆u0, ...,∆uj , ...,∆uk), (1)
k∑
j=0

∆uj = 1, ∆uj ≥ 0 ∀j ∈ [0, k]

∆U(n) = {∆Ui}ni=1 (2)

A sequence of utility increment vectors can be compared to
a sequence of random variables. It is built according to an
analogy with a probability mass function P = (p1, ..., pk).
Each discrete utility increment vector ∆Ui corresponds to a
normalized utility Ui(x) function as in (3).

Ui(x) =

∫ x

x0

ui(x) dx (3)

ui(x) =
d

dx
Ui(x) (4)

That is, for a given prospect x ∈ [x0, x∗], Ui(x) is deter-
mined by integrating the utility density function ui(x) (Ab-
bas 2006) from the least preferred prospect x0 up to the
prospect x (the accumulated welfare from x0 to x). The
normalized utility function Ui(x) has the same mathemat-
ical properties as a cumulative distribution function (CDF)
as both are non-decreasing and range from zero to one (5).

0 ≤ Ui(x) ≤ 1,
d

dx
Ui(x) ≥ 0 ∀x (5)

All along the paper, we will make usage of these notions of
utility increment vector ∆U , the sequence of utility incre-
ment vectors ∆U(n) as well as the utility density function
u(x).

2.2 Distance measure
The distance between two utility functions is defined based
on the notion of similarity that could exist between them. By
similarity, we mean the strategic equivalence (R.L. Keeney
1994), i.e., two utility functions u1 and u2 are strategically
equivalent, written u1 ∼ u2, if and only if they imply the
same preference ranking for any two lotteries. For instance,
to compare two utility functions we can define the total vari-
ational distance that reflects the difference between the ac-
cumulated welfare all along the considered prospects. In the
discrete case of two utility increment vectors, it is reduced
to the L1-norm as it is shown in (6).

DV (∆U1,∆U2) =
∑
j

|∆U1,j −∆U2,j | (6)

whereDV stand for the variational distance, and ∆Ui,j is the
jth element of ∆Ui. In case we are comparing two utility in-
crement vectors ∆U1 and ∆U2 having respectively different
dimensions L and M , (6) becomes:

DV (∆U1,∆U2) =
L∑
j=1

|∆U1,j −∆U2,j | −
M∑

j=L+1

|∆U2,j |

(7)
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We can also use the divergence between two utility den-
sity functions (4) based on the Kullback-Leibler divergence
given in (8), for both discrete and continuous cases.

DU (∆U1,∆U2) =
∑
j

∆U1,j ln(
∆U1,j

∆U2,j
) (8a)

Du(u1, u2) = DKL(u1||u2) =

∫
x

u1(x) ln(
u1(x)

u2(x)
) (8b)

where we adopt the convention Du(u1, u2) = 0 if u2(x) =
0 but u1(x) > 0 for some x.
Moreover, based on the Pinsker’s inequality (Weissman et
al. 2003) we have (9).

1

2
[DV (∆U1,∆U2)]2 ≤ DU (∆U1,∆U2) (9)

Both divergence (8) and the variational distance (6) can be
used as measures of the difference between two utility incre-
ment vectors (respectively utility density functions) defined
on the same set of prospects. However, once applied to util-
ity functions, Pinsker’s inequality has the important impli-
cation that for two utility increment vectors ∆U1 and ∆U2

defined on the same set of prospects, if DU (∆U1,∆U2) (or
DU (∆U2,∆U1)) is small, then so is DV (∆U1,∆U2) (or
DV (∆U2,∆U1)). Furthermore, for a sequence of utility in-
crement vectors ∆U(n), as n→∞, if DU (∆U,∆Un)→ 0,
then DV (∆U,∆Un) → 0, i.e., the convergence in diver-
gence is a stronger notion of convergence than the conver-
gence in variational distance. Thus, we will use the diver-
gence measures (8) as to define the continuity of the Shan-
non entropy, in the sense that we study the convergence of
a sequence of utility increment vectors as well as their en-
tropies. Using (8) fits better with the idea of maximum like-
lihood estimation we might use in order to use the MEU.

2.3 Utility Convergence
From a probabilistic viewpoint, we say that a sequence Pn,
(with a CDF Fn), is converging in distribution to a distribu-
tion P (with a CDF F), and noted as in (10).

Pn
d→ P (10)

with lim
n→∞

Fn(x) = F (x) ∀x ∈ R (11)

where F is continuous in x. As we mentioned in 2.1., a util-
ity function can be represented by a CDF as in (3). If we
assume that :

F (x) =

∫ x

xmin

f(x)dx (12)

and if (3) is an analogy with (12), then what is the utilitar-
ian significance of the sequence Fn(x) ? To understand this
setting, we rely on Merging Theory (Sorin 1999) (Lehrer
2000), which studies whether the beliefs of an agent, once
updated after successive realizations of the process, con-
verge to the true distribution. Now, we can interpret a se-
quence of preferences ∆U(n) as a process over time. In fact,
we can consider the sequential decision problem as in the
case of a Bayesian agent observing the successive realiza-
tions of a discrete stochastic process {∆U(n)| n ∈ T} on

the space of outcomes, indexed by n, and where n varies
over a time index set T . The evolution of the process is an-
nounced round after round to the observer who observes a
true distribution and holds an a priori preferences’ belief on
the process. We consider the preferences merging, namely,
the convergence of this sequence of preferences ∆U(n) to
the limiting preferences ∆U . Firstly, let’s assume that the
decision maker is given the task of assessing a utility incre-
ment vector (13) for k + 1 outcomes at time n.

∆U(n) = (∆u0
(n), ...,∆uk

(n)) (13)

For instance, the assessment of the preferences ∆U(n+1) is
different from ∆U(n), to the extent that new information
have been made available to the decision maker, and used
to update the preferences. A sequence ∆U(n) converging to
∆U can be written as in (14).

∆U(n)
U−→ ∆U (14)

This notion of utility convergence reflects the idea that we
expect to see the next outcome in a sequence of utility incre-
ment vectors ∆U(n) to become better and better modeled by
∆U . The yielded convergence is expressed by the limit (15),
for the discrete case.

lim
n→∞

∆U(n) = ∆U (15)

This notion of convergence will be used to define the conti-
nuity of the Shannon entropy with regard to utility.

3 Asymptotic MEU
In this section, we provide the MEU principle, in the case
of a countably infinite support. We start by providing the
definition of the support of utility function (respectively a
utility increment vector). Let a utility function u defined on
the outcomes set D. The set of all the values that u could
take is {u(x)|x ∈ D}.
Definition 1. The support of u denoted by Su, is the set of
all the outcomes x in a set D, such that u(x) > 0.

Su = {x|x ∈ D,u(x) > 0} (16)

If Su = D, we say that u is strictly positive. Otherwise,
u contain null utility values, which correspond to the unde-
sirable, unwanted outcomes. The support of a discrete util-
ity function will be used in the case of a large number of
outcomes, literally approaching infinity. It is the case of util-
ity functions that vanish for a certain number of outcomes
(u(xj) = 0), while being strictly positive for another infi-
nite number of outcomes (u(xi6=j) > 0). In the discrete case
we have (17).
Definition 2. The support of ∆U is the set of all the indexes
j such as ∆uj ∈ ∆U and ∆uj > 0.

S∆U = {j ∈ N, ∆uj ∈ ∆U | ∆uj > 0} (17)

3.1 Problem statement and method
Before stating the problem, let’s give an example of situa-
tions, where the notion of infinity could arise while consid-
ering the outcomes.
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Let’s consider a multi-attribute utility function u over a set of
attributes a = {a1, ..., aj , ..., an}, withDomain(aj) = Dj .
We want to define a preference ranking over the complete as-
signments on a.
Each complete assignment to a corresponds to a possible
outcome of the decision makers action. Given the sizes of the
attributes’ domains, we can compute the number of possible
assignments as np =

∏n
j=1 card(Dj). Now, let’s define an-

other utility function u′, over the domain D = ×nj=1Dj . It
is obvious that the complexity of the assessment of u′ grows
up exponentially as the domains’ sizes of the n attributes aj
are growing up.
Now, consider the case of complex systems subcontracting
and manufacturing, for example, a Boeing 747-400, which
is made in 33 countries and contains 6 × 106 parts (Holzer
2011). Let’s consider that each part of the plane is an at-
tribute, therefore, designing the plane is reduced to finding
and instantiating the attributes by assigning values from their
domains. In the end, the best design will be chosen amongst
all the possible instantiations, in other words, the outcomes.
While keeping in mind the goal of providing efficient and
automated tools for preference elicitation, we can highlight
the considerable effort and complexity that will arise if we
want to build a utility function over such possible set of out-
comes. Given 6× 106 interdependent attributes with a max-
imal size domain d, even if d = 2 (which is unlikely since
we are dealing with complex systems), the number of pos-
sible combinations is np = 26×106

, which is too large to be
treated quantitatively (np ∼ ∞).
It is under such assumptions of infinity that we will adopt
a Ceteris Paribus preferential statement, notably statements
in which “all else being equal”, and by varying a number
of variables (in our case, [1, ..., L]) while holding the oth-
ers ([L + 1, ...,M ]) constant (Domshlak 2002). In other
words, we will reduce the actual frame of M infinite out-
comes (∆U ) to L outcomes (∆U ′), which could be reason-
ably assessed, under Ceteris Paribus.
In our case, we are assessing a utility increment vector
∆Umeu containing all the preferences as discrete elements
(1). We also take the support S∆U as countably infinite,
which makes the assessment process more difficult, as we
mentioned in the previous example. The idea here is to use
another utility increment vector ∆U ′ to contain the reason-
ably assessed preferences of the decision maker, according
to his subjective belief. Then, we try to estimate ∆U with a
new utility increment vector ∆Umeu with respect to the ME
principle and by minimizing DU (∆U,∆U ′) (8).
Let ∆U = (∆u1, ...∆uM ) be the true utility increment vec-
tor to be assessed, where M is a large number that tends
to infinity. We can see M as the number np we provided
in the example above. Let ∆U ′ = (∆u′1, ...∆u

′
L) be the

utility increment vector that the decision maker was able
to assess, due to the reduction of the number of outcomes
to L (L < M ), under Ceteris Paribus. We propose then to
find the entropy maximization utility increment vector with
respect to the minimal possible distance between ∆U and
∆U ′, that is, DU (∆U,∆U ′) ≤ ε. One way to solve this
maximization problem is to adopt the approach used in (Ab-

bas 2006), by finding the continuous utility function u∗ that
maximizes the entropy (18).

u∗(x) = argmax
u(x)

H(u(x)) (18)

Since S∆U is countably infinite, (18) cannot be solved with
Lagrange multipliers and simple derivation methods. In fact
H(∆U) is discontinuous whenever S∆U is countably infi-
nite, and most importantly when the continuity measure is
based on the KL-distance (Ho and Yeung 2009).
In the next section, we introduce the Shannon entropy and
define its continuity as well as its discontinuity whenever the
considered utility increment vector has an infinite support.

3.2 Continuity of the entropy measures
The Shannon entropy measures are functions mapping a
probability distribution to a real value. They can be de-
scribed as the measure of uncertainty about a discrete ran-
dom variable X having a probability mass function p.
Definition 3. The entropy H(X) of a random variable X is:

H(X) = −
∑
x

p(x) log p(x) (19)

We adopt the convention that summation is over the sup-
port of the given probability distribution, in order to avoid
undefined cases. An important characteristics of Shannon
entropy, is that it measures the spread of a probability distri-
bution and therefore, achieves its maximum value when the
distribution assigns equal probabilities to all the outcomes.
This concept was used as a method to assign prior proba-
bility distributions that maximize Shannon entropy measure
under partial information constraints. It is possible to apply
Shannon entropy measures to a utility increment vector re-
flecting the spread of the prospects (Abbas 2006) as in (20).

H(∆u1, ...,∆un) = −
n∑
i=1

∆ui log(∆ui) (20)

In the case where the outcomes are finite, the Shannon en-
tropy measures are continuous function. We propose to fo-
cus on the case where the entropy measure H is applied
to utility increment vectors ∆U with countably infinite el-
ements, situation reflecting the high uncertainty. More pre-
cisely we are interested in studying the continuity of H with
respect to the distance measures we established in the sec-
tion 2.2. For instance, entropy is discontinuous with respect
to the Kullback-Leibler divergence (Ho and Yeung 2009).
We should highlight that the underlying utility functions fol-
low the axioms of normative utility functions (von Neumann
and Morgenstern 1947), which gives (21).∫

x

u(x) = 1 (21)

We propose to define the continuity of a function f that will
be lately extended into the entropy measure H .
Definition 4. Let πX be the set of all utility density functions
on the set of outcomes X and let u ∈ πX . f : πX → [0, 1]
is continuous at u if, given any ε > 0, ∃δ > 0 such that:
∀u′ ∈ πX : Du(u, u′) < δ =⇒ |f(u′)− f(u)| < ε.
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For the discrete case, we have the following definition.

Definition 5. Let πk be the set of all utility increment vectors
defined for k outcomes, and let ∆U ∈ πk.
f : πk → [0, 1] is continuous at ∆U if, given any ε > 0,
∃δ > 0 such that: ∀∆U ′ ∈ πk : DU (∆U,∆U ′) < δ =⇒
|f(∆U ′)− f(∆U)| < ε.

If f fails to be continuous at the utility density function u
(resp. ∆U ), then we say that f is discontinuous at u (resp.
∆U ). Given the notion of convergence we defined in section
2.3., we can provide the following definitions of the discon-
tinuity of the function f .

Definition 6. Let πX be the set of all utility density functions
on the set of prospects X and let u ∈ πX . A function f :
πX → [0, 1] is discontinuous at u if there exists a sequence
of utility density functions u(n) ∈ πX such that :

lim
n→∞

Du(u(n), u) = 0 (22)

but f(u(n)) does not converge to f(u), i.e.,

lim
n→∞

f(u(n)) 6= f(u) (23)

Similarity, for the discrete case we have:

Definition 7. Let πk be the set of all utility increment vectors
defined for k prospects. Let ∆U ∈ πk.
A function f : πk → [0, 1] is discontinuous at ∆U if there
exists a sequence of utility increment vectors ∆U(n) ∈ πk
such that :

lim
n→∞

DU (∆U(n),∆U) = 0 (24)

but f(∆U(n)) does not converge to f(∆U), i.e.,

lim
n→∞

f(∆U(n)) 6= f(∆U) (25)

3.3 Discontinuity
In this section, we establish the discontinuity of H at any
utility increment vector ∆U having a countably infinite sup-
port. Let ∆U

(a,b)
(n) be a sequence of utility increment vectors

with the real parameters a and b. We will use this sequence
to show that H is discontinuous at ∆U1 = (1, 0, 0, ...).
For fixed real numbers a and b and an integer n, such as
a > 1 and b > 0 and n > a. We define ∆U

(a,b)
(n) as in (26).

∆U
(a,b)
(n) = {1− (

log a

log n
)b,

1

n
(
log a

log n
)b, ...,

1

n
(
log a

log n
)b, 0, 0, ...}

(26)

Based on our definition of convergence in 2.3., we show that
the sequence {∆U (a,b)

(n) } converges to ∆U1 = (1, 0, 0, ...).
Computing the distance between the vector ∆U1 and the
parametrized vector ∆U

(a,b)
(n) gives (27).

DU (∆U1,∆U
(a,b)
(n) ) = −

(
log(1−

(
log a

log n

)b)
(27)

We have ∆U
(a,b)
(n)

U−→ ∆U , which is given in (28).

lim
n→∞

DU (∆U
(a,b)
(n) ,∆U1) = 0 (28)

Then, the entropy of ∆U
(a,b)
(n) is given by (29).

H(∆U
(a,b)
(n) ) = −

[
1−

(
log a

log n

)b]
log

[
1−

(
log a

log n

)b]

−n

[
1

n

(
log a

log n

)b]
log

[
1

n

(
log a

log n

)b]
(29)

Hence, we have (30). For a complete proof we refer the
reader to (Ho and Yeung 2009).

lim
n→∞

H(∆U
(a,b)
(n) ) =

{
0 if b > 1
log a if b = 1
∞ if 0 < b < 1

(30)

Proposition 1. Based on Definition 7. and if we take f = H ,
a > 1 and 0 < b ≤ 1 in (30), we have:

lim
n→∞

H(∆U
(a,b)
(n) ) =∞ 6= H(∆U1) (31)

but lim
n→∞

∆U
(a,b)
(n) = ∆U1 (32)

Therefore, we can state thatH is discontinuous at the util-
ity increment vector ∆U1 = (1, 0, 0, ...).

3.4 Bound and majorization
Given (30), we propose to find a bound to η in (33).

η = |H(∆U)−H(∆U ′)| (33)

with ∆U and the ∆U ′ the utility increment vectors we pro-
vided at the beginning of section 3.. In fact, if the dimension
M of ∆U is finite and known, (33) is also finite and we pro-
pose to find its upper bound (34).

sup
∆U
|H(∆U)−H(∆U ′)| (34)

Since the utility increment vector ∆U ′ is available to the
decision maker (assessed under Ceteris Paribus as we men-
tioned above), we will start by solving (35).

sup
∆U
|H(∆U ′)| (35)

subject to DU (∆U,∆U ′) ≤ ε
With a finite value of M , (35) is reduced to finding (36).

max
∆U

D∆U (∆U,∆U ′)≤ε

H(∆U) (36)

Now we can think about the majorization of (36) and thus
providing the solution ∆Umeu.
Let γ =

∑L
i=1 ∆ui. We can write ∆U as in (37).

∆U = (∆u1, ...,∆uM ) (37a)

∆U ′ = (
∆u1

γ
, ...,

∆uL
γ

) (37b)

∆U ′′ = (
∆uL+1

(1− γ)
, ...,

∆uM
(1− γ)

) (37c)
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Therefore, H(Q) can be written as in (38).

H(∆U) = h(γ) + γ ∗H(∆U ′) + (1− γ) ∗H(∆U ′′)
(38)

with h the binary entropy function (39).

h(x) = −x log(x)− (1− x) log(1− x) (39)

Since #(∆U ′′) = (M − L), we can define an upper bound
for H(∆U ′′) (Yeung 2008), as in (40).

H(∆U ′′) ≤ log(M − L) (40)

(38) and (40) give (41)

max
∆U

D∆U (∆U,∆U ′)≤ε

H(∆U) ≤ (41)

h(γ) + γ ∗H(∆U ′) + (1− γ) ∗ log(M − L)

Therefore, the maximum value that could be reached by the
entropy H is shown in (42).

H(∆U∗) = h(γ) + γ ∗H(∆U ′) + (1− γ) ∗ log(M − L)
(42)

The utility increment vector that achieves this maximum is
∆Umeu (43).

∆Umeu =

(
∆u0, ...,∆uL,

(1− γ)

(M − L)
, ...,

(1− γ)

(M − L)

)
(43)

The solution (43) is the optimal utility increment vector that
ensures the ME with respect to the given information (37b).
The specified preferences ∆U ′ could be characterized by a
utility density function, while the rest of the vector ∆Umeu
will be a uniformly distributed utility increment vector.

4 Conclusion
We consider the ME principle for utility elicitation in the
case of high uncertainty, that is, when the decision maker
is facing a large number of outcomes, while having a lim-
ited knowledge. Despite its practical importance, as to un-
derstand how decisions are made in bounded rationality, this
problem has not been studied from the perspective of en-
tropy maximization. To address this problem, we assumed
that this situation of high uncertainty could be translated
into a countably infinite number of outcomes. The decision
maker is asked to provide a utility function that maximizes
the entropy, given the available information. Solving this
type of problems could rely on Lagrange multipliers. But,
like we have shown, this method, and general derivation-
based methods could not be used due to the discontinuity
of the entropy measures whenever the support is infinite.
Therefore, we proposed another method based on finding a
limiting least upper bound of the entropy, and thus giving a
utility increment vector that maximizes it.
As an important research issue to be further investigated,
we think about considering the case of multi-attribute util-
ity increment vectors, and therefore generalize the univariate
asymptotic case to the multivariate case.
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