
Graphical Display of Search Trees for Transparent Robot Programming

Joaquin A. Pockels
Computer Engineering Department

Polytechnic University of Puerto Rico
San Juan, PR 00918

joaquin.pockels@gmail.com

Ashwin Iyengar
304 Le Roi Road

Pittsburgh, PA 15208
pghburger@gmail.com

David S. Touretzky
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

dst@cs.cmu.edu

Abstract

Search algorithms such as Rapidly-exploring Random
Trees (RRTs) are common in robot programming. In-
cluding graphical representations of the output of these
algorithms in a robotics framework can make the algo-
rithms more accessible to students, and can also help
programmers analyze and account for unexpected re-
sults. For this project, we used the Tekkotsu open
source robot programming framework, available at
Tekkotsu.org. We extended Tekkotsu’s graphical user
interface for displaying vision data and maps to also
display the output of an RRT search. We created several
demos using two types of searches: one from a naviga-
tion path planner, and one from an arm path planner. In
some cases the search had no solution, and the graphical
output helped to illustrate why. This confirms the util-
ity of the RRT visualization for explaining unexpected
search results. We expect that this tool will also con-
tribute to improved student understanding of the search
algorithm.

Introduction
The Rapidly-Exploring Random Tree (RRT) is a random-
ized algorithm used for single-query path planning prob-
lems, designed for efficiently searching non-convex high-
dimensional spaces (LaValle 1998). On mobile robots with
manipulators and sensors, these algorithms are used for
complex path and motion planning problems. This in-
volves randomly searching the system configuration space
for collision-free paths while satisfying all the imposed con-
straints. Depending on the complexity of both the configu-
ration space and the constraints, RRT searches may fail to
find a solution, or may produce unexpected results. Finding
the causes of such problems and then solving them could
potentially be time consuming.

In this project we used Tekkotsu (see Tekkotsu.org), a
modern, open source robot programming framework that
uses RRT search for planning. The platform also includes
a tool for displaying vision data and maps. We explore
the possibility of helping programmers explain unexpected
search results by extending this tool to graphically display
the trees generated in the RRT search. This may also help
students better understand how the algorithm works.

Copyright c© 2012, Association for the Advancement of Artificial

Framework and The Crew
Tekkotsu provides an intuitive set of primitives for percep-
tion, manipulation and attention control (Tira-Thompson
and Touretzky 2011). The framework includes a group of
interacting software components designed for high-level be-
havior programming called the “Crew” (Touretzky and Tira-
Thompson 2010). Three of the Crew members are the Pilot,
the Grasper, and the MapBuilder. The Pilot is responsible
for localization, navigation and motion. The Grasper con-
trols manipulation and arm path planning. The MapBuilder
is responsible for vision and for creating Tekkotsu’s internal
representation of the world. It interacts with the Pilot and
the Grasper via references to maps and shapes.

The Pilot and the Grasper both use a generic RRT planner
based on the RRT-Connect algorithm. This modified ver-
sion of the original RRT algorithm incrementally builds two
RRTs, one rooted at the start configuration and the other
at the goal, until the two trees meet (Kuffner and LaValle
2000). When this happens, a solution path is extracted by
tracing the path from the meeting point back to the root of
each tree. Finally, a smoothing operation is applied to sim-
plify the resulting path. A user-specified limit on the maxi-
mum number of iterations allows the search to terminate for
unsolvable problems, but may also cause some solutions to
be missed.

The SketchGUI and Extensions
Tekkotsu includes a facility called the SketchGUI (refer to
Figure 1) for visualizing a variety of information structures,
including intermediate results and outputs of the vision sys-
tem, in a camera-centric space, a robot-centered local map,
and a global world map used for navigation (Touretzky et
al. 2007). As seen in Figure 1, the SketchGUI displays both
vision data (as pixel arrays) and maps represented as simple
geometrical objects (points, lines, ellipses, polygons, etc.).
As an example, the robot’s location and heading are repre-
sented on the world map by an isosceles triangle. In addi-
tion, particles from the particle filter the Pilot uses for local-
ization can be displayed as shapes on the world map (Watson
and Touretzky 2011). We extended this tool by adding a new
type of graphical object for efficiently representing complex

Intelligence (www.aaai.org). All rights reserved.

504

Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference



Figure 1: SketchGUI, ControllerGUI and world shape space panel. The ControllerGUI (left) is Tekkotsu’s principal interface
for controlling a robot. It allows the user to run system or user-defined behaviors, directly control the robot’s effectors, and
launch the SketchGUI. The SketchGUI (center) is used to view any of three coordinate spaces or maps, called Camera Space,
Local Space and World Space (C, L, W buttons in the ControllerGUI). The figure shows the contents of the world shape space
as a list of components. The world shape space (right) is where every geometric component is rendered.

structures, such as search trees, composed from simpler ge-
ometric primitives. We implemented a general drawing fa-
cility that can display points, lines, polygons, ellipses, and
text objects in the selected coordinate space.

Applications
In this paper we show two applications of the facility for vi-
sualizing the results of RRT searches. In the first application,
2D navigation path planning, we use a set of lines to draw
both the start and goal search trees directly onto the robot’s
world map, following the RRT-Connect algorithm as shown
in Figure 2. As the robot executes the path, the Pilot updates
the robot’s position and the localization particle states on the
world map, so deviations from the planned path are visually
apparent.

In the second application, path planning for a three
degree-of-freedom planar arm, the higher dimensional
search space precludes our drawing the search tree directly.
Instead, nodes in the tree are visualized by drawing the cor-
responding arm configuration, with each link of the arm de-
picted by its rectangular bounding box. The bounding boxes
are automatically extracted from the robot’s kinematic de-
scription. For easy interpretation, the two search trees are
displayed in different colors, using the same color conven-
tion as the 2D navigational path planner. The varying colors
are shown in Figure 5. These arm configurations are all su-
perimposed on the world map so their relationships to the
robot’s body and environmental obstacles are apparent.

Demos and Robots
We created four demos to show the effectiveness of these vi-
sualizations. They varied in the complexity of the simulated
environments and the difficulty of the search task. (The two
are not equivalent: a narrow corridor is a simple environ-
ment but can be difficult to navigate using a random search

algorithm.) Demos 1 through 3 involve the Pilot’s naviga-
tion path planner, while Demo 4 uses the Grasper’s arm path
planner. To solve the problems we used two different robots
designed at Carnegie Mellon University and fully supported
in the Tekkotsu software framework:

• The Calliope Robot, an iRobot Create based robot capable
of vision, navigation and manipulation (Touretzky et al.
2010).

• The planar Hand-Eye System, which includes a three de-
gree of freedom planar arm and a vision system (Nickens
et al. 2009).

Each demo was run several times, producing different re-
sults due to the random nature of RRT search. We used the
graphical display of the search trees to analyze the outcomes
and determine the reason why some searches failed.

The Demos
Demo 1 – Single-Exit Box for a Navigation Path
Planning Problem
This demo uses a relatively simple path planning problem to
illustrate the basic idea of the RRT-Connect algorithm. The
robot starts out in the south end of a box-shaped room with a
narrow doorway to the north. The walls of the box are obsta-
cles that must be avoided. The goal location is a point to the
south of the box, in the opposite direction of the exit. See
Figure 2. A greedy algorithm that simply headed toward the
goal would be trapped at the bottom of the box. A wavefront
algorithm can solve this problem but would require a lengthy
search to reach the goal. The RRT-connect solution is effi-
cient and quick. To prevent the search trees from expanding
infinitely, we limited the search space to a region slightly
larger than the largest object in the world map. (We must
provide some extra space for the robot to have enough room
to maneuver around the outside of the box, but we don’t

505



Figure 2: Demo 1. A simple navigation path planning prob-
lem: finding a collision-free path out of the box to the goal
location shown as a red circle near the bottom of the figure.
One search tree (shown in black) is grown from the robot’s
start point, and the other (shown in green) from the goal lo-
cation. The trees connect just outside the doorway at the top
of box. The final extracted and smoothed path is shown in
blue.

want it wandering off into territory we know is empty.) Ex-
amining the resulting search tree, one can easily see how the
solution to the task was found.

Demo 2 - Nested Single-Exit Boxes for a Harder
Path Planning Problem

This demo illustrates what happens when the navigation path
planner is given a more difficult problem. We nested two
single-exit boxes and had their doorways point in opposite
directions. In the first attempts, the RRT would rarely find
a solution. By analyzing the graphical display of the search
output (see the left half of Figure 3), we found that the search
trees were successfully permeating the environment, passing
through the doorways and proceeding along the corridors.
This shows that enough collision-free space is available for
the creation of new search points. But the trees were failing
to meet. We determined that this was caused by too strict
a limit on the number of iterations (4,000 by default). We
made this limit user-modifiable so that it could be raised for
harder problems, but kept small to allow the quick rejec-
tion of simple but unsolvable problems. When Demo 2 was
retested with a limit of 10,000 iterations, the RRT always
found a solution. A typical solution is shown in the right
half of Figure 3. The shape of the solution varied depending
on the location of the connected trees, which varied from
one run to the next. So, for example, on some runs the solu-
tion involved a left turn after exiting the first box, while on
other runs it involved a right turn.

Demo 3 - Nested Single-Exit Boxes with Narrow
Corridors
This demo results in a path planning failure for reasons that
are not visually obvious. We slightly modified the Demo
2 environment by narrowing down the vertical corridors of
the nested boxes to the collision-free limits. This causes the
navigation path planner to fail most of the time. The source
of the problem is unclear when examining the environment
alone. But when visualizing the search tree superimposed on
the environment, the difficulty is revealed, as seen in Figure
4. The failure is caused by the limited collision-free space
available in the narrow corridor, resulting in a scarcity of tar-
get points there. Increasing the number of iterations would
be of little use, because only a narrow band of target points
can produce progress through the corridors, and these are
unlikely to be found by random search. Widening the verti-
cal corridors is the appropriate remedy.

Demo 4 - Arm Configuration Setup for an Arm
Path Planning Problem
In this demo, shown in Figures 5 and 6, Tekkotsu’s arm path
planner tries to plan a path for the robot’s arm to move from
the start configuration (shown in red) to the goal configu-
ration (shown in magenta) while avoiding obstacles. The
obstacles are represented in the world map as three small
ellipses. A successful solution requires the arm to fold up
by bending at the elbow, then sweep past the obstacles, and
then unfold.

Since this is a higher dimensional search space, we cannot
lay out the search tree in the plane. Instead we display each
node by plotting the arm configuration it represents, taking
the joint angles from the node and the fixed link lengths from
the arm’s kinematic description. This approach makes the
proximity of a node to a collision visually obvious, at the
cost of not being able to show the parent/child relationships
between nodes.

As in the case of the navigation planning graphical dis-
play, visualizing the search allows the user to determine the
cause of failures in non-obvious situations, such as when
there is insufficient room for the arm to maneuver between
two obstacles, or when the path around an obstacle would
require one of the joints to exceed its limits of travel. With
this application the user can also develop a better under-
standing of the arm’s behavior, for example, by analyzing
the frequency of similar configurations visible in the search
space. However, depending on the problem’s complexity,
too many plotted arm configurations may occlude our vision
of the search space, making it difficult to interpret. To solve
this, we implemented a secondary display option to show
only the smoothed intermediate arm configuration and both
starting and ending configurations (Figure 6). In the problem
shown here, the RRT-Connect algorithm found a solution in
every run.

Use in Teaching
To determine the effectiveness of this tool in a learning en-
vironment, we showed it to a group of four high school stu-
dents in Puerto Rico participating in a Saturday enrichment

506



Figure 3: Demo 2. The left image shows the algorithm failing to solve a more difficult navigation path planning problem.
Examining the graphical display lets the user determine the reason for the failure. On the right, a typical solution to the
problem, found after raising the iteration limit.

Figure 4: Demo 3. Failed navigation path planning problem.
By analyzing the output of this search, specifically the lack
of target points found within the vertical corridors, the user
can infer that the limited space is impeding the creation of
collision-free points.

program where they were learning Tekkotsu programming.
The graphical display was used to augment a lesson on RRT
path planning. We started with Demo 1 because students
were already familiar with robot navigation. Seeing the two
search trees connect in the graphical display made it easy
for the students to understand the algorithm. They were also
shown Demo 4 to provide a different perspective on RRT
search. It was simple enough that the search was under-
standable even though the students had not yet studied kine-

Figure 5: Demo 4. Solved arm path planning problem. The
starting configuration is displayed in red and the goal con-
figuration in magenta. An intermediate configuration on the
solution path is shown in blue. A subset of nodes from each
search tree are shown in black (start) and green (goal).

matics. The students were able to assimilate the lesson.
We are planning a more extensive test in the Spring 2012

semester at Carnegie Mellon, where undergraduates and MS
students in a Cognitive Robotics course will be asked to ex-
periment with the RRT-Connect algorithm and produce vi-

507



Figure 6: Demo 4. Unobstructed view of the solved arm path
planning problem. The starting configuration is displayed in
red and the goal configuration in magenta. An intermediate
configuration on the solution path is shown in blue.

sualizations of their searches.

Conclusion
The primary innovation in this work is the integration of
graphically displayed search trees with a robot-maintained
description of the environment, including obstacle locations,
the robot’s own position and heading, and localization par-
ticle states. In some cases, such as Figures 3 and 4, the
RRT-Connect search found no solution, and the graphical
representations offered explanation. For example, if there
were too few iterations, as in Demo 2, or too many unavoid-
able collisions, as in Demo 3, the trees would never meet.
Visualization also helped explain some decisions made by
the planner to go right or left, caused by the randomness of
the RRT search. We have preliminary indications that be-
ginning robotics programmers can use these visualizations
to develop a better understanding of path planning even if
they are not familiar with all the details of the RRT-Connect
algorithm. These displays have certainly been useful in our
own work.

Future Work
We don’t believe we have exhausted all the potential appli-
cations for this tool. For example, in a game-playing appli-
cation, possible moves might be visualized directly on the
game board. If the robot is playing chess, it could indicate
the most highly-rated moves it is considering by drawing
arrows from each piece’s starting position to its ending po-
sition on the board in the world map. Color could be used to
indicate the relative rankings of the candidates.

Acknowledgments
We thank Owen Watson, Ethan Tira-Thompson and Ramon
Cardona for helpful discussions. This work was supported in
part by the National Science Foundation’s Broadening Par-
ticipation in Computing Program through awards 1042322
(ARTSI Alliance) and 0940522 (CCCE Alliance).

References
Kuffner, J. J., and LaValle, S. M. 2000. RRT-connect:
an efficient approach to single-query path planning. In
ICRA’2000.
LaValle, S. M. 1998. Rapidly-exploring random trees: A
new tool for path planning. TR 98-11, Computer Science
Dept., Iowa State University.
Nickens, G. V.; Tira-Thompson, E. J.; Humphries, T.; and
Touretzky, D. S. 2009. An inexpensive hand-eye system for
undergraduate robotics instruction. 423–427. Proceedings
of the Fortieth SIGCSE Technical Symposium on Computer
Science Education, Chattanooga, TN.
Tira-Thompson, E. J., and Touretzky, D. S. 2011. The
Tekkots robotics development environment. In Proceedings
of ICRA-2011.
Touretzky, D. S., and Tira-Thompson, E. J. 2010. The
Tekkotsu “crew”: Teaching robot programming at a higher
level. In Proceedings of EAAI-10: The First Symposium on
Educational Advances in Artificial Intelligence. Menlo Park,
CA: AAAI Press.
Touretzky, D. S.; Halelamien, N. S.; Tira-Thompson, E. J.;
Wales, J. J.; and Usui, K. 2007. Dual-coding represen-
tations for robot vision in Tekkotsu. Autonomous Robots
22(4):425–435.
Touretzky, D. S.; Watson, O.; Allen, C. S.; and Russell, R.
2010. Calliope: Mobile manipulation from commodity com-
ponents. In Thomaz, A., and Anderson, M., eds., Papers
from the 2010 AAAI Robot Workshop. Technical report WS-
10-09. Menlo Park, CA: AAAI Press.
Watson, O., and Touretzky, D. S. 2011. Navigating with the
Tekkotsu Pilot. In Proceedings of FLAIRS-24. AAAI Press.

508




