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Abstract
Robots are becoming increasingly common in home,
industrial and medical environments. Their end users
may know what they want the robots to do but lack the
required technical skills to program them. We present
a case-based reasoning approach for training a con-
trol module that controls a multi-purpose robotic plat-
form. The control module learns by observing an ex-
pert performing a task and does not require any human
intervention to program or modify the control module.
To avoid requiring the control module to be modified
when the robot it controls is repurposed, smart sensors
and effectors register with the control module allow-
ing it to dynamically modify the case structure it uses
and how those cases are compared. This allows the
hardware configuration to be modified, or completely
changed, without having to change the control module.
We present a case study demonstrating how a robot can
be trained using learning by observation and later repur-
posed with new sensors and then retrained.

1 Introduction
Robots are becoming increasingly prevalent in both indus-
trial and home environments (Thrun 1998). These robots
act as the physical embodiments of controlling agents and
allow the agents to interact with the world. However, the
tasks these controlling agents are required to perform may
change over time. It is not reasonable to replace the physical
robot every time its task changes, due to both the potentially
large monetary costs and the need to redesign the controlling
agent to allow it to utilize the new hardware. Additionally,
the variety of tasks the robot is required to perform (e.g. for
a robot that assists the elderly) or the specific properties of
the environment it will be deployed in (e.g. for a search and
rescue robot) may not be known in advance. Instead, a more
economical solution might be to have a modular robot that
can dynamically have new sensors (used to sense the envi-
ronment) and effectors (used to perform actions) added as
required. While this helps alleviate some of the financial
costs of repurposing a robot, it still requires modifying the
controlling agent. Newly added sensors or effectors will in-
fluence both the sensory features the agent uses to reason
and the possible actions it can perform.
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The ability to dynamically modify the sensors and effec-
tors available to an agent is vitally important for agents that
learn by observation if those agents are meant to be de-
ployed in a variety of domains. These agents train them-
selves to perform a specific task by watching an expert per-
form the task (Figure 1). As the expert interacts with the
environment, by performing actions (A) in response to envi-
ronment states (S), the observing agent records the action-
state pairs (C). The agent can later use those observations
to train itself to replicate the expert’s behaviour. A primary
motivation for learning by observation is that it allows an
agent to learn a behaviour even if the expert does not have
the necessary technical skills or time to program the agent.
Since the expert may not be able to program the agent’s be-
haviour, it is not reasonable to assume the expert has the
technical skills necessary to reprogram the agent if the robot
is repurposed.

Figure 1: An observing agent watching an expert interact
with the environment

We want our learning agent to be independent of the case
representation, so that we can repurpose the robot with dif-
ferent hardware or re-train it for different tasks without hav-
ing to modify any of the agent’s code. Instead, sensors and
effectors are able to dynamically register themselves with
the agent at run-time. The agent can then modify how it
reasons, based on the available sensory features, and how it
selects actions to perform, based on the available effectors.
This also helps make the agent more resilient to hardware
failure since it can similarly modify its reasoning and ac-
tion selection when components are removed. This work
is largely motivated by how animal brains deal with newly
added sensors. It has been shown that frogs can incorporate
sensory information from surgically implanted extra eyes
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(Constantine-Paton and Law 1978) and that humans are able
to adapt when existing sensors are substituted for new ones
(Bach-y-Rita and Kercel 2003). These results seem to indi-
cate that animal brains are not hard-coded for a fixed set of
sensors but can use and learn from any sensors that are wired
to the brain.

This paper will examine how the need to redesign an agent
when a robot is repurposed can be avoided by allowing new
sensors and effectors to dynamically register with a case-
based learning by observation agent at run time. Section 2
will describe the learning by observation agent and how ex-
isting systems deal with changes to the sensors and effectors.
The process by which new hardware registers with the learn-
ing by observation agent and how the agent makes use of the
new hardware is presented in Section 3. A case study show-
ing how a learning by observation agent can handle when the
robot it controls is repurposed is shown in Section 4. Related
work is discussed in Section 5 followed by conclusions and
areas of future work in Section 6.

2 Learning by Observation Agent
Learning by observation agents that can learn a variety of be-
haviours in a variety of domains (Floyd and Esfandiari 2011;
Ontañón and Ram 2011) achieve this by clearly separating
how the agent reasons from how it interacts with the environ-
ment. By decoupling the agent’s reasoning algorithms from
its environmental interfaces, this design attempts to avoid
biasing the agent to any specific tasks, environments or ex-
perts. Our work uses a similar agent design where the learn-
ing by observation agent is decomposed into three modules
(Figure 2): Reasoning, Perception and Motor Control.
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Figure 2: Learning by observation agent design

When the agent is placed in the environment, in place
of the expert, it will receive sensory information (from the
sensors) and in turn perform an action. Ideally, this action
should be the same action the expert would have performed
if presented with the same sensory information. The Percep-
tion module is responsible for reading the sensor values and
converting them into a form that can be understood by the
Reasoning module. This sensory information S contains the
values vi read from each of the N sensors accessible to the
agent:

S =< v1, v2, . . . , vN >

This sensory information is used by the Reasoning mod-
ule to determine what action A to perform. The Reasoning
module uses case-based reasoning with a case base that is
automatically acquired by observing the expert. Each case

Cj is composed of the environment state, represented by the
available sensory information, and the resulting action per-
formed by the expert:

Cj =< Sj ,Aj >

When the Reasoning module receives sensory informa-
tion from the Perception module, it searches the case base
for the most similar case and reuses the associated action.
This action is then sent to the Motor Control module which
causes the appropriate effector to physically perform the ac-
tion.

The Reasoning module does not contain any prior knowl-
edge about the set of sensors and effectors that will be used
so an identical Reasoning module can be used for a variety
of hardware configurations. However, both the Perception
and Motor Control modules must be modified if the sensors
or effectors are changed. In the Perception module these
modification require defining the number of sensors that are
available and an appropriate similarity metric for comparing
each sensory feature. Similarly, in the Motor Control mod-
ule the set of possible actions must be defined.

Since the Perception and Motor Control modules are
hard-coded, this result in a static set of sensors and effec-
tors. Even minor hardware changes require someone with
the necessary technical skills to modify the agent. A change
in the sensors (from Figure 2) would require changing the
Perception module and changing the effectors would require
modifying the Motor Control module. The time required to
perform these changes is likely significantly less than if the
Reasoning module also had to be modified but is still not
ideal.

3 Sensor and Actuator Registration
We propose passing the burden of adding new sensors and
effectors onto the hardware itself instead of requiring a hu-
man expert to modify the agent. We extend the agent design,
shown in Figure 2, so that a change in the sensors or effec-
tors no longer requires a redesign of the Perception or Motor
Control modules. To achieve this, each hardware component
becomes a smart-component that contains the necessary in-
formation about itself. Each component has information Ik
that contains its name nk, value type tk, and similarity func-
tion fk.

Ik =< nk, tk, fk >

The component name is a unique identifier that distin-
guishes between the various components. The value type
defines what kind of value a sensor produces or an effector
accepts and is selected from a set of predetermined types.
These value types can be simple (boolean, integer, contin-
uous, etc.) or more complex (matrix, vector, etc.) and are
used to perform simple error checking on data sent to or
received from the component. The component information
also includes a similarity function that is used to calculate
the similarity (sim) between two values, A and B, that are
of the same value type:

sim = fk(A,B), 0 ≤ sim ≤ 1

324



When a component is connected to the system it registers
by providing this information to the agent. The Perception
module maintains a list of all registered sensors and the Mo-
tor Control module keeps a list of registered effectors. This
means that the sensory information received, or observed, by
the agent is no longer composed of a constant number of pre-
determined sensory values. Instead, the number of sensory
values received by the agent is dependant on the number of
registered sensors and can therefore change over time. In
Figure 3, there is initially only one sensor (Sensor 1) reg-
istered with the Perception module so only data from that
sensor is sent to the Reasoning module. Later, when an ad-
ditional sensor registers (Sensor 2) the Reasoning module
will get sensor data from both sensors. This requires having
a case definition that is not static but can be modified as new
sensors and effectors register with the system.

Perception Sensor 1 Sensor 2 Reasoning

register(n, t, f)

D1 = getData()

sense(D1)

register(n, t, f)

D1 = getData()

D2 = getData()

sense(D1, D2)

Figure 3: Sensors registering with the learning by observa-
tion agent

To allow for a dynamic case definition, the sensory in-
formation created by the Perception module is initially an
empty set. As new sensors register with the agent, the sen-
sory information will contain values from those new sen-
sors. If there are currently Rt registered sensors at time t,
the sensory information will contain data from each of those
sensors:

S = {D1, D2, . . . , DRt}
Where the data Dj from each sensor contains both the sensor
value vj and the sensor information Ij :

Dj =< vj , Ij >
This means that if a new sensor registers at time t then

the cases observed at time t − 1 will be structurally differ-
ent from those observed at time t + 1. This can result in a
case base that is not homogeneous but contains cases with
different structures. During case retrieval, the sensory infor-
mation that is used as a query when searching the case base
may also have a different structure than some, or all, of the

cases. One possible way to avoid having differently struc-
tured cases would be to create a new case base every time
there was a hardware modification. However, this would re-
sult in losing any information stored in the previous case
base. For example, a robot used for search and rescue might
learn a base set of behaviours initially. Before being de-
ployed in an actual operation, it might need to be outfitted
with extra hardware, related to specific environment condi-
tions, and learn several additional behaviours. If the new
hardware does not directly influence the previously learnt
behaviours then it would be wasteful to empty the case base
and would require having all the behaviours observed again.

To facilitate calculating similarity between two sensory
information instances, which may be structurally different,
we use the similarity approach described in Algorithm 1.
The algorithm takes two sensory information instances, S1

and S2, one of which is usually the query used during case
retrieval and the other is the sensory information component
of a case from the case base. For each data item D1 in the
query sensory information (line 2), a data item D2 from the
same sensor is found in the second sensory information (line
3). The findMatch(. . . ) function returns a data item with
the same component name if one exists in the second sen-
sory information or NULL if it does not. If there was a
matching data item, the sensor value of each data item is
extracted (lines 5 and 6) along with the associated similarity
metric (line 7). That similarity metric is used to calculate the
similarity between the two sensor values and add it to a run-
ning total (line 8). If the two sensory information instances
had at least one common sensor, the average similarity of
the sensor values is returned (line 11).

Algorithm 1: Similarity Between Structurally Different
Instances
Input: query sensory information (S1), second sensory

information (S2)
Output: similarity between the two (sim)

Function: similarity(S1, S2) returns sim
1 comparisons = 0; totalSim = 0
2 foreach D1 ∈ S1 do
3 D2 = findMatch(D1, S2)
4 if D2 6= NULL then
5 V 1 = getV alue(D1)
6 V 2 = getV alue(D2)
7 simFunct← getSimilarity(D1)
8 totalSim = totalSim+ simFunct(V 1, V 2)
9 comparisons = comparisons+ 1

10 if comparisons == 0 then return 0
11 else return totalSim/comparisons

It should be noted that the algorithm, as presented, does
not penalize when sensors only exist in one sensory infor-
mation instance and not the other. This is done to treat the
missing sensor values as unknown values rather than values
that do not exist. The values do exist in the environment but
the agent does not have the necessary visibility to view them
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due to a lack of sensory hardware.

4 Case Study
We use a case study of a learning by observation agent adapt-
ing when new sensors and effectors are added to demonstrate
the applicability of our technique. Initially, the agent is not
aware of what type of robot it will be connected to and there-
fore has no registered sensors or effectors. At this point, the
agent is unable to perform any observation or learning be-
cause it has no way to interact with the environment. Later,
a robot (Figure 4) is connected to the agent. The robot that
is connected is the commercially available iRobot Create
(iRobot Corporation 2011).

Figure 4: The iRobot Create robot

When the robot is connected to the agent, each of the
robot’s sensors and effectors register with the agent. There
are six sensors, all of which produce binary values, that
register with the agent: an infrared detector, left and right
bumper sensors (used to detect when the robot runs into
something), and three wheel sensors (used to determine if
the wheels have pressure against them). The two effectors
that register are the drive system and the buzzer. The drive
system can be controlled by sending it one of five possible
directional values: forward, reverse, left, right and stop. The
buzzer can be used to make a beeping sound.

The agent observes and learns a simple obstacle tracking
behaviour. A power charging station is placed in the robot’s
environment and produces an infrared signal. If the infrared
signal can be detected, using the infrared sensor, the robot
will drive forward. However, if the infrared signal can not be
detected the robot turns in a clockwise direction until it can
detect the signal. When the robot reaches the power station,
as indicated by either of its bumper sensors, the robot will
stop.

A human expert was used to demonstrate the behaviour
and provided one demonstration of the described behaviour.
This resulted in 14 cases being observed. After observing
the expert, the agent was able to accurately reproduce the be-

haviour. To examine the performance, the learning by obser-
vation agent observed the expert demonstrate an additional
100 cases. These cases were used as testing cases and each
case had its sensor information given as input to the agent.
The action performed by the agent was then compared to the
action portion of the case to see if they matched. Our results
showed the agent was able to select the proper action 100%
of the time. The ability of the agent to learn this behaviour
is what we would expect given the small problem space of
the problem (only 26 states). While the behaviour learnt in
this case study was simple, it did show that the agent was
able to learn without any predetermined knowledge about
the task or what robotic hardware it would be controlling.
Our goal was not to learn difficult tasks but instead to show
the adaptive nature of our learning by observation agent.

The second part of our case study examines a hypotheti-
cal hardware upgrade to the robot. The robot is able to detect
when it bumps into objects, because of its bumper sensors,
but is not able to see when it is approaching a potential obsta-
cle. Initially, the agent observes and learns the behaviour as
it did in the first case study. To upgrade the robot we added a
sonar sensor that provides a continuous value that indicates
the distance to the nearest obstacle. When that sensor is con-
nected, it will register with the agent and all further sensor
readings will contain the sonar value. In addition to the hard-
ware upgrade, the required behaviour of the robot was also
modified slightly. While the majority of the behaviour is the
same, the robot now stops if it is about to make contact with
an object (as indicated by the sonar sensor).

The expert, when demonstrating this behaviour, did not
demonstrate the entire behaviour but only the new aspects
of it. The case base that was generated in the first case
study was kept and an additional 6 cases, related to stop-
ping when the sonar sensor indicates an obstacle was close,
were added. Even with a change in the structure of cases
and differently structured cases in the same case base, the
agent was able to learn this behaviour as well. Although, in
our example, relearning the entire behaviour might not have
taken a significant amount of time, being able to keep and
use older cases would be a significant benefit when learning
more complex behaviours. More importantly, being able to
keep older cases allows an agent to perform life-long learn-
ing even when its hardware changes over time.

For the final part of our case study, we examined teach-
ing the agent a completely new behaviour. Instead of adding
new cases to an existing case base, the learning by obser-
vation agent created an entirely new case base. The new
case base was generated while observing the human expert
demonstrate an obstacle avoidance behaviour. The robot was
controlled to drive forward until it detected, using its sonar
sensor, that there was a obstacle approximately 30cm away
from it. When an obstacle was detected, it would turn to the
left and continue its previous behaviour of driving forward.
As with the previous two parts of the case study, the learn-
ing by observation agent was able to accurately learn this
behaviour. This shows that the agent is able to learn two dif-
ferent types of tasks, driving to a fixed location and obstacle
avoidance, without any prior knowledge of the tasks or what
robotic hardware it would have available to it.
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5 Related Work

The majority of learning by observation systems are de-
signed to operate in a single domain. These include sim-
ulated domains like Tetris (Romdhane and Lamontagne
2008), chess (Flinter and Keane 1995), poker (Rubin and
Watson 2010), Space Invaders (Fagan and Cunningham
2003), first-person shooter games (Thurau and Bauckhage
2003), domination games (Gillespie et al. 2010), and virtual
agent control (Dinerstein et al. 2008). Others are physical
domains including robotic arm control (Atkeson and Schaal
1997), robotic soccer (Grollman and Jenkins 2007) and un-
manned helicopter control (Coates, Abbeel, and Ng 2008).
All of these approaches have prior knowledge of what sen-
sors and effectors will be available and use this knowledge
to guide their training. Since all observations have a homo-
geneous form, the approaches that use case-based reason-
ing (Fagan and Cunningham 2003; Flinter and Keane 1995;
Gillespie et al. 2010; Romdhane and Lamontagne 2008;
Rubin and Watson 2010) use a static case structure whereas
the approaches that use other learning methods (Atkeson and
Schaal 1997; Coates, Abbeel, and Ng 2008; Dinerstein et al.
2008; Grollman and Jenkins 2007; Thurau and Bauckhage
2003) train using fixed-length feature vectors. Our own ap-
proach differs by using a dynamic case representation that
does not require defining the structure of observations in ad-
vance.

The two learning by observation systems that have been
shown to work in multiple domains and learn from mul-
tiple experts, both of which use case-based reasoning, are
the works of Floyd and Esfandiari (2011), and Ontañón and
Ram (2011). While both of these approaches are designed
to learn in multiple domain, they still require the agents to
be modified and told of the available sensors before being
deployed in a new environment.

Case-based reasoning has been used for a variety of
robotic control systems (Fox 2001; Ros et al. 2006; Supic
and Ribaric 2001). Unlike our own work, these systems are
designed to control a specific robot and are therefore not able
to adapt when the sensors or effectors are changed. Also,
each of these works use case bases that are expertly crafted
whereas all cases in our system are learnt by observing an
expert.

There have been several case-based reasoning systems
that use unstructured or weakly-structured cases (Bergmann,
Kolodner, and Plaza 2005). These types of cases are partic-
ularly common in textual case-based reasoning where the
case problem or solution contain unformatted text (Racine
and Yang 1997; Recio-Garcı́a et al. 2005). Similarly, there
has also been work on object-oriented case representations
(Bergmann and Stahl 1998). These systems use a set of pre-
defined similarity metrics when comparing cases. In our ap-
proach, the similarity metrics used to compare cases do not
need to be defined in advance and different cases in a case
base can have different methods for similarity calculation.
This allows for data to be added to a case even if that type
of data was not anticipated when the case-based reasoning
system was originally designed.

6 Conclusions

In this paper we have described an approach for creating
case-based learning by observation agents that does not re-
quire reprogramming the agent when the available sensors
or effectors are changed. This approach, which was moti-
vated by how animal brains respond to changing sensors,
does not use a fixed case representation but instead dynami-
cally modifies the structure of cases as senors and effectors
are added. When a new piece of hardware is added to a
robot, the hardware registers with the case-based reasoning
agent and provides any necessary information about itself.
This is particularly beneficial in domains, like search and
rescue, where the necessary hardware configuration of the
robot can not be anticipated in advance.

We presented a case study where an agent is not aware
of the robot it will control or what task it will learn. Our
results showed that, when the robot was connected to the
agent, the agent was able to modify the case structure it used
for reasoning. The agent was then able to observe a simple
behaviour, demonstrated by a human, and learn to perform
that behaviour. As a second part of our study, an additional
sensor was added and the agent was also able to adapt and
utilize the new sensor. Both old cases, from the initial robot
configuration, and new cases, generated by observing the
repurposed robot, were able to be stored in a single case base
and used by the agent even though they were structurally
different. For the final part of our case study, the agent was
trained to perform an entirely new behaviour using its newly
added hardware.

While our approach removes the need to reprogram the
agent itself, it does not completely remove the program-
ming requirement. Each sensor and effector needs to be pro-
grammed with information about itself so it can register with
the case-based reasoning agent. If a single sensor is used in
multiple robot configurations, the sensor only needs to be
programmed once whereas traditional learning by observa-
tion systems would requiring modifying the agent for every
configuration. Even if each sensor or effector is only used
once, the effort required to program each sensor would likely
be less than modifying the agent itself. An example of this
would be adding a sensor and later removing it. In our de-
sign, the registration and deregistration would handle mod-
ifying the agent whereas traditional learning by observation
systems would require modifying the agent twice (once for
addition and once for deletion). While this paper has looked
exclusively at robotic domains, our techniques could also be
applied to simulated environments (although repurposing a
simulated agent might not have many practical applications).

Our future work will look further at the idea of life-long
learning and how an agent can update legacy cases as its
hardware configuration changes. More specifically, we wish
to examine how cases that contain features from sensors that
are no longer connected to the agent can continue to be used
by learning if there are any similar sensors that could be
used instead. Also, we will look at how adding and remov-
ing hardware impacts the learning rate of more complex be-
haviours.
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