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Abstract 
In this paper, we outline a system for evaluating the 
performance of scientific research across a number of 
outcome metrics (e.g. publications, sales, new hires).  Our 
system is designed to classify research performance into a 
number of metrics, evaluate each metric’s performance 
using only data on other metrics, and to cast predictions of 
future performance by metric.  This study shows how data 
mining techniques can be used to  provide  a predictive 
analytic  approach to the management of resources for 
scientific research.   

Introduction   
National laboratories and other research institutions track 
detailed information about resources (e.g. funding) and 
outcomes (e.g. publications) of the research performed, in 
order to meet regulatory and accountability requirements 
by governing agencies and manage research activities more 
effectively.  These data  provide a unique resource to 
monitor and report  on scientific progress so as to 
understand the scientific and societal impact of the 
research carried out. So far, limited use has been made of 
the information available, as no systematic practices have 
been established to infer models from these data capable of 
establishing performance benchmarks, and identifying and 
forecasting performance accomplishments. The goal of our 
study is to address this gap by establishing a statistical 
approach that makes it possible to transform the 
information gathered on research resources and 
performance metrics into training datasets that can be used 
to infer models of research impact.  
 Rather than postulating an arbitrary overall impact 
measure of research, we measure achieved performance for 
each outcome metric on which data are recorded: 
intellectual property, publications, staff hires, follow-on 
sales, and collaboration.  Achieved performance for each 
metric is assessed through classification models that are 
learned from training datasets that encompass the 
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information gathered on research resources and 
performance.  The evaluation of the classification models 
developed demonstrates the viability and validity of the 
approach as the basis for a predictive analytic approach to 
science policy.   

Data Mining for Business Intelligence 
Business intelligence (BI) technologies have a critical need 
for core data mining techniques  (Han, Kamber, and Pei 
2011).  BI systems are created to help transform 
operational data into valuable knowledge for business 
decision makers; this is a transformation that often 
involves significant data mining (Weidong, Weihui, and 
Kunlong 2010).  Unlike much of the recent work in the 
intersection of these two fields, the work discussed in this 
paper is not concerned with text analysis, streaming data, 
or customer satisfaction (Godbole and Roy 2008; Park and 
Gates 2009).  Instead, this work helps provide a means of 
automatically and continuously measuring Key 
Performance Indicator (KPI) performance (Kaplan and 
Norton 1992).   In keeping with this orientation, the aim of 
this study is to mathematically define, quantify, and 
categorize the current state of research projects.  We 
achieve this goal through evaluating performance through 
a series of metrics, consistent with the paradigm of metric-
driven management (Koudas and Srivastava 2003).  This is 
the first fundamental step towards process improvement.  
Analyze the current state, describe the future desired state, 
and implement the changes needed to achieve that future 
state; this matches the classic pattern seen in Business 
Process Reengineering (Hammer and Champy 2001). 
 We set out to develop a decision support system (DSS) 
that could enable decision-makers to make better use out of 
limited resources to maximize research objectives among 
various projects. To accomplish this, we built interfaces for 
existing enterprise information systems (EIS) to leverage 
this data in our DSS. In our case, the EIS was a relational 
database containing various data fields for past resource 
projects. The DSS would accept a query describing an 
ongoing research project, and the goal of the DSS was to 
forecast the future performance of the project.  The work 
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described in this study provides the basis for predictive 
analytics in the business intelligence work carried out by 
the users.   
 Therefore, the data mining challenge of our project was 
to identify which data records were relevant to a particular 
query and use statistical analysis as well as machine 
learning techniques to satisfy the query.  

System Description 
Our system is a data driven end-to-end process that ingests 
metadata about research projects performed and 
communicates useful information about the projects to the 
user.  First the metadata is aligned with five metrics, and  
clustered into a number of classes for each metric.  Next 
each project is labeled across all of the metrics.  Finally 
those labels are communicated back to the user.  

Data Description 
The dataset used in this experiment was collected from 
internally funded research projects at a national laboratory.  
Collectively, the data can be used to measure project 
success across a variety of metrics: collaboration, 
publications, new staff hires, intellectual property, and 
sales.  The strategy pursued is to start with assessing 
project achievement for each separate metric.  The 
aggregation of these diverse success metrics into a unified 
description of project impact is a separate effort.   
 Our dataset includes a total of 224 properties.  Of these, 
there are boolean (186), currency (2), aggregate (28), 
continuous (1), categorical (5), and date (2) properties that 
collectively represent records of past performance of 
laboratory-directed research projects.  Many projects 
receive funding from multiple funding sources, of which 
there are more than 150 possibilities.  Since each funding 
client is represented by its own flag, we have a very large 
set of boolean properties.   
 Each of the five primary metrics identified earlier are 
determined based upon a predefined subset of these 
properties.  For example, the publications metric is based 
upon the counts of seven different types of publications 
(abstracts, journal articles, reports, etc.), a count of all 
refereed publications, and a count of all published 
(refereed and non-refereed) documents.  The collaboration 
metric utilizes seven properties, the staff metric six, and 
the intellectual property and sales metrics each use three. 

Clustering Approach 
The records are grouped using a two stage clustering 
process.  The first step involves building clusters around 
records with identical profiles relative to a given metric.  
The second step transforms attributes of the remaining 
records to a common scale and then uses consensus 

clustering to choose the “best” candidate clustering 
strategy (Daly et al. 2011).    
Stage 1: Identical Record Clustering 
This stage begins with the removal of attributes that have 
constant values over the entire collection of records, as 
these variables are non-discriminating.  In the data we 
received, some of the research projects had attribute values 
of “0” for all attributes within a given category.  In 
addition to these “0” profile records, some of the other 
records have identical feature profiles.  In this stage, those 
groups are extracted.  The remaining variables are ranked 
via unbiased variable selection using modified random 
forests (Strobl et al. 2007, Strobl 2008).   
Stage 2: Consensus Clustering 
In the second stage of clustering, consensus clustering is 
used to cluster the remaining contracts.  This begins by 
transforming all of the variables to a common scale.  The 
transformations are dictated by the type and distribution of 
the variables (ex. binary, multiple category, or currency).  
Binary variables are transformed using the proportional 
distribution of zeros and ones and then taking the logit of 
each case.  Multiple category variables are transformed 
using Gower’s distance function for mixed variables 
(Gower 1971).  For non-negative continuous variables, we 
take the square root of counts and the log. Currency 
variables are first standardized to a common year.   
 The remaining contracts are grouped using merged 
consensus clustering based on consensus matrices from 
partition around medioids, hierarchical clustering and k-
means.  (Simpson 2010)  The selection of clustering 
method and number of distinct clusters is determined using 
the area under, and differences thereof, the consensus 
cumulative distribution curves.  Cluster robustness is 
reported as the 5th, 50th, and 95th quantiles of within-cluster 
consensus indices. The selection of clustering algorithm, 
and number of clusters, is made independently of 
classification performance.   

Post-Clustering 
Once the clusters have been determined, the cutoffs from 
the clusters determine the class labels for each metric of 
each record (e.g. low vs. high sales).  These labels are part 
of the output from the system.  In addition to 
communicating the success against each metric, the 
resultant cutoffs represent expected performance for 
ongoing and future research projects.   

Evaluation 
In order to test our system, the features relating to each 
metric were used to correctly bin each vector into the 
appropriate class.  The cutoffs for those bins were 
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determined based on clustering all of the data for each 
metric according to the clustering approach previously 
explained.  Those labels then served as the gold standard 
for evaluating classifier performance.  The classes for each 
metric were as follows: Intellectual Property (Zero, Low, 
Medium, High), Staff Hires (Low, Medium, High), 
Publications (Zero, Low, Medium, High), Sales (Low, 
High), and Collaboration (Zero, Low, Medium, High).   
 Our dataset contained 894 records with 208 features per 
record.   

Overall Performance 
To test the performance of the system, five data files were 
created.  Each data file corresponded to one of the five 
metrics.  For the data file corresponding to any given 
metric, all features related to that metric were removed.  
The remaining features became the vector used for 
predicting the appropriate class label for the record.  Note 
that this is in opposition to the clustering originally used to 
determine the bins; during clustering, all features were 
available for determining the correct class label.  The 
precision, recall, and F-measure  classification results of 
each individual metric are reported in Figure 1, along with 
the average across all metrics.  All evaluations used 10-
fold crossvalidation. 
   

 Precision Recall F-measure 
Intellectual Prop. 0.935 0.985 0.960 
Staff Hires 0.982 0.982 0.982 
Collaboration 0.977 0.952 0.964 
Publications 0.820 0.850 0.832 
Sales 0.852 0.872 0.857 
Combined 0.911 0.924 0.915 

Table 1  Evaluation of overall classifier performance on a 
metric by metric basis using Bayesian Networks (results for each 
metric reflect weighted averages across performance classes) 
 
 These results show that the performance in any one 
metric can be accurately predicted from information about 
the other metrics  Additionally, these results and the 
experimentation done in assembling these results indicate 
that standard classifiers such as Naïve Bayes, Bayesian 
Networks, and Decision Trees can effectively be used to 
build models that accurately recognize the performance 
levels of project records for each metric.  The classification 
models developed can help project and program managers 
evaluateongoing projects and test project improvement 
strategies by manipulating metric performance values on 
input project records.   

Within Metric Performance 
Within each metric, there was not an even division of test 
instances across the performance classes established (zero, 

low, medium high).For example, the distribution of 
instances for the Intellectual Property metric was: Zero = 
887 instances, Low = 54 instances, Medium =7 instances, 
High = 1 instance)  Classes with a larger number of test 
instances tended to form better models, and to perform 
better overall.  Consequently, classification algorithms that 
have been shown to tolerate an uneven distribution of 
classes, i.e. Bayesian networks or similar (Daskalaki et al. 
2006), are better suited for this task.   
  
 In an effort to give a representation of performance that 
takes into account the uneven distribution of test instances 
across performance classes, Figure 2 shows overall 
classifier performance on a metric-by-metric basis where 
results are not weighted across performance classes. From 
these results, it is evident that performance varies greatly 
across performance classes for all metrics, due the uneven 
distribution of test instances across performance classes.  
Performance classes with fewer test instances consistently 
underperform in terms of precision, recall, and F-measure 
across all five metrics.  Those metrics where the instances 
are most evenly distributed across classes, namely staff 
hires and sales perform best in this evaluation.   
 

 Precision Recall F-measure 
Intellectual Prop. 0.392 0.477 0.403 
Staff Hires 0.737 0.675 0.661 
Collaboration 0.383 0.432 0.391 
Publications 0.439 0.465 0.449 
Sales 0.733 0.644 0.672 
Combined 0.537 0.539 0.515 

Table 2  Evaluation of overall classifier performance on a 
metric by metric basis using Bayesian Networks (results are not 
weighted across performance classes) 
 
    

Value of Classification Models to Business 
The models derived from the classification algorithms 
serve multiple purposes.  They provide empirical 
evaluation of the clustering techniques, but they also 
provide an expectation for future and ongoing projects.  
The models allow for evaluation of projects against 
historical data.  Looking at the results from the decision 
tree classifiers, expectations for success in each metric, as 
well as overall for the project can be communicated to 
project and program managers to achieve situational 
awareness of project performance, set goals and 
expectations of project outcomes, and plan and test 
improvement strategies. 
 The evaluation of project performance metric-by-metric 
helps provide a fairer assessment of project outcomes.  
Projects may differ markedly in as to their target outcomes. 
For example, a basic research project may strive to 
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generate more publications, an applied research project 
may have a stronger focus on patent applications, and a 
development/operational project may primarily target 
sales. Separate evaluation of each metric is therefore 
needed to assess each project in terms of its target 
outcomes.     

Conclusion and Future Work 
We have described a business intelligence application of 
data mining techniques aimed at managing resources and 
investments in scientific research. The methods and tools 
emerging from this work provide significant benefit to the 
business analysts, funding agencies, and principle 
investigators on projects.  One distinguishing aspect of the 
approach described is the characterization of project 
performance metric-by-metric. Such a practice enables the 
assessment of a project in terms of the project’s target 
outcomes, and thus it provides a fairer assessment of 
project performance. 
 The preliminary results presented  show that clustering 
techniques can be profitably used to turn unstructured 
document collections into training datasets from which 
viable classification models can be learned. More 
specifically, mmultidimensional data can be discretized 
into data bins that represent metrics dimensions of interest 
(e.g. low, medium, high sales) that can thereafter be used 
to learn models of scientific research outcomes. 
 We are currently utilizing the same datasets to infer  
dynamic models of project performance (e.g. dynamic 
Bayesian networks) that make use of information about 
past project performance to assess the performance levels 
of a given current project and predict its future outcomes. 
We are also developing techniques to derive an overall 
measure of project performance from the integration of the 
five metrics discussed in this paper, which can be 
effectively tailored to a project target outcomes. These 
advancements will support the creation of a predictive 
analytic platform to aid decision making in the 
management of scientific research. 

References 
Daskalaki, S., Kopanas, I., and Avouris, N. 2006. Evaluation of 
Classifiers for an Uneven Class Distribution Problem. Applied 
Artificial Intelligence. Vol. 20, Iss. 5. 
Daly, D, D Engel, E Bell and A Sanfilippo (2011) Classifying 
Existing Research Contracts to Predict Future Contract 
Performance. Unpublished manuscript, Pacific Northwest 
National Laboratory. 
Godbole, S., and Roy, S., 2008.  Test Classification, Business 
Intelligence, and Interactivity: Automating C Sat Analysis for 
Services Industry.  Proceeding of the 14th AMC SIGKDD 
International Conference on Knowledge Discovery and Data 
Mining. ACM, 911 919.   

Gower, J. 1971. A General Coefficient of Similarity and Some of 
its Properties.  Biometrics, 27, 623 637. 
Hammer, M. and Champy, J.  2001.  Reengineering the 
Corporation. Nicholas Brealey Publishing.   
Han, J., Kamber, M., and Pei, J.  2011.  Data Mining: Concepts 
and Techniques.  Morgan Kaufmann 
Koudas, N., and Srivastava, D., 2003. Data Stream Query 
Processing: A Tutorial.  Proceedings VLDB Conference.  Berlin, 
Germany.   
Laplan, R., and Norton, D., 1992.  The Balanced Scorecard  
Measures that Drive Performance.  Harvard Business Review 
70,1.   
Park, Y., and Gates, S., 2009.  Towards Real Time Measurement 
of Customer Satisfaction Using Automatically Generated Call 
Transcripts.  Proceeding of the 18th ACM Conference on 
Information and Knowledge Management.  ACM, 1387 1396.   
Stobl, C., Boulesteix, A., Zeileis, A. and Hothorn, T. 2007. Bias 
in Random Forest Variable Importance Measures: Illustrations, 
Sources, and a Solution.  BMC Bioinformatics. 8:1:25.   
Strobl, C. 2008. Statistical issues in Machine Learning  Towards 
Reliable Split Selection and Variable Importance Measures.  
Ludwig Maximilians University, Munich, Germany.  
Dissertation.   
Weidong, Z., Weihui, D., and Kunlong, Y.  2010. The 
Relationship of Business Intelligence and Knowledge 
Management.  The 2nd IEEE Internation Conference on 
Information Management and Engineering (ICIME), 26 29.   
 

403




