
Evolving Kernel Functions
with Particle Swarms and Genetic Programming

Michael Schuh and Rafal Angryk and John Sheppard
Department of Computer Science

Montana State University
Bozeman, MT 59717

{michael.schuh, angryk, john.sheppard}@cs.montana.edu

Abstract

The Support Vector Machine has gained significant pop-
ularity over recent years as a kernel-based supervised
learning technique. However, choosing the appropriate
kernel function and its associated parameters is not a
trivial task. The kernel is often chosen from several
widely-used and general-purpose functions, and the pa-
rameters are then empirically tuned for the best results
on a specific data set. This paper explores the use of
Particle Swarm Optimization and Genetic Programming
as evolutionary approaches to evolve effective kernel
functions for a given dataset. Rather than using expert
knowledge, we evolve kernel functions without human-
guided knowledge or intuition. Our results show con-
sistently better SVM performance with evolved kernels
over a variety of traditional kernels on several datasets.

Introducton
The foundation of Support Vector Machines (SVMs) was
first developed by Vladimir Vapnik nearly half a century
ago. With further advancements and the incorporation of
kernel functions, SVMs were popularized in statistical learn-
ing theory by (Boser, Guyon, and Vapnik 1992) and (Vapnik
1995). SVMs have been found to be quite effective at linear
and non-linear classification, providing yet another alterna-
tive for machine learning and data mining tasks.

However, the kernel choice is crucial, as it directly af-
fects the SVM performance. It has been shown that clas-
sification accuracy among even the three most widely-used
kernels (polynomial, radial-basis, and sigmoidal) can vary
significantly based on a given dataset (Howley and Mad-
den 2005). This raises the questions: what kernel should be
used when, and with what parameters? Often, the kernel can
contain both implicit and explicit domain knowledge, lead-
ing to better accuracy, but this requires expert knowledge
in the domain of the dataset, as well as the custom creation
of a unique kernel function for each task. Moreover, most
kernel functions contain several interdependent user-defined
parameters that need to be adjusted for optimal performance.
It would instead be much more convenient to automatically
generate a well-suited kernel function for the given data.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Evolutionary approaches are commonly used on prob-
lems which are difficult to approach in a brute force manner.
These problems often have loosely formed requirements and
focus mostly on the end results through a specific fitness
function that determines the effectiveness of a given solu-
tion. Evolutionary approaches are based on the biological
theories of adaptation and natural selection, and although
there is a huge variance in adherence to these principles
among algorithms, most involve some sort of fitness-based
reproduction between members of a population over a num-
ber of generations.

We develop a Particle Swarm Optimization (PSO) and
Genetic Programming (GP) framework for evolving kernel
functions with the goal of achieving higher supervised clas-
sification accuracy than general-purpose kernels. Previous
works have shown some positive results using GP and PSO,
and we further investigate these approaches through a di-
rect comparative evaluation over a variety of kernels and
data. Obviously our framework incurs a higher training cost
than just using an existing kernel, but just like normal SVM
training and testing, the majority of the time is spent train-
ing, whereas testing is a relatively fast operation on the pre-
computed SVM model. Therefore, depending on the appli-
cation and domain, the extensive training cost may be worth-
while for a better kernel. Also, manually tuning kernel pa-
rameters could still lead to similar training costs over the
repeated trail-and-error analysis.

The ability to evolve highly effective kernels could greatly
benefit the machine learning and data mining communi-
ties. Existing applications can easily replace a kernel after
a more effective kernel has been discovered through our
approach. The evolutionary framework could also improve
the basic usage of SVMs on unfamiliar datasets through as-
sisted exploration of kernel functions and associated param-
eters, rather than performing countless experiments to ana-
lyze these options manually.

The rest of the paper is organized as follows. First the
Background section explains concepts necessary for under-
standing the key points of this research and an overview
of related work using GP and PSO to create kernels. Then
we present and discuss our own Implementation details, fol-
lowed by Experiments and a discussion of some specific
results, and finally we finish with Conclusions and Future
Work.

80

Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference

Background
Support Vector Machines
The goal of an SVM is to separate data instances into two
classes using examples of each from the training data to de-
fine the separating hyperplane. The subset of data instances
that actually define the hyperplane are called the “support
vectors”, and the margin is defined as the distance between
the hyperplane and the nearest support vector. By maximiz-
ing this separation, it is believed that the SVM better gen-
eralizes to unseen data instances, while also mitigating the
effects of noisy data or over-training. Error is minimized by
maximizing the margin, and the hyperplane is defined as the
center line of the separating space, creating equivalent mar-
gins for each class. Performance is most commonly evalu-
ated as classification accuracy and/or margin width. Given
two SVMs with identical classification accuracy, one would
prefer to choose the SVM with a larger margin width, and
vice versa. This trade-off is usually incorporated into the
training of an SVM.

It is often the case that real world datasets cannot be lin-
early separated into disjoint classes. However, by transform-
ing the data into a higher dimension (using a kernel func-
tion), there more likely exists a linear hyperplane in this new
space. When this hyperplane is mapped back to the original
data space it becomes a non-linear classification model.

Particle Swarm Optimization
Particle Swarm Optimization (PSO) is an effective and flexi-
ble technique to explore the search space of a problem. This
is partly due to a basic framework that is intuitively sim-
ple yet highly extensible. The PSO was first modeled in by
(Kennedy and Eberhart 1995) as a simulation of simple so-
cial interactions, with relation to flocking birds searching for
corn. It contained a group of particles, representing the pop-
ulation, which were randomly placed in the search (or solu-
tion) space. Over generations, each particle attempts to move
towards an optimum based on personal and neighborhood
knowledge of previous best positions. The particle update
equations used are given below:

vi = ωvi +R(φ1)⊗ (pi − xi) +R(φ2)⊗ (pg − xi) (1)

xi = xi + vi (2)
Each particle i of a PSO contains three D-dimensional

vectors: the current position xi, the current velocity vi, and
the previous best position pi, where D is the dimension of
the search space. There is also a best position vector pg , for
each neighborhood which stores the best position of any par-
ticle within it. The neighborhood is often defined as the en-
tire population, so pg can also be referred to as the global
best position.

For each generation, the fitness of each particle is cal-
culated, and the personal and neighborhood best positions
are updated. Then each particle’s velocity and position is
updated by the equations 1 and 2, where R(φ1) creates
a vector of random real numbers between 0 and φ1 that
is component-wise multiplied with the difference vector
(pi − xi) (same for φ2). The variables φ1 and φ2 are the

magnitudes for attraction towards the two difference vectors
(personal and neighborhood respectively) and are commonly
set equal. The inertia weight is defined by ω and acts like a
friction variable for the particles trying to move around the
search space. Termination criteria for PSO can be a suffi-
ciently good fitness, a set number of generations, or a con-
vergence factor such as a threshold for minimum population
change.

Genetic Programming
Genetic Programming was first developed as an evolutionary
approach to generating computer programs, initially coined
in by (Koza 1992) who used it to evolve LISP programs. In
our context, we evolve parse trees containing input data, ker-
nel functions, and mathematical operators, evaluated in post-
order fashion. The initial population members (parse trees)
are randomly created and genetic information is propagated
over generations by standard reproduction techniques.

After parents are selected for reproduction, the crossover
function attempts to create diversity and escape local optima
by swapping randomly chosen subtrees of each new popula-
tion member. Unfortunately, a phenomenon known as code
bloat can cause these trees to grow very large and com-
plex without gaining any significant improvements. These
useless sections of trees are termed introns, and a common
approach to combat code bloat involves assigning a fitness
penalty to larger trees. Therefore, if two trees have the same
fitness, the smaller tree should be preferred. We also enforce
a maximum tree depth to avoid wasted computation time on
something which will ultimately (by penalty) have a low fit-
ness. Similar to PSO, termination critiria could be a set num-
ber of generations to run, a sufficiently good fitness level, or
a convergence factor such as a stagnated population change.

Other Related Works
There has been an abundance of research done with SVMs
in the past 10 years. More recently, evolutionary approaches
have been explored to aide the training of SVMs. Most of
these are split into two general approaches: using genetic
programming (GP) to evolve kernel functions, or using par-
ticle swarm optimization (PSO) to tune pre-defined kernel
parameters. To our knowledge, this is the first work that ef-
fectively combines the two methods together and presents
a comparative analysis along with an alternative brute-force
solution.

The first proposed genetic programming solution to
evolving a kernel was by (Howley and Madden 2005).
Named the Genetic Kernel (GK) SVM, the algorithm com-
putes the fitness of each population member based on train-
ing an SVM with the custom kernel. The fittest members are
selected for reproduction, and the new population is again
evaluated with SVMs. This process continues iteratively un-
til convergence has been achieved. The combination of GP
and the SVM can lead to very high computational overhead,
however, results showed that the GK SVM performed better
than any traditional kernel across several datasets (although
importantly, not always the best for every dataset simultane-
ously). A similar GP approach was proposed in 2007, and
compared against an SVM using grid search to fine tune

81

the parameters for the traditional kernels, results were again
promising (Sullivan and Luke 2007). Both papers used a
fitness based strictly on classification accuracy. The work
of (Diosan, Rogozan, and Pecuchet 2007) also explored a
hybrid GP SVM, but used basic normalization functions
(Euclidean, Gaussian, and Scalar Product) instead of the tra-
ditional kernels, as well as “element-wise operators” which
transformed the data while maintaining the same dimension.
Although these functions differ slightly, the concepts are the
same. They also directly addressed the issue of tree bloat
and took corrective actions against it, resulting in evolved
kernels with still rather simple, human-understandable struc-
tures.

Other works (Feres de Souza et al. 2006) and (Friedrichs
and Igel 2005) have applied PSOs to optimize the parame-
ters of traditional kernel functions. In 2009, (Lu, Chen, and
Huo 2009) proposed an interesting application of PSOs to
not only optimize the kernel parameters, but also the compo-
sition of the kernel function itself. The kernel was explicitly
defined as: K1 ◦K2 ◦K3, where K1−3 are general-purpose
kernels (polynomial, radial-basis, and sigmoidal), and each
◦ is an operator (addition or multiplication). Therefore, the
PSO is trying to optimize the set of parameters for all three
kernels, as well as the two operators between the kernels si-
multaneously. Also, fitness here is based on margin size and
not classification accuracy. Results were compared against a
genetic algorithm (GA) approach and the standard kernels,
and tend to show a more generalized SVM with similar ac-
curacy when using their PSO technique.

Implementation
There are many existing software applications offering SVM
classification. One of the most popular is Weka (Hall et
al. 2009), an open-source collection of machine learning
and data mining algorithms developed by the University of
Waikato in New Zealand. We use Weka’s default SVM im-
plementation based on John C. Platt’s sequential minimal
optimization algorithm (SMO) (Hall et al. 2009), and then
we modified the open source codebase to dynamically set
and evaluate a unique kernel function for each population
member during run time.

We developed a comprehensive framework containing
PSO, GP, and Grid Search implementations based loosely
on the combined concepts presented in (Lu, Chen, and Huo
2009), (Sullivan and Luke 2007), and (Howley and Madden
2005). We also reuse Weka’s built in Polynomial and Radial-
Basis Function (RBF) kernels and include a wide variety of
other kernel functions common in literature and very well
presented in (Souza 2010). Refer to Table 1 for a complete
list of our stand-alone kernel functions. When used in PSO
and GP, each kernel is also given a multiplier parameter m
to scale its individual result and evolve an overall weighting
strategy that (de-)emphasizes the more (less) effective kernel
functions.

The PSO implementation was based on the stan-
dard framework described in (Poli, Kennedy, and
Blackwell 2007), and the search space consists of
all the parameters of the custom kernel. For exam-
ple, a kernel defined as K = K0 + K1 + K2 + K3

Table 1: The list of kernel functions used by our PSO and
GP framework, with IDs listed for easier reference.

ID Kernel Name Equation K(xi, xj) =

0 Linear ((xi · xj) + c)

1 Polynomial (a(xi · xj) + c)d

2 RBF (Weka) exp
[
−D(xi,xj)

2r2

]
3 Sigmoid tanh(a(xi · xj) + c)

4 RBF (Alternative) exp
[
−g ∗ ||xi − xj ||2

]
5 Rational Quadratic 1− ||xi−xj ||2

||xi−xj ||2+c

6 MultiQuadric
√
||xi − xj ||2 + c2

7 Inverse Multiquadric 1√
||xi−xj ||2+c2

8 Log − log(||xi − xj ||d + 1)

9 Cauchy 1

1+
||xi−xj ||2

s

10 Histogram Intersection
∑n

m=1 min(|xi,m|a, |xj,m|b)

where K0−3 are the pre-defined stand-alone kernels,
would have a particle vector of eleven dimensions:
mK0 , cK0 ,mK1 , aK1 , cK1 , dK1 ,mK2 , rK2 ,mK3 , aK3 , cK3 ,
where themKi parameters are the included multipliers. This
is similar to the work of (Lu, Chen, and Huo 2009), how-
ever, they also add the operators between kernel functions
to the parameter vector. Discretization of these additional
dimensions should be handled carefully because changing
the operators between the kernels could mean completely
different optimal parameter settings, significantly negating
previous swarm exploration, direction, and momentum.
Additionally, since our underlying structure of PSO kernels
is also represented as parse trees, we have much greater
flexibility of defining the custom kernel structure (and
parameters) to be optimized. We can easily explore different
combinations of operators and kernels and automaticaly
apply the PSO framework to tune any given custom kernel.

The GP implementation extends naturally from the PSO
enhancements, where now each population member is itself
a parse tree representing the unique structure and parameters
of a custom kernel function. Each internal node is an oper-
ator (addition or multiplication) and each leaf contains one
of the defined kernel functions and its associated parame-
ters. This is much broader than (Howley and Madden 2005),
who use a combination of vector and scalar operators and ex-
plicit dot-product evaluation of a symmetric parse tree. Over
each generation, each population member’s kernel function
is trained and tested on the dataset, and awarded a fitness
result equal to the tested classification accuracy. To combat
code bloat, an empirically-derived penalty of 2% was sub-
tracted from the fitness for every additional level the parse
tree contained beyond a given threshold.

Tournament-based selection (with replacement) is per-
formed with a tournament size of two, resulting in a group of

82

parents which when paired together, produce two new chil-
dren. Before the children are added to the next generation’s
population, with a specified probability of 80%, crossover
will swap a randomly picked subtree between each child.
If a swap results in a tree being deeper than the allowed
max depth, the first kernel found in the over-sized subtree,
through a depth-first search, is moved up to the lowest al-
lowed leaf position. Similar to original GP implementations
in literature, we do not use mutation, unlike the 20% proba-
bility used by (Howley and Madden 2005). Population mem-
bers’ kernel trees are randomly created upon population ini-
tialization, where each leaf node is a randomly selected ker-
nel and then based on the kernel selected, the appropriate
parameters are also randomly generated.

Experiments
We perform all experiments on three datasets; two from
the popular University of California Irvine (UCI) machine
learning repository (Frank and Asuncion 2010), and one real
world dataset of NASA solar images created from previous
work (Schuh et al. 2012). In our own dataset (referred to as
Dataset 3), each data instance contains a set of ten numerical
features (dimensions) representing an image segment and
a class label indicating whether or not the image segment
contains a solar filament (binary class). The dataset contains
many thousands of instances, so we limit its size to a man-
ageable 1342 total instances – with balanced classes. There
are many details about the creation of this data set outside
of the scope of this paper, so we refer the reader to (Schuh
et al. 2012) for a comprehensive explanation. We chose two
UCI datasets that were also used by closely related works.
Dataset 1 is the Pima Indians Diabetes dataset (9 dimen-
sions, 768 instances, 2 classes) used by (Lu, Chen, and Huo
2009), and Dataset 2 is the Wisconsin Breast Cancer Diag-
nostic dataset (10 dimensions, 699 instances, 2 classes) used
by (Howley and Madden 2005).

Table 2: The mean accuracy (and one-sided 95% CI width)
of grid search results for all stand-alone kernel functions.

ID Dataset 1 Dataset 2 Dataset 3
0 76.97 (5.10) 96.90 (1.69) 73.18 (3.89)
1 77.26 (5.26) 97.37 (1.80) 78.56 (3.39)
2 65.78 (4.04) 83.33 (7.39) 70.13 (5.53)
3 69.95 (6.56) 95.27 (2.22) 54.08 (6.22)
4 65.78 (4.04) 83.41 (7.37) 70.07 (5.65)
5 71.13 (8.16) 96.75 (1.89) 68.40 (3.75)
6 65.78 (4.04) 67.14 (5.25) 48.38 (2.09)
7 65.78 (4.04) 67.14 (5.25) 48.38 (2.09)
8 77.10 (6.01) 97.08 (1.75) 75.55 (3.58)
9 65.78 (4.04) 95.74 (2.55) 55.44 (14.76)
10 76.54 (5.79) 97.01 (1.58) 74.76 (3.93)

Each dataset was split into train, validation, and test sets
which were composed of 60%, 20%, and 20% of the data,
respectively. All evaluations during any given experimental
run contained the same data instances in each data subset,

65
70

75
80

Kernels

A
cc

ur
ac

y
P

er
ce

nt
ag

e

● ●

●

●

●

●

● ●

●

●

●

●

●

0 1 2 3 4 5 6 7 8 9 10 11 12

20
0

30
0

40
0

50
0

Kernels

S
up

po
rt

 V
ec

to
r

C
ou

nt

●

●

●

●

●
●

● ●

●

●

●

●

●

0 1 2 3 4 5 6 7 8 9 10 11 12

0.
50

0.
60

0.
70

0.
80

Kernels

A
re

a
U

nd
er

 R
O

C

●
●

●

●

●

●

● ●

●

●

●
●

●

0 1 2 3 4 5 6 7 8 9 10 11 12

0.
0

0.
1

0.
2

0.
3

0.
4

Kernels

Te
st

 T
im

e
(s

ec
)

●
●

● ●
● ● ● ● ●

●

●

● ●

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 1: The results (mean values with 95% CI) of the best
kernels on Dataset 1, including PSO (11) and GP (12).

and unless otherwise noted, results are based on 12 runs
for each experiment. The general-purpose kernels do not
evolve or evaluate fitnesses and therefore are simply trained
and tested (validation set merged with training set). The GP
and PSO kernel functions from each population member are
trained with the training set, and evolutionary fitness (for
each generation) is assessed on the validation set. Finally,
the best kernels evolved from GP and PSO are evaluated on
the unseen test set as the representative kernel functions of
that run.

A standard set of statistics is returned from each train-
ing and testing of a new SVM with a specified kernel func-
tion. The statistics include: kernel calls during training and
testing, kernel cache hits during training, number of sup-
port vectors needed to define the hyperplane, classification
accuracy (percentage correct), area under Receiver Oper-
ating Characteristic (ROC) curve, and elapsed time during
training and testing. Many of these statistics are omitted
from our current discussion because they not emphasized
by our focused goal of classification accuracy, but the ben-
efit of having these additional and alternative measurements
of performance and success readily available is important.
Also, countless other experiments could be performed, in-
vestigated, and fine-tuned, but as an investigatory paper, we
emphasize the potential of our evolutionary framework and
highlight this with selected experimental results.

We first present results of stand-alone kernels. Using grid
search, we split each parameter into eight equally-spaced
values between a specified minimum and maximum range.
The major downside of this method is that each extra param-
eter is exponentially more costly, so we hard-coded the poly-
nomial kernel constant (c = 1), limiting all kernels to a max
of two parameters, equating to 64 unique “steps” of possi-
ble parameter value combinations. The best step is found for
each kernel, and we present the classification accuracy re-
sults in Table 2, with the one-sided 95% confidence interval
(CI) width provided in parentheses.

83

70
80

90
10

0

Kernels

A
cc

ur
ac

y
P

er
ce

nt
ag

e

● ●

●

●

●

●

● ●

●
●

●
●

●

0 1 2 3 4 5 6 7 8 9 10 11 12

0
10

0
30

0

Kernels

S
up

po
rt

 V
ec

to
r

C
ou

nt

●
●

●

●

●

●

● ●

●

●

● ●

●

0 1 2 3 4 5 6 7 8 9 10 11 12

0.
5

0.
7

0.
9

Kernels

A
re

a
U

nd
er

 R
O

C

● ●

●

●

●

●

● ●

●

●

●
●

●

0 1 2 3 4 5 6 7 8 9 10 11 12

0.
00

0.
04

0.
08

Kernels

Te
st

 T
im

e
(s

ec
)

●
●

●

●

●

●

● ●

●

●
●

●

●

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 2: The results (mean values with 95% CI) of the best
kernels on Dataset 2, including PSO (11) and GP (12).

We also present these results graphically in Figures 1 and
2, with results included after kernel 10 for the PSO and GP
solutions (in that order). Additionally, we include the corre-
sponding results for: support vector count, area under ROC
curve, and test time (in seconds). The error bars are the 95%
CIs that surround the mean value displayed as an open cir-
cle. Certain plots are missing error bars, and this indicates an
error range too small to graphically display given the range
of the plotted statistic.

Here we can more easily see that some kernels intrinsi-
cally perform better than others for the given dataset. We
can also see clearly that while kernel 10 has a good classifi-
cation accuracy, it is drastically slower than all others during
testing. For both datasets, the GP and PSO solutions per-
form equal or better than most other well-suited fine-tuned
stand-alone kernels. It is especially important to reiterate
that even the stand-alone kernels presented here are the re-
sult of extensive (and costly) brute-force searching through
vast ranges possible parameter values.

0 10 20 30 40 50 60

30
40

50
60

70
80

Param steps for Kernel 1 (Polynomial)

A
cc

ur
ac

y
P

er
ce

nt
ag

e

●
●●●●●●

●

●
●●●●●●

●

●

●●●●●●

●

●

●●●●●●

●

●●●●

●

●
●

●

●

●●●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●●

●

●
●

●

Figure 3: The accuracy results of each grid search step for
the polynomial kernel on Dataset 3.

To further illustrate that one cannot blindly apply a kernel
function and expect reliable results, we present the accuracy
results of each grid search step for the polynomial kernel on
Dataset 3 in Figure 3. Effective parameter ranges (and com-
binations) can be more easily discovered with these simple
graphical visualizations, and repetitive patterns over a num-
ber of steps indicates certain values of a specific subset of
parameters work best together. For example, the best step for
the polynomial kernel in Figure 3 is #63, which translates to
parameter values of (c = 1, a = 10, d = 2). Interestingly, it
can also be seen that when a > 0 (steps > 31), the kernel
does exceptionally well with d > 0, but exceptionally poor
with d < 0.

Similar to the steps of grid search, we can graphically an-
alyze the steps of PSO or GP runs. For these evolutionary
approaches, it might also be worthwhile to know the mini-
mum and maximum fitness over each generation, which are
added to the figures as triangle points connected by dotted
lines. We report the mean statistical values with 95% con-
fidence intervals (CI) over all members of each generation.
However, here we do not aggregate generation statistics over
all runs – like we did for grid search steps – because we
would lose the details of each uniquely evolved population.

2 4 6 8 10

30
40

50
60

70
80

Generations (run 1)

A
cc

ur
ac

y
P

er
ce

nt
ag

e

●

●

●

●

●

●

● ●

●

●

Figure 4: The accuracy results of each generation during a
single PSO run on Dataset 1.

2 4 6 8 10

20
40

60
80

12
0

Generations (run 2)

A
cc

ur
ac

y
P

er
ce

nt
ag

e

●
●

●

● ●

Figure 5: The accuracy results of each generation during a
single GP run on Dataset 2.

84

The accuracy results for a single PSO run on Dataset 2
are displayed in Figure 4. These results look very much like
we would expect from a well performing optimization al-
gorithm. Notice the narrowing confidence intervals, imply-
ing a converging population. Also notice that all are grad-
ually slowing their increase over each generation, implying
a possible optima reached in the solution space. We empir-
ically find that kernel function shows significant parameter
improvement after relatively few generations – an ideal find-
ing to maintain lower training time. Similarily, the accuracy
results for a single GP run on Dataset 1 are displayed Figure
5. In general, Dataset 1 is a much easier classification prob-
lem, and we can see our GP population quickly converging
on a near optimal solution and maintaining it.

Conclusions and Future Work
We presented evolutionary approaches to evolve kernel
functions that better classify a given data set. Two tech-
niques, Genetic Programming and Particle Swarm Opti-
mization, were applied and compared to a variety of general-
purpose kernels on several data sets. Results showed that
these methods are feasible, effective, and overall quite
promising. We hope this work sparks interest in kernel func-
tion evolution and informs the community of readily pur-
suable work in this area of research.

Our first focus is to perform more comprehensive experi-
ments on our new framework. While the effective ranges for
kernel parameters have been looked at through step graphs,
many other algorithmic parameters have not been fully ex-
plored. This includes parameters of the GP and PSO algo-
rithms as well as the actual SVM implementation, which
could also be incorporated into our evolutionary approaches.

An especially intriguing idea is to combine the two con-
cepts into one evolutionary strategy which we hypothesize
would speed up the lengthy evolutionary process. Although,
this “speed up” comes at the cost of additional complexity, it
would be interesting to test if the additional PSO-based pa-
rameter tuning would benefit the evolving GP kernel func-
tion, perhaps through faster local optima exploration. In
other words, the GP would focus on the structure of the ker-
nel, but its fitness would now be determined after a PSO has
optimized its parameters – thereby emphasizing the poten-
tial of a given structure during reproduction. We would ex-
pect the GP to converge in fewer total generations, but at the
cost of time taken to compute each generation, which now
requires a PSO run for each population member. This raises
alternative research opportunities in the parallelization and
distribution of these algorithms.

References
Boser, B. E.; Guyon, I. M.; and Vapnik, V. N. 1992. A train-
ing algorithm for optimal margin classifiers. In Proceedings
of the 5th Annual ACM Workshop on Computational Learn-
ing Theory, 144–152. ACM Press.
Diosan, L.; Rogozan, A.; and Pecuchet, J. P. 2007. Evolv-
ing kernel functions for svms by genetic programming. In
ICMLA ’07: Proceedings of the Sixth International Confer-

ence on Machine Learning and Applications, 19–24. Wash-
ington, DC, USA: IEEE Computer Society.
Feres de Souza, B.; de Carvalho, A. C. P. L. F.; Calvo, R.;
and Ishii, R. P. 2006. Multiclass svm model selection us-
ing particle swarm optimization. In HIS ’06: Proceedings
of the Sixth International Conference on Hybrid Intelligent
Systems, 31. Washington, DC, USA: IEEE Computer Soci-
ety.
Frank, A., and Asuncion, A. 2010. UCI machine learning
repository.
Friedrichs, F., and Igel, C. 2005. Evolutionary tuning of
multiple svm parameters. Neurocomputing 64:107 – 117.
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann,
P.; and Witten, I. 2009. The WEKA data mining software:
An update. SIGKDD.
Howley, T., and Madden, M. G. 2005. The genetic kernel
support vector machine: Description and evaluation. Artif.
Intell. Rev. 24(3-4):379–395.
Kennedy, J., and Eberhart, R. C. 1995. Particle swarm opti-
mization.proceedings of. In IEEE International Conference
on Neural Networks (Perth, Australia), IEEE Service Center,
Piscataway, NJ, Vol.IV, 1942–1948. Press.
Koza, J. R. 1992. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. The MIT
Press, Cambridge, MA.
Lu, M.-Z.; Chen, C.; and Huo, J.-B. 2009. Optimization of
combined kernel function for svm by particle swarm opti-
mization. Machine Learning and Cybernetics, 2009 Inter-
national Conference on 2:1160 –1166.
Mierswa, I. 2006. Evolutionary learning with kernels: a
generic solution for large margin problems. In GECCO
’06: Proceedings of the 8th annual conference on Genetic
and evolutionary computation, 1553–1560. New York, NY,
USA: ACM.
Paquet, and Englebrecht. 2003. Training support vector ma-
chines with particle swarms. In Intl. Conf. Neural Networks,
1598–1603.
Poli, R.; Kennedy, J.; and Blackwell, T. 2007. Particle
swarm optimization. Swarm Intelligence, Issue 1 1:1942–
1948.
Schuh, M.; Banda, J.; Bernasconi, P.; Angryk, R.; and
Martens, P. 2012. A comparative evaluation of automated
solar filament detection. Solar Physics - to appear.
Souza, C. R. 2010. Kernel functions for machine learning
applications. http://crsouza.blogspot.com/2010/03/kernel-
functions-for-machine-learning.html.
Sullivan, K. M., and Luke, S. 2007. Evolving kernels for
support vector machine classification. In GECCO ’07: Pro-
ceedings of the 9th annual conference on Genetic and evo-
lutionary computation, 1702–1707. New York, NY, USA:
ACM.
Vapnik, V. N. 1995. The nature of statistical learning theory.
New York, NY, USA: Springer-Verlag New York, Inc.

85

