
Generating Texture-Aware Spatial Decompositions

D. Hunter Hale and G. Michael Youngblood
The University of North Carolina at Charlotte

Dept. of Computer Science, 9201 University City Blvd.
Charlotte, North Carolina 28223-0001

{dhhale, youngbld}@uncc.edu

Abstract

This work presents an algorithm to provide a better represen-
tation of space to artificially intelligent characters (i.e., agents
or bots) in game and simulation environments by providing a
more accurate breakdown of the traversable space present in
the game environment. Such representations are generally
constructed by decomposing the walkable space present in a
game environment into a series of convex regions to form a
data structure called a navigation mesh. We extend the ba-
sic concept of a navigation mesh by the introduction of an
understanding of the textures that are attached to the under-
lying geometry creating what we refer to as a texture-aware
navigation mesh. This does result in a more complex naviga-
tion mesh (more regions and a larger search space). However,
since the textures of walkable geometry can be used to deter-
mine the appropriate traversal method for that terrain, a game
character can determine valid paths for their traversal meth-
ods using just the navigation mesh (e.g., characters in cars can
generate paths containing just roads or walking characters can
create paths containing just sidewalks). We also present a use
case that shows how such a system of texture aware naviga-
tion meshes might benefit character path planning and search
in virtual environments. In this use case, we examine a Real
Time Strategy game style game environment, which shows it
is possible to generate a navigation mesh such that each re-
gion is composed of a single terrain type.

Introduction
Providing a high quality representation of the traversable
(walkable) space present in game and simulation environ-
ments is one of the primary challenges when developing
realistic artificially intelligent (AI) characters to operate in
these environments (Tozour 2004). The base level geome-
try and other obstructions present in the environments are
generally available to the character’s AI, but this listing only
tells the character where they cannot walk. It does not pro-
vide any sort of organized listing for the walkable areas. The
walkable area in such an environment is presented to a char-
acter in one of two general ways. First, there are sparse rep-
resentations of the environment. These representations gen-
erally consist of known good points in the environment and
the known good paths between them (e.g., waypoints). The

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

second commonly used type of representation is a dense spa-
tial representation. In this style all or nearly all of the walk-
able space present in the environment is broken down into
regions. These regions are generally convex—convexity is
maintained so that a character can go from any two points
within a region and be assured of remaining within the same
region. These representations allow path planning and other
searches through open space to be conducted using a graph
or topological map search (the regions become vertices and
adjacent regions are connected by edges). Using a set of
convex regions to represent the walkable space in an envi-
ronment creates a data structure referred to as a navigation
mesh. In both dense and sparse representations characters
search the representation to generate a path and use that path
for global planning through the environment. In addition
to global planning, characters utilize local path planning to
deal with areas not contained in the representation or ob-
structions that are too small to be present in the navigation
mesh.

In recent years navigation meshes have become the search
space representation of choice in game and simulation ap-
plications (McAnils and Stewart 2008). Using a variety of
algorithms (see Related Work section) we can generate high
coverage navigation meshes by decomposing the walkable
space present in the environment. Then character path plan-
ning becomes a matter of locating the start and end regions
with a point in convex polygon algorithm and then executing
a graph search algorithm (A*, D*, D* Lite, etc.) to find the
shortest path between the start and end regions.

However, one potential flaw with existing navigation
mesh generation algorithms is that they treat all traversable
space as the same. This means that a navigation mesh for
an urban environment centered on a single building with
traversable roads, sidewalks, and grass would treat all of
these different surfaces as the same in terms of walkabil-
ity. Furthermore, regions of the navigation mesh might well
cross over multiple different terrain types as long as they are
all within the specified tolerance for differences in height
for the spatial decomposition. This could result in prob-
lems for agents attempting to utilize this navigation mesh.
For example, an agent driving a car though this hypothetical
mesh would not know if they were on the road, the grass,
or even the sidewalk based on the navigation mesh. Further-
more, paths generated using this navigation mesh might not

415

Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference



actually be traversable depending on how the agent is sup-
posed to traverse the environment (e.g., the path might con-
tain only grass or sidewalk regions, which are generally not
traversable if the agent is driving a car). This creates addi-
tional overhead as the characters must still run some form of
local path planning based on the terrain they are traversing.
Additionally, this creates the need for an another check over
generated paths to ensure that they are actually traversable
via the manner the agent intends to utilize them.

We propose a new algorithm that extends popular naviga-
tion mesh generation techniques, which will allow them to
generate texture aware navigation meshes. This extension
ensures that each region in the navigation mesh is only com-
posed of a single texture type. These subsets of regions ex-
ist in the navigation mesh in a manner that is easy to query
and ties the different textures to a traverse methods (e.g.,
road textures can be associated with the drive traverse type).
By allowing characters to specify a traverse method along
with the start and end points of a path, we ensure that the
generated paths are entirely traversable by the chosen tra-
verse method. We accomplish this by iteratively toggling
the walkablity of each of the different terrain textures of the
environment and generating a new sub-decomposition that
is then appended onto the final decomposition.

Related Work
Any of the following commonly used full coverage methods
of generating a spatial decomposition would work as the ba-
sis for creating a texture aware spatial decomposition:

The Delaunay triangulation algorithm is a well known
method for generating a series of triangles from an input
set of points and edges. Using this algorithm every vertex
present in the world is connected to every other vertex to
generate a series of triangles such that they do not intersect
any triangles already created (Delaunay 1934). The algo-
rithm then attempts to reform the lines that compose these
triangles in order to ensure that the average minimum in-
terior angle of the resulting set of triangles is maximized.
This algorithm generates an excellent coverage decomposi-
tion that works well for navigation; however, it often con-
tains more regions than are strictly necessary as it only uses
triangles.

Navigation mesh construction via the Hertel-Mehlhorn
(Hertel and Mehlhorn 1983) algorithm is commonly used
to generate a listing of convex walkable areas (Tozour 2002)
and for a time was considered to be near optimal for this
purpose. This algorithm works by connecting all of the ver-
tices of the world geometry that border on the walkable areas
into a series of triangles. This algorithm can also consume
as input a listing of triangles generated via some other tri-
angulation method. Triangles have the inherent property of
always being convex, which means we have already gen-
erated our delineation of the walkable space at this point.
However, the contribution of the Hertel-Mehlhorn algorithm
is to optimize this listing by combining triangles into higher
order polygons. The algorithm calls for the removal of an
edge from a pair of adjacent triangles such that the resulting
shape remains convex. The removal of lines is then repeated

until the algorithm is unable to find any acceptable lines to
remove at which point it terminates.

It is also possible to generate a spatial decomposition and
a navigation mesh using a growth based approach (Hale
2011). In this method a quad or other base shape is placed
into the environment. This shape is then allowed to grow
and expand outward in the direction of the normal of each
edge. When the growing quad encounters an object it either
stops growing or is subdivided into a higher order polygon
depending on the geometry present at the point of collision.
Once the initial quad has ceased growing, additional quads
are placed into the environment and then allowed to grow
outward in the same manner as the initial quad. This con-
tinues until the entire environment has been decomposed.
The advantage of this algorithm is that it will only generate
axis-aligned edges between traversable regions. This makes
it easier to do movement planning and path smoothing be-
tween regions.

Methodology
In typical game environments different types of terrain have
different textures associated with them. These associations
between terrain types and textures are generally consistent
within any given environment. Using some prior knowledge
provided by the level designer we can group these textures
into clusters based on common usage (designer specified)
and attach a traverse method to each texture group. When
generating decompositions to assist with agent path plan-
ning it makes sense to utilize these groupings to encode the
terrain information into the regions of the navigation mesh
in the form of traversal tagging.

We accomplish this by extending existing navigation
mesh algorithms to run multiple times altering what is and
is not considered to be an obstructed or non-walkable area
and appending the resulting regions to the same navigation
mesh. We rely on the user to generate a list of which textures
correspond to any given traversal methods. For instance, the
asphalt, road, and highway textures might all designate ar-
eas where the agent can drive while the sidewalk and grass
textures indicate areas the agent can walk.

To implement texture aware spatial decompositions we
first insert fake obstructions that are projected up from all
of the ground plane(s) in the environment. Each of these
fake obstructions is tagged with the texture of the ground
plane triangle they are extruded from. Then all of the fake
obstructions associated with a user defined traversal method
are toggled off to be traversable again. The navigation mesh
generation algorithm of the implementers choice is then ex-
ecuted on the world in its current state (in our example im-
ages we use a growth-based algorithm). All of the regions of
walkable space generated in this cycle of the decomposition
algorithm are tagged with the traverse method that is defined
by the current texture set.

After the decomposition algorithm finishes execution, an-
other set of these fake obstructions are toggled off and the
decomposition algorithm is executed another time. Again,
regions that are generated in this second execution are
tagged with the set of traverse textures that were just toggled
to be walkable. This cycle repeats as shown in Algorithm 1

416



Algorithm 1: Texture Aware Spatial Decompositions
List TextureKeywords;
List GroundTriangles;
NavigationMesh CurrentMesh;
for Keyword in TextureKeywords do

/* Determine which sections of the
groundplane are traversable for
this texture keyword */

for Triangle in GroundTriangles do
/* The matches method can

utilize everything from
simple string matching to a
designer provided list of
texture names */

if Triangle.matches(Keyword) then
/* Mark the triangle as being

passable in this phase of
the decomposition */

Triangle.setWalkable();
else

/* Mark the triangle as being
impassable in this phase
of the decomposition */

Triangle.setUnWalkable();

/* Generate a new set of regions
using just the current texture
and add them to the existing
navigation mesh */

List tempRegions =
Decompose(GroundTriangles, Keyword);
CurrentMesh.append(tempRegions);

/* Only combine adjacent regions if
the result would be convex and
both components have the same
traverse method */

CurrentMesh.specialCleanUp();
CurrentMesh.buildNavigationLinks();

until there are no further traversal methods to be considered
and all of the traversable space in the environment has been
decomposed into regions.

To utilize the navigation mesh generated by this process,
gateways are defined to exist between regions of the same
traverse types. Connections between regions which have
different traverse types are referred to as boundaries and can
have special traverse types (e.g., a bicyclist might be able
traverse both the road and the sidewalk, but might have to
hop to move between the two types). Such special traverse
methods on boundaries must be provided by the end user and
can serve to signal characters that special animations should
be played when moving between two such regions.

There are two special considerations that must be dealt
with when constructing a texture aware spatial decomposi-
tion. First, it is possible that there are certain terrains or
texture types that might be present in one or more traverse

types (e.g., the crosswalk would be present both in the drive
and walk traverse types). This dual representation is accom-
plished by considering such textures to be distinct from par-
ent texture traverse groups and adding additional dual use
traverse groups (so there would be traverse groupings of
drive, walk, and drive or walk in the case of the crosswalk).
Like the original texture groupings and traverse classifica-
tions these special considerations must be provided by the
end user. Secondly, the manner in which regions are com-
bined when cleaning up a spatial decomposition has to be
slightly altered. Normally, adjacent regions are combined
if the resulting region would be convex. If we utilized this
cleanup method in a texture aware decomposition we might
combine regions associated with two distinct traverse types.
Instead, we have to check that both regions share the same
traverse type before we can combine them.

Finally, while we have discussed generating the groups of
textures and associated traverse types using user provided
lists, we found in our use cases that it was possible to auto-
matically generate most of these associations. When game
designers create environments they generally use descriptive
titles for the textures associated with components of the en-
vironment. Using a simple string matching algorithm and
some common words (e.g., “road”, “grass”, “concrete”) we
were able to automatically determine which grouping most
of our textures belonged in. In the future, we plan to ex-
pand this automatic grouping using some lexical databases
such as ResearchCyc (http://research.cyc.com/) or Concept-
Net (http://conceptnet5.media.mit.edu/) to improve this au-
tomatic classification.

Case Studies
It might seem that it would be best to compare the navigation
meshes generated by texture aware spatial decompositions
to the existing approaches used to generate representations
that recognize the different traverse types present according
to the terrain of the environment (e.g., multiple waypoint
graphs or occupancy grids). However, this is not an infor-
mative comparison. The superior performance provided by
navigation meshes when compared to sparse-spatial repre-
sentations or the excessively complex occupancy grid rep-
resentations will eclipse any gains or losses that occur when
texture aware spatial decompositions are considered (Tozour
2002). By the same token it might also seem that compar-
ing the navigation meshes generated by traditional spatial
decomposition techniques to the ones generated by texture
aware decompositions would be informative. However, the
metrics on which navigation meshes are compared are de-
signed to look at the number of regions and the coverage of
the world. Even the advanced decomposition metrics pre-
sented in (Hale 2011) are focused primarily on optimizing
path planning by minimized the size of the search space.
When generating a texture aware decomposition we are in-
tentionally producing more regions in the navigation mesh
to better represent how the underlying terrain in the environ-
ment should be traversed. In short, texture aware decom-
positions expose additional features that compensate for the
fact they contain more regions and as such a comparison
with existing metrics would be invalid. Instead, we present a

417



Figure 1: An exterior RTS environment showing a river
and a road network, along with the muddy, hard to traverse
ground between them.

case study showing how such a texture aware spatial decom-
position might be used to better represent a game or simula-
tion environment.

Our use case considers an outdoor environment composed
of several different terrain types composed of roads and
rivers crossing as shown in Figure 1. Additionally, this
environment contains muddy fields that are impassable to
wheeled vehicles and can only be traversed by tracked vehi-
cles. In this environment the cliffs facing the water shown
in white are not traversable. This is the type of environment
that would be commonly seen in a Real Time Strategy (RTS)
game (our level design is inspired by the sample levels used
by (Julio Obelleiro and Cerpa 2008) in their work analyzing
RTS levels). In a RTS game, character movement is less of
a question of should a character be allowed to move through
an area, and more a question of can this character move
through the terrain present in the area given their movement
methods. In the Dawn of War games there are characters that
have to move around all obstructions, and other characters
that can crash through some subset of obstructions. Addi-
tionally, it is quite common to see game characters that have
other movement types that enable them to move through ar-
eas that would be impassable to other characters (i.e., flying
characters that can cross water, or very tall characters that
can step up or down cliff sides). The traditional solution to
this problem of multiple traverse types attached to different
characters has been to produce a different spatial represen-
tation for each type of traversal. However, this method can
result in considerable storage overlap as the more general
traversal types often overlap areas that could be traversed in
some other manner (e.g., a representation of all the areas a
character could fly through would overlap an area showing
locations a character could walk).

With the introduction of a texture aware spatial decom-
position and the resulting navigation mesh, we can properly
quantify which traverse methods are applicable to each area
of the environment. This allows us to discard the multiple
potentially overlapping spatial representations that are tradi-
tionally used for such environments, and instead use a sin-
gle navigation mesh. It is important to note that when im-
plementing a navigation mesh in such a manner either the
regions or the characters need to be aware of a hierarchy of

traverse methods (i.e., there must be a way to communicate
that regions which are tagged as walk are also acceptable
for characters that use the fly traverse method either by in-
cluding multiple tags per region, or allowing characters to
employ multiple traverse methods when path planning and
moving). This results in a general reduction in the num-
ber of data structures that must be maintained—one global
structure to support multiple traverse types instead of one
structure for each traverse method. Additionally, there is
also (usually) a reduction in the size of the search space in-
side the navigation mesh by using the traverse method as a
filter on potential regions of the navigation mesh when path
planning.

Conclusion
In this paper, we have presented an algorithmic extension to
existing spatial decomposition algorithms that allow for the
generation of navigation meshes that are biased to account
for the textures of the underlying geometry. This texture bi-
asing allows us to represent each of the traverse methods
present in the game or the simulation with a tagged sub-
set of the regions in the navigation mesh such that each re-
gion is associated with a single texture or group of textures.
These textures are then associated with a traverse method
and agents are able to query the navigation mesh to only gen-
erate paths that utilize their available traverse methods. This
produces character path plans that we know are traversable
for that character as every region in the path is composed
entirely of terrain that they can traverse. We then applied
texture biased decompositions in a case study showing the
applications of such decompositions in a RTS environment.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. OISE-0730065.

References
Delaunay, B. 1934. Sur la sphere vide. In Classe des Sci-
ences Mathematiques et Naturelle 7.
Hale, D. H. 2011. A growth-based approach to the auto-
matic generation of navigation meshes. Ph.D. Dissertation,
Charlotte, North Carolina, USA.
Hertel, S., and Mehlhorn, K. 1983. Fast Triangulation of
the Plane with Respect to Simple Polygons. In International
Conference on Foundations of Computation Theory.
Julio Obelleiro, R. S., and Cerpa, D. 2008. AI Game Pro-
gramming Wisdom 4. Charles River Media. chapter 4.1 RTS
Terrain Analysis An Image-Processing Approach, 361–372.
McAnils, C., and Stewart, J. 2008. AI Game Programming
Wisdom 4. Charles River Media. chapter 2.4 Intrinsic Detail
in Navigation Mesh Generation, 95 – 112.
Tozour, P. 2002. AI Game Programming Wisdom. Charles
River Media. chapter 4.3 Building a Near Optimal Naviga-
tion, 171.
Tozour, P. 2004. AI Game Programming Wisdom 2. Charles
River Media. chapter 2.1 Search Space Representations, 85–
102.

418




