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Abstract

We deal with the problem of how to extend a prefer-
ence relation over a set X of “objects” to the set of all
subsets of X . This problem has been carried out in the
tradition of the literature on extending an order on a set
to its power set with the objective to analyze the ax-
iomatic structure of families of rankings over subsets.
In particular, most of these approaches make use of ax-
ioms aimed to prevent any kind of interaction among
the objects in X .
In this paper, we apply coalitional games to study the
problem of extending preferences over a finite set X to
its power set 2X . A coalitional game can be seen as a
numerical representation of a preference extension on
2X . We focus on a particular class of extensions on 2X

such that the ranking induced by the Shapley value of
each coalitional game representing an extension in this
class, coincides with the original preference on X .
Some properties of Shapley extensions are discussed,
with the objective to justify and contextualize the appli-
cation of Shapley extensions to the problem of ranking
sets of possibly interacting objects.

1 Introduction
A lot of problems in individual and collective decision mak-
ing involve the comparison of sets of objects, where objects
may have very different meanings (e.g., alternatives, oppor-
tunities, candidates, etc.). Consider, for instance, the com-
parison of the stability of groups in coalition formation the-
ory, or the ranking of likely sets of events in the axiomatic
analysis of subjective probability, or the evaluation of equity
of sets of rights inside a society, or the comparison of assets
in portfolio analysis, etc. In all of those situations, a ranking
of the single elements of a (finite) universal set X is not suf-
ficient to compare the subsets of X . On the other hand, for
many practical problems, only the information about pref-
erences among single objects is available. Consequently, a
central question is: how to derive a ranking over the set of
all subsets of X in a way that is “compatible” with the prim-
itive ranking over the single elements of X?

This question has been carried out in the tradition of the
literature on extending an order on a set to its power set with
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the objective to axiomatically characterize families of ordi-
nal preferences over subsets (Barberà, Barrett, and Pattanaik
1984; Barberà, Bossert, and Pattanaik 2004; Bossert 1995;
Bossert et al. 1994; Geist and Endriss 2011; Fishburn 1992;
Kannai and Peleg 1984; Kreps 1979). In this context, an or-
der w on the power set 2X is an extension of a primitive
order < on X if and only if the relative ranking of any two
singleton sets according tow is the same as the relative rank-
ing of the corresponding alternatives according to <.

The interpretation of the properties used to character-
ize extensions is deeply interconnected to the meaning that
is attributed to sets. According to the survey of Barberà,
Bossert, and Pattanaik (2004), the main contributions from
the literature on ranking sets of objects may be grouped in
three main classes of problems: 1) complete uncertainty,
where a decision maker is asked to rank sets which are
considered as formed by mutually exclusive objects (i.e.,
only one object from a set will materialize), and taking
into account that he cannot influence the selection of an
object from a set (Barberà, Barrett, and Pattanaik 1984;
Kannai and Peleg 1984; Nitzan and Pattanaik 1984); 2)
opportunity sets, where sets contain again mutually exclu-
sive objects but, in this case, a decision maker compares
sets taking into account that he can select a single element
(and only one) from a set (Bossert et al. 1994; Kreps 1979;
Puppe 1996); 3) sets as final outcomes, where each set
contains objects that are assumed to materialize simultane-
ously, if that set is selected (Bossert 1995; Fishburn 1992;
Roth 1985).

This paper is devoted to the analysis of extensions for
problems of the third class, where sets are formed by ob-
jects that are assumed to materialize at the same time. This
situation can be observed in many different contexts like,
for example, the college admission problem (Gale and Shap-
ley 1962; Roth 1985), where different colleges need to rank
sets of students based on their ranking of individual appli-
cants. For these kind of problems, most of the axiomatic
approaches from the literature focused on properties sug-
gesting that the interaction among single objects should not
play a relevant role in establishing the ranking among sub-
sets (Bossert 1995; Roth 1985). For instance, the property
of responsiveness, introduced by Roth (1985), says that a
set S ⊆ X is preferred to a set T ⊆ X whenever S is
obtained from T by replacing some object t ∈ T with an-
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other n ∈ X not in T which is preferred to t (according
to the primitive ranking on the universal set X). As a con-
sequence, the responsiveness property prevents complemen-
tarity effects among objects within sets of the same cardi-
nality.

Another property that excludes a certain kind of inter-
action among objects of the universal set X is the prop-
erty of monotonicity (with respect to set inclusion) (Barberà,
Bossert, and Pattanaik 2004; Kreps 1979; Puppe 1996). This
property states that a set T ⊆ X is preferred to a set S ⊆ X
whenever S is a subset of T . Therefore, monotonicity ex-
cludes the possibility that the evaluation of a set could be
deteriorated by the addition of a new object that is incom-
patible or redundant with objects already contained in the
set.

On the other hand, in many practical problems, the atti-
tude to interact among elements of X cannot be excluded a
priori. To be more specific, consider a well known problem
in computational biology, where statistical testing proce-
dures are used to detect genes which are “strongly” differen-
tially expressed between two conditions (e.g., case-control
studies). Following this approach, genes with the highest (in-
dividual) discriminative power are often selected for further
study (Moretti et al. 2008). But genes in a set can interact in
ways that increase (via complementarity), or decrease (via
incompatibility or redundancy), the overall valuation of a set
of genes in characterizing a certain condition. Therefore, a
procedure aimed to consider the effects of interaction among
genes in each possible subset, with respect to the analysis of
individual behaviors, is demanded.

In this paper, we introduce a new class of extensions for
the problem of ranking sets of objects, and we call the el-
ements of this class Shapley extensions, for their attitude to
preserve the ranking provided by the Shapley value (Shapley
1953; Shapley and Shubik 1954) of associated coalitional
games (Owen 1995). We show that Shapley extensions are
able to keep into account possible interaction effects of dif-
ferent nature (Section 3). Moreover, we analyze the behav-
ior of Shapley extensions with respect to properties which
are aimed to prevent the interaction among objects and we
axiomatically characterize a subclass of monotonic Shap-
ley extensions (Section 4). Finally, in Section 5, we provide
some sufficient conditions for extensions to be Shapley ex-
tensions in the presence of interactions among objects, and
we compare Shapley extensions with other extensions based
on regular semivalues (Carreras and Freixas 1999; 2000).
From the game theoretic perspective, as a side-product of
Sections 4 and 5 we also provide some results concerning the
ordinal equivalence of regular semivalues (Tomiyama 1987;
Carreras and Freixas 2008; Freixas 2010).

We start in the next section with some notations for binary
relations and some basic definitions from cooperative game
theory.

2 Preliminaries and notations
Let X be a finite set of objects. We denote by 2X the power
set (the set of all subsets) of X and by |X| the cardinality
(the number of elements) of X . To denote a subset S of X
we indifferently use the notation S ⊆ X or S ∈ 2X ; S ⊂

X means S ⊆ X and S 6= X . A binary relation on X is
denoted by < ⊆ X × X . For each x, y ∈ X , the notation
x < y will frequently be used instead of (x, y) ∈ < in order
to simplify the exposition.

The following are some standard properties for a binary
relation < ⊆ X ×X: (reflexivity:) for each x ∈ X , x < x;
(transitivity:) for each x, y, z ∈ X , x < y and y < z ⇒
x < z; (completeness:) for each x, y ∈ X , x 6= y ⇒ x < y
or y < x; (antysymmetry:) for each x, y ∈ X , x < y and
y < x ⇒ x = y. A total preorder on X is a reflexive,
transitive and complete binary relation < ⊆ X × X . A re-
flexive, transitive, complete and antisymetric binary relation
is called total order or linear order.

We interpret a total preorder < on X as a preference re-
lation on X (that is, for each x, y ∈ X , x < y stands for
‘x is considered at least as good as y according to <’). The
strict preference relation � and the indifference relation ∼
are defined by letting, for all x, y ∈ X , x � y if and only if
x < y and not y < x; x ∼ y if and only if x < y and y < x.

A map u : X → IR is a numerical representation of the
preference relation < on X if for every i, j ∈ X we have
that

u(i) ≥ u(j)⇔ i < j.

In order to rank the elements of 2X , we use a total pre-
order w on 2X , with strict preference relation denoted by =

and indifference relation denoted by w. Given a total pre-
order < on X , we say that a total preorder w on 2X is an
extension of < if and only if the relative ranking of any two
singleton sets according tow is the same as the relative rank-
ing of the corresponding alternatives according to < (i.e., for
each x, y ∈ X , {x} w {y} ⇔ x < y).

Let S ∈ 2X \ {∅}. The set of best elements in S accord-
ing to a binary relation < on X is given by B(S,<) = {x ∈
S|x < y ∀y ∈ S}, and the set of worst elements in S accord-
ing to < is given by W(S,<) = {x ∈ S|y < x ∀y ∈ S}.

Perhaps the simplest extension rule is the maxi-max crite-
rion on <, which is defined as a binary relationwmax on 2X

such that (S wmax T ) ⇔ (bS < bT ), where bS ∈ B(S,<)
and bT ∈ B(T,<) for each S, T ∈ 2X \ {∅}. Similarly, the
maxi-min criterion, is defined as a binary relation wmin on
2X such that (S wmin T ) ⇔ (wS < wT ), where wS ∈
W(S,<) and wT ∈W(T,<) for each S, T ∈ 2X \ {∅}.

Now, let us introduce some basic game theoretical no-
tations. A coalitional game or characteristic-form game is
a pair (N, v), where N denotes a finite set of players and
v : 2N → IR is the characteristic function, with v(∅) = 0. If
the set N of players is fixed, we identify a coalitional game
(N, v) with the corresponding characteristic function v. A
group of players T ⊆ N is called a coalition and v(T ) is
called the value of this coalition.We will denote by G the
class of all coalitional games. Let C ⊆ G be a subclass of
coalitional games. Given a set of players N , we denote by
CN ⊆ G the class of coalitional games in C with N as the
set of players.

A payoff vector or allocation (x1, . . . , xn) of a coalitional
game (N, v) is an |N |-dimensional vector describing the
payoffs of the players, such that each player i ∈ N receives
xi. A one-point solution (or simply a solution) for a class
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CN of coalitional games is a function ψ that assigns a pay-
off vector ψ(v) to every coalitional game in the class, that is
ψ : CN → IRN .

The most famous solution in the theory of coalitional
games is the Shapley value, introduced by (Shapley 1953;
Shapley and Shubik 1954). The Shapley value of a coali-
tional game is an effective tool to convert information about
the worth that subsets of the player set can achieve into a
personal attribution (of payoff) to each of the players (see
also Moretti and Patrone (2008) for an overview on dif-
ferent axiomatic characterizations of the Shapley value),
so that players can evaluate ex-ante the convenience to
participate to the game. The Shapley value may be com-
puted according to the following formula (Shapley 1953;
Shapley and Shubik 1954)

φi(v) =
∑

S⊂N :i/∈S

|S|!(|N | − |S| − 1)!

|N |!
mS

i (v) (1)

for each i ∈ N , where the quantity mS
i (v) = v(S ∪ {i}) −

v(S) is the marginal contribution of player i to coalition S,
for each S ⊂ N with i /∈ S.

3 Shapley extensions
In this section, we introduce a new family of extensions,
with the purpose to take account of possible effects of in-
teraction among objects of the universal set. To clarify what
we mean for effects of interaction, consider the following
simple example. Let X = {x, y, z} be a set of three ob-
jects (e.g., goods) and suppose that an agent’s preference is
such that x < y, x < z and y < z. Trying to extend <
to 2X , one could guess that set {x, y} is better than {y, z},
because the agent will receive both y and x instead of y and
z (and x is preferred to z). However, due to possible effects
of complementarity between x and z (or because of incom-
patibility between x and y) the relative preference between
the two sets could be reversed. As a “practical” instance of
this issue, you may consider the problem of what to take
on a backpacking trip on the mountains: a ‘bottle of wa-
ter’ can be more essential (thus ranked higher) than a ‘bottle
of orange juice’ or than a ‘sandwich’, and a ‘bottle of or-
ange juice’ could be preferred (e.g., for dietary reasons) to a
‘sandwich’. But if the problem is now which pair of the three
to put in the backpack, a ‘bottle of water’ and a ‘bottle of or-
ange juice’ together may be less preferred (because of the
backpack weight) than a ‘bottle of water’ and a ‘sandwich’
together.

Moreover, an effect of incompatibility between two or
more objects, for instance, between x and y, could produce
a ranking where the single object {y} is preferred to {x, y},
even if the latter includes the most preferred object x, other
than y. For instance, this could be the case where x and y
represent two distinct therapies for a disease: the combina-
tion of two treatments does not always improve the chances
of success, and may provoke more serious side effects, with
respect to each single treatment.

As we already said, the attitude to interact among ele-
ments of X cannot be excluded a priori. Nevertheless, the

only information available in the model is the primitive rank-
ing < onX , and the effects of interaction that can be consid-
ered should be compatible with this information. Therefore,
our objective is to characterize those extensions which are
able to take into account possible interaction effects without
distorting the information provided by the primitive ranking
on X .

Note that, given a total preorder w on 2X , any numeri-
cal representation v : 2X → IR of w (with the convention
that v(∅) = 0) is a coalitional game v ∈ GX (we denote by
GXw the class of coalitional games that numerically represent
w). Consequently, by relation (1), the Shapley value φ(v),
for each game v ∈ GXw , can be interpreted as a personal at-
tribution of the importance of elements of X accounting for
their (weighted) average marginal contributions over all pos-
sible coalitions (Shapley 1953; Shapley and Shubik 1954).
Clearly, such an attribution of importance depends on the
relative worths of coalitions in the game v, and different
numerical representations of the same total preorder on 2X

may induce completely different Shapley values. In order to
preserve the original information concerning the preference
relation < over the elements of X , we focus our attention to
those extensions where the Shapley value of the correspond-
ing numerical representations provides the same ranking of
< on X (independently from the numerical representation
selected in GXw ).

The following definition formally introduces the notion of
Shapley extension. Note that every total preorder w on 2X

can be seen as an extension of a total preorder < on X such
that

i < j ⇔ {i} w {j} (2)

for each i, j ∈ X . Therefore, in the remaining of the paper
we will implicitly refer to a total preorder w on 2X as an
extension of the preference relation < on X induced by w
according to relation (2).

Definition 1. A total preorder w on 2X is a Shapley exten-
sion iff for each numerical representation v ∈ GXw of w we
have that

{i} w {j} ⇔ φi(v) ≥ φj(v)

for all i, j ∈ X .

The next example, providing a Shapley extension on a set
X = {x, y, z}, shows that some effects of interaction may
be represented by a Shapley extension.

Example 1. Let X = {1, 2, 3} and let wa by a linear order
on 2X such that {1, 2, 3} =a {3} =a {2} =a {1, 3} =a

{2, 3} =a {1} =a {1, 2} =a ∅ (note that, according to
relation (2), wa is an extension of 3 � 2 � 1). Note also
that, individually, element 2 is preferred to element 1, but
when combined to element 3, we have that {1, 3} is preferred
to {2, 3} (as a consequence of complementarity effects be-
tween elements 3 and 1, or of incompatibility effects between
3 and 2). In addition, there are other comparisons that may
be ascribed to the effects of interaction among elements: for
instance, the fact that the singleton {1} is preferred to set
{1, 2} could be explained as an incompatibility between 1
and 2.
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Using relation (1) (or relation (3) below), it easy to check
that for every numerical representation v of wa in GXwa we
have that

φ2(v)−φ1(v) =
1

2

(
v(2)−v(1)

)
+

1

2

(
v(2, 3)−v(1, 3)

)
> 0,

where the inequality follows from the fact that v(2)−v(1) >
v(1, 3)− v(2, 3) for every v ∈ GXwa .

Following similar calculations, we also have that for ev-
ery v ∈ GXwa

φ3(v)−φ2(v) =
1

2

(
v(3)−v(2)

)
+

1

2

(
v(1, 3)−v(1, 2)

)
> 0,

where the inequality follows from the fact that v(3) > v(2)
and v(1, 3) > v(1, 2) for each v ∈ GXwa .

The following proposition is essential for the analysis of
Shapley extensions that will be provided in Section 4 and 5.

Proposition 1. Let (X, v) be a coalitional game. For each
i, j ∈ X the following relation holds:

φi(v)− φj(v) =
∑

S⊂N :i,j /∈S

|S|!(|N | − |S| − 2)!

(|N | − 1)!
dSij(v),

(3)
where dSij(v) = v(S ∪ {i})− v(S ∪ {j}), for each S ∈ 2X

with i, j /∈ S.

Proof. First note that

mS
i (v)−mS

j (v) =
v(S ∪ {i})− v(S)− (v(S ∪ {j})− v(S)) =
dSij(v),

(4)

and
m

S∪{j}
i (v)−mS∪{i}

j (v) =
v(S ∪ {i, j})− v(S ∪ {j})−
(v(S ∪ {i, j})− v(S ∪ {i})) =
dSij(v).

(5)

Then, we have that

φi(v)− φj(v) =∑
S⊂X:i,j /∈S

(
|S|!(|N |−|S|−1)!

|N |! mS
i (v)+

(|S|+1)!(|N |−|S|−2)!
|N |! m

S∪{j}
i (v)

)
−

∑
S⊂X:i,j /∈S

(
|S|!(|N |−|S|−1)!

|N |! mS
i (v)+

(|S|+1)!(|N |−|S|−2)!
|N |! m

S∪{j}
i (v)

)
=

∑
S⊂X:i,j /∈S

(( |S|!(|N |−|S|−1)!
|N |! +

(|S|+1)!(|N |−|S|−2)!
|N |!

)
dSij(v)

)
=

∑
S⊂X:i,j /∈S

|S|!(|N |−|S|−2)!
(|N |−1)! dSij(v),

where the first equality follows from relation (1), and the
second one from relations (4) and (5).

Remark 1. Let (X, v) be a coalitional game. As a con-
sequence of Proposition 1, we have that if v(S ∪ {i}) ≥
v(S∪{j}) for each S ∈ 2X with i, j /∈ S, then we have that
φi(v) ≥ φj(v). It immediately follows that an extension w
on 2X such that

{i} w {j} ⇒ (S ∪ {i}) w (S ∪ {j})

for each i, j ∈ X and each S ∈ 2X , with i, j /∈ S, is a
Shapley extension, since for every numerical representation
v of w in GXw , we also have that v(S ∪ {i}) ≥ v(S ∪ {j}).

By Remark 1, it follows that the maxi-min extension and
the maxi-max extension are Shapley extensions, since ac-
cording to those procedures, adding an element i to S with
{i} w {j}, always improves the relative ranking of the best
(worst) elements of S ∪ {i} with respect to the best (worst)
elements of S ∪ {j}. Same considerations apply to the
lexi-min and the lexi-max extensions (Barberà, Bossert, and
Pattanaik 2004; Bossert 1995; Pattanaik and Peleg 1984),
which are obtained, respectively, as the lexicographical gen-
eralizations of the maxi-min and the maxi-max extensions.
Other examples of Shapley extensions are provided by cer-
tain median-based extensions (Nitzan and Pattanaik 1984),
where the relative ranking of the median alternatives is used
as the criterion for comparing two sets.

On the other hand, note that extensions are not necessarily
Shapley extensions, as it is shown by the following example.

Example 2. Consider the set X = {1, 2, 3} and take the
linear order wa′ such that {1, 2, 3} =a′ {2} =a′ {3} =a′

{1, 3} =a′ {2, 3} =a′ {1} =a′ {1, 2} =a′ ∅. Note that
only the relative ranking between {2} and {3} is changed
with respect to wa. So, according to relation (2), wa′ is an
extension of 2 �′ 3 �′ 1, but it is not a Shapley extension.
In fact, a game that represents wa′ is v({1, 2, 3}) = 16,
v({2}) = 9, v({3}) = 8, v({1, 3}) = 7, v({2, 3}) = 6,
v({1}) = 5, v({1, 2}) = 4, v(∅) = 0 and, by relation (1),
the corresponding Shapley value is φ1(v) = 4, φ2(v) = 5.5,
φ3(v) = 6.5.

4 Shapley extensions without interaction
A standard application of the problem of deriving a ranking
w on 2X from a preference relation over the single elements
of X is the college admission problem (see, for instance,
(Roth 1985; Gale and Shapley 1962)), where colleges need
to rank sets of students based on their ranking of individual
applicants.

For the analysis of the college admission problem, Roth
(1985) introduced the property of responsiveness, which
requires that if one element x in a set A is replaced by
another element y, then the ranking between the new set
A \ {x} ∪ {y} and the original set A according to w is de-
termined by the ranking between x and y according to the
preference over singletons. Formally, this axiom can be for-
mulated as follows.

Property 1 (Responsiveness, RESP). A total preorder w
on 2X satisfies the responsiveness property on 2X iff for all
A ∈ 2X \ {X, ∅}, for all x ∈ A and for all y ∈ X \ A the
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following condition holds1

A w (A \ {x}) ∪ {y} ⇔ {x} w {y}. (6)

Clearly, the RESP property is aimed at preventing com-
plementarity effects. Restricted to sets A of fixed cardinality
q ∈ N, representing the maximum number of students the
college can admit, the RESP property was used by Bossert
(1995) to characterize2 the family of lexicographic rank-
ordered extensions, which generalize the idea of lexi-min
and lexi-max orderings. An equivalent way to formulate the
RESP property is given in the following proposition.
Proposition 2. A total preorder w on 2X satisfies the RESP
property on 2X iff for all i, j ∈ X and all S ∈ 2X , i, j /∈ S
we have that

S ∪ {i} w S ∪ {j} ⇔ {i} w {j}. (7)

Proof. The proof is straightforward. In order to prove that
conditions (6) and (7) are equivalent, take A = S ∪ {i},
x = i and y = j.

An immediate consequence of Proposition 2 is the follow-
ing.
Proposition 3. Let w be a total preorder on 2X . If w satis-
fies the RESP property, then w is a Shapley extension.

Proof. We want to prove that if w satisfies the RESP prop-
erty, then {i} w {j} ⇔ φi(v) ≥ φj(v) for every v ∈ GXw .

proof of RESP ⇒ [{i} w {j} ⇒ φi(v) ≥ φj(v)]:
First note that if {i} w {j} then by RESP S∪{i} w S∪{j}
for each S ∈ 2X , with i, j /∈ S, and by Remark 1 we have
that φi(v) ≥ φj(v) for each v ∈ GXw numerical representa-
tion of w.

proof of RESP ⇒ [{i} w {j} ⇐ φi(v) ≥ φj(v)]:
Now, take i, j ∈ X such that φi(v) ≥ φj(v) for each v
numerical representation of w. We want to prove that if w is
an extension which satisfies RESP, then {i} w {j}. Suppose
{j} = {i}. Then by the RESP property of w we have that
v(S ∪ {j}) > v(S ∪ {i}) for each S ∈ 2X , with i, j /∈ S,
but by Proposition 1 this implies that φj(v) > φi(v), which
yields a contradiction.

Shapley extensions do not need to satisfy the RESP prop-
erty. For example, the linear order wa introduced in Ex-
ample 1 does not satisfies the RESP property (see the rel-
ative ranking between {1, 3} and {2, 3}), but it is a Shap-
ley extension. We now introduce another property for ex-
tensions, namely, the monotonicity property (Kreps 1979;
Puppe 1996).
Property 2 (Monotoncity, MON). A total preorder w on
2X satisfies the monotonicity property iff for each S, T ∈
2X we have that

S ⊆ T ⇒ T w S.
1Note that in Bossert (1995), condition (6) was introduced to-

gether with the condition: (A \ {x}) ∪ {y} w A ⇔ {y} w {x}.
The last one, as also remarked by Bossert (1995), is redundant with
respect to condition (6), if w is a total preorder; so we omit it.

2Together with another property called fixed-Cardinality neu-
trality, saying that the labelling of the alternatives is irrelevant in
establishing the ranking among sets of fixed cardinality q.

The MON property states that each set of objects is
weakly preferred to each of its subsets. In other words, the
MON property excludes the possibility that some objects in
a set S ∈ 2X may be incompatible with some others not in
S. The extension wa introduced in Example 1 does not sat-
isfy neither the MON property nor the RESP property. An
example of extension that does not satisfy the MON prop-
erty, but that satisfies the RESP property, is the maxi-min
criterion =min (for instance, if X = {1, 2} and the orig-
inal ranking on X is such that 2 � 1, then we have that
{2} =min {1, 2}).

Let w be a total preorder on 2X . For each S ∈ 2X \ {∅},
a sub-extension wS is a relation on 2S such that for each
U, V ∈ 2S ,

U w V ⇔ U wS V.

We may now introduce the last property of this section,
namely the sub-extendibility property for Shapley exten-
sions.

Property 3 (Sub-Extendibility, SE). A Shapley extension
w on 2X satisfies the sub-extendibility property iff for each
S ∈ 2X \{∅} we have thatwS is a Shapley extension on 2S .

The SE property states that the effects of interaction
among objects must be “compatible” not only with the in-
formation provided by the original preference on single el-
ements of X , but also with the information provided by all
restrictions of such a preference to each non-empty subset
S of X . This means that the personal attribution of impor-
tance assigned to objects, and taking into account the effects
of interaction, must be consistent with the primitive ranking,
independently from the size of the universal set considered.

Example 3. Let X = {1, 2, 3, 4} and let wb be a total pre-
order such that {1, 2, 3, 4} =b {2, 3, 4} =b {1, 3, 4} =b

{1, 2, 4} =b {3, 4} =b {1, 2, 3} =b {1, 3} wb {2, 4} =b

{2, 3} wb {1, 4} =b {4} =b {3} =b {1, 2} =b {2} =b

{1} =b ∅. By relation (3), it is easy to check that for ev-
ery v numerical representation of wb in GXwb , the following
relations hold.

φ2(v)− φ1(v) =
1
3

(
v(2)− v(1)

)
+ 1

3

(
v(2, 3, 4)− v(1, 3, 4)

)
+

1
6

(
v(2, 3)− v(1, 3)

)
+ 1

6

(
v(2, 4)− v(1, 4)

)
=

1
3

(
v(2)− v(1)

)
+ 1

3

(
v(2, 3, 4)− v(1, 3, 4)

)
> 0

(8)

φ3(v)− φ2(v) =
1
3

(
v(3)− v(2)

)
+ 1

3

(
v(1, 3, 4)− v(1, 2, 4)

)
+

1
6

(
v(1, 3)− v(1, 2)

)
+ 1

6

(
v(3, 4)− v(2, 4)

)
> 0

(9)

φ4(v)− φ3(v) =
1
3

(
v(4)− v(3)

)
+ 1

3

(
v(1, 2, 4)− v(1, 2, 3)

)
+

1
6

(
v(1, 4)− v(1, 3)

)
+ 1

6

(
v(2, 4)− v(2, 3)

)
=

1
3

(
v(4)− v(3)

)
+ 1

3

(
v(1, 2, 4)− v(1, 2, 3)

)
> 0

(10)

So, wb is a Shapley extension. Note that wb satisfies the
MON property but it does not satisfies the RESP property.
In fact, we have that {2} w {1}, but {1, 3} =b ({1, 3} \
{1} ∪ {2}) = {2, 3}.
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Moreover, relation wb does not satisfies the SE property
too. In fact consider the sub-extension wb

{1,2,3}. Note that

{1, 2, 3} =b
{1,2,3} {1, 3} =

b
{1,2,3} {2, 3} =

b {3} =b
{1,2,3}

{1, 2} =b
{1,2,3} {2} =

b
{1,2,3} {1} =

b
{1,2,3} ∅.

Consider a coalitional game ({1, 2, 3}, v) such that
v({1, 2, 3}) = 10, v({1, 3}) = 9, v({2, 3}) = 5, v({3}) =
4, v({1, 2}) = 3, v({2}) = 2, v({1}) = 1 (and, of course,
v(∅) = 0).

Note that that v represents =b
{1,2,3}, but the correspond-

ing Shapley value is φ1(v) = 3, φ2(v) = 1.5, φ3(v) = 5.5.
Therefore, =b

{1,2,3} is not a Shapley extension on 2{1,2,3}.
The following proposition is important in establishing the

connection between MON, SE and RESP properties.
Proposition 4. Let w be a Shapley extension on 2X . If w
satisfies both MON and SE properties, then it also satisfies
the RESP property.

Proof. Let i, j ∈ X . Since w is a Shapley extension, we
have immediately that for all S ∈ 2X with i, j /∈ S,

S ∪ {i} w S ∪ {j} ⇒ {i} w {j}.
It remains to prove that {i} w {j} ⇒ S ∪{i} w S ∪{j} for
all S ∈ 2X with i, j /∈ S.

Let i, j ∈ X be such that {i} w {j}. Suppose there exists
S ∈ 2X , with i, j /∈ S and such that S ∪ {j} = S ∪ {i}.

Consider the sub-extension wS∗ , where S∗ = S ∪ {i, j}.
Let vS∗ ∈ GXwS∗

be a numerical representation of wS∗ and
define δvS∗ = φi(vS∗)− φj(vS∗). By the SE property, wS∗

is a Shapley extension on 2S
∗
. Then δvS∗ ≥ 0.

Now, let ∆vS∗ > δvS∗ and consider another game v̂S∗
with player set S∗, such that v̂S∗(U) = vS∗(U) + |S∗|∆vS∗

for each U ∈ 2S
∗

with U wS∗ S ∪ {j}, and v̂S∗(T ) =
vS∗(T ) for all remaining coalitions T 3. Note that v̂S∗ is still
a numerical representation of wS∗ , so φi(v̂S∗) ≥ φj(v̂S∗).

By the MON property, for each U ∈ 2S
∗

such that U wS∗

S ∪ {j} =S∗ S ∪ {i} we have that {i, j} ⊆ U . Then, by
equation (1), the Shapley value of i in v̂S∗ is

φi(v̂S∗) =∑
U⊂S∪{j}:

S∪{j}=S∗U∪{i}

w(U)mU
i (vS∗)+

∑
U⊂S∪{j}:

U∪{i}wS∗S∪{j}

w(U)
(
mU

i (vS∗) + |S∗|∆vS∗
)
+

1
|S∗|m

S∪{j}
i (vS∗) =

φi(vS∗) +
∑

U⊂S∪{j}:
U∪{i}wS∗S∪{j}

w(U)|S∗|∆vS∗ ,

(11)

3The choice of the term |S∗|∆vS∗ follows from the fact
that 1

|S∗| = w(S ∪ {j}) = (|S∪{j}|)!(|S∗|−|S∪{j}|−1)!
(|S∗|)! is the

weight assigned by the Shapley value to the marginal contribution
m

S∪{j}
i (v̂S∗) (see relation (12))

where w(U) = (|U |)!(|S∗|−|U |−1)!
(|S∗|)! for each U ∈ 2S

∗
and the

last term of the sum follows from the fact that
w(S ∪ {j})mS∪{j}

i (v̂S∗) =

(|S∪{j}|)!(|S∗|−|S∪{j}|−1)!
(|S∗|)!

(
v̂S∗(S

∗)− v̂S∗(S ∪ {j})
)

=

1
|S∗|

(
vS∗(S

∗) + |S∗|∆vS∗−(
vS∗(S ∪ {j}) + |S∗|∆vS∗

))
=

1
|S∗|m

S∪{j}
i (vS∗).

(12)
In a similar way, it is possible to calculate the Shapley value
of player j in v̂S∗ :

φj(v̂S∗) =∑
U⊂S∪{i}:

S∪{j}=S∗U∪{j}

w(U)mU
j (vS∗)+

∑
U⊂S∪{i}:

U∪{j}wS∗S∪{j}

w(U)
(
mU

j (vS∗) + |S∗|∆vS∗
)
+

1
|S∗|
(
m

S∪{i}
j (vS∗) + |S∗|∆vS∗

)
=

φj(vS∗) + ∆vS∗ +
∑

U⊂S∪{i}:
U∪{j}wS∗S∪{j}

w(U)|S∗|∆vS∗

(13)
As we already said, by the MON property, U wS∗ S ∪ {j}
implies that {i, j} ⊆ U . Therefore, we have that:∑

U⊂S∪{j}:
U∪{i}wS∗S∪{j}

w(U)|S∗|∆vS∗ =

∑
U⊂S∪{i}:

U∪{j}wS∗S∪{j}

w(U)|S∗|∆vS∗ .
(14)

Finally, if we compute the difference between relations (11)
and (13) and keeping into account relation (14), we obtain:

φi(v̂S∗)− φj(v̂S∗) =
φi(vS∗)− φj(vS∗)−∆vS∗ =
δvS∗ −∆vS∗ < 0,

(15)

which yields a contradiction.

Note that if a total preorder w on 2X satisfies the RESP
property, then every sub-extension wS , for each S ∈ 2X ,
S 6= ∅, satisfies the RESP property, and then by Proposition
3, wS is a Shapley extension. The following theorem is then
an immediate consequence of Propositions 3 and 4.
Theorem 1. Letw be a total preorder on 2X which satisfies
the MON property. The following two statements are equiv-
alent:
• (i) w satisfies the RESP property.
• (ii)w is a Shapley extension and satisfies the SE property.
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5 Shapley extensions with interaction
In the last section, we have characterized a class of Shap-
ley extensions aimed to rank subsets of objects in absence
of complementarity effects. The objective of this section is
to analyze properties of Shapley extensions that, due to the
effects of interaction among objects, may “invert” (with re-
spect to the conditions imposed by the RESP property) the
relative ranking of a limited number of subsets. First, we
need some extra notations. Let 2X

k

= {S ∈ 2X : |S| =
k} be the set of all subsets of X of cardinality k, k =
0, 1, . . . , |X| (with the convention that |∅| = 0). Moreover,
for each i, j ∈ X and each k = 0, 1, . . . , |X|−2, we denote
by Skij the set of all subsets of X of cardinality k which do

not contain i and j, i.e. Skij = {S ∈ 2X
k

: i, j /∈ S}.
Property 4 (Permutational Responsiveness, PR). A total
preorderw on 2X satisfies the permutational responsiveness
property iff for all i, j ∈ X and all S ∈ 2X , with i, j /∈ S,
there exists a bijection F k

ij : Skij → Skij such that

S ∪ {i} w F k
ij(S) ∪ {j} ⇔ {i} w {j} (16)

for each k = 0, 1, . . . , |X| − 2

Remark 2. Note that if a total preorder w on 2X satis-
fies the RESP property then it also satisfies the PR prop-
erty (simply, take F k

ij(S) = S for each i, j ∈ X , each
k = 0, 1, . . . , |X| − 2, and each S ∈ Skij).

Remark 3. For all i, j ∈ X , if k = 0, then Skij = {∅} and
F k
ij(∅) = ∅; so, condition (16) is always satisfied for k = 0.
The PR property moderates the interaction effects of those

relative rankings which violate the RESP property. Let i, j ∈
X be such that {i} w {j}. Saying that each set S ∈ 2X ,
with i, j /∈ S, can be matched with a set T ∈ 2X , with
i, j /∈ T and with the same cardinality of S, such that T ∪
{i} w S ∪ {j}, the PR property implies that the effects of
the interaction with i (over the distribution of subsets with
a fixed cardinality) should (“globally”) dominate the effects
of the interaction with j.

From a slightly different perspective, note that the PR
property for a total preorder w on 2X can be introduced
by comparing the elements of the sets Σk

ij = {S ∪ {i} :

S ∈ Skij} and Σk
ji = {S ∪ {j} : S ∈ Skij} when they

are arranged in descending order of preference, from the
most preferred to the least preferred according to w, for
each k = 0, 1, . . . , |X| − 2. Precisely, define two bijections
σk
ij , σ

k
ji : {1, . . . , |Skij |} → Skij such that

σk
ij(l) ∪ {i} w σk

ij(m) ∪ {i}

and
σk
ji(l) ∪ {j} w σk

ji(m) ∪ {j},
for each l,m ∈ {1, . . . , |Skij |} with l < m. Then a total
preorder w on 2X such that

σk
ij(l) ∪ {i} w σk

ji(l) ∪ {j},

for each i, j ∈ X such that {i} w {j}, each k =
0, 1, . . . , |X| − 2 and each l ∈ {1, . . . , |Skij |}, satisfies the

PR property. In other terms, for each i, j ∈ X such that
{i} w {j} and for each k = 0, 1, . . . , |X| − 2, the PR prop-
erty admits the possibility of relative rankings which violate
the conditions imposed by the RESP property (i.e., S ∪ {j}
is preferred to S ∪ {i}) due to the effect of interaction with
the objects in S. Nevertheless, such an interaction should be
compatible with the requirement that, between sets of the
same cardinality, the original relative ranking between {i}
and {j} should be preserved with respect to the position of
subsets in Σk

ij and Σk
ji when they are arranged in descend-

ing order of preference (i.e., the most preferred subsets in
Σk

ij should be preferred to the most preferred subsets in Σk
ji;

the second most preferred subsets in Σk
ij should be preferred

to the second most preferred subsets in Σk
ji, etc.).

The following proposition establishes the connection be-
tween the PR property and Shapley extensions.

Proposition 5. Let w be a total preorder on 2X . If w satis-
fies the PR property, then w is a Shapley extension.

Proof. We want to prove that if w satisfies the PR property,
then {i} w {j} ⇔ φi(v) ≥ φj(v) for every v ∈ GXw .

By PR, for each k = 0, 1, . . . , |X| − 2 and each i, j ∈ X
such that {i} w {j} and Skij 6= ∅ there exists a bijection
F k
ij : Skij → Skij satisfying conditions (16); it immediately

follows that∑
S∈Sk

ij
p(S) dSij(v) =∑

S∈Sk
ij
p(S)

(
v(S ∪ {i})− (v(S ∪ {j})

)
=∑

S∈Sk
ij
p(S)

(
v(S ∪ {i})− (v(F k

ij(S) ∪ {j})
)
≥ 0,

(17)
where p(S) = |S|!(|N |−|S|−2)!

(|N |−1)! , for each S ∈ 2X .
proof of PR⇒ [{i} w {j} ⇒ φi(v) ≥ φj(v)]:

By relation (3) and (17), for each i, j ∈ X such that {i} w
{j}, we have that

φi(v)− φj(v) =
∑|X|−2

k=0

∑
S∈Sk

ij
p(S) dSij(v) ≥ 0,

(18)
where the inequality directly follows from relation (17).

proof of PR⇒ [{i} w {j} ⇐ φi(v) ≥ φj(v)]:
Now, take i, j ∈ X such that φi(v) ≥ φj(v) for each
v ∈ GXw numerical representation of w. Suppose {j} = {i}.
By relations (3) and (17) we then obtain the following con-
tradiction

φj(v)− φi(v) =
∑|X|−2

k=0

∑
S∈Sk

ij
p(S) dSji(v) > 0.

(19)

The following examples show that a Shapley extension
which does not satisfy the RESP property, does not need to
satisfy the PR property. In particular, the total preorder pre-
sented in Example 5 will be also useful, at the end of this
section, to stress the difference between Shapley extensions
and other extensions based on alternative game theoretic in-
dices.

Example 4. Let X = {1, 2, 3}. Consider the Shapley ex-
tension wa of Example (1). Note that {2} = {1}, but
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{1, 3} = {2, 3}. Consequently, a bijection F 1
12 which sat-

isfies condition (16) does not exist.
Example 5. Let X = {1, 2, 3, 4, 5} and let G = {{1},
{1, 2}, {2, 3}, {2, 4}, {2, 5}, {1, 3, 4}, {2, 3, 5}, {2, 4, 5},
{1, 3, 4, 5}, {1, 2, 3, 4, 5}}. Consider a total preorderwd on
2X such that G and B = 2X \ G form two indifference
classes with respect to wd, and where S =d T for each
S ∈ G and each T ∈ B.

Note that for every numerical representation v of wd, v ∈
GXwd , elements 3, 4, 5 are symmetric players (i.e., for each
S ∈ 2X , with i, j /∈ S, v(S ∪ {i}) = v(S ∪ {j})), and
therefore φ3(v) = φ4(v) = φ5(v).

Let Kv = v(S)− v(T ) > 0 for each S ∈ G and T ∈ B.
Using relation (3), we have that

φ1(v)− φ2(v) = 1
4

[
v(1)− v(2)

]
+

1
12

[
v(1, 3)− v(2, 3) + v(1, 4)− v(2, 4)+

v(1, 5)− v(2, 5)
]
+

1
12

[
v(1, 3, 4)− v(2, 3, 4) + v(1, 3, 5)− v(2, 3, 5)+

v(1, 4, 5)− v(2, 4, 5)
]
+

1
4

[
v(1, 3, 4, 5)− v(2, 3, 4, 5)

]
=

1
4Kv + 1

12 (−3Kv) + 1
12 (Kv − 2Kv) + 1

4Kv =

1
6Kv > 0,

(20)
and

φ2(v)− φ3(v) = 1
4

[
v(2)− v(3)

]
+

1
12

[
v(1, 2)− v(1, 3) + v(2, 4)− v(3, 4)+

v(2, 5)− v(3, 5)
]
+

1
12

[
v(1, 2, 4)− v(1, 3, 4) + v(2, 4, 5)− v(3, 4, 5)+

v(1, 2, 5)− v(1, 3, 5)
]
+

1
4

[
v(1, 2, 4, 5)− v(1, 3, 4, 5)

]
=

1
40 + 1

12 (3Kv) + 1
12 (−Kv +Kv) + 1

4 (−Kv) = 0.
(21)

However, wd does not satisfy the PR property. In fact,
{1} wd {2} but S ∪ {2} wd S ∪ {1} for each S ∈ S112 =
{{3}, {4}, {5}}. Consequently, a bijection F 1

12 which satis-
fies condition (16) does not exist.

The PR property can be useful to find classes of Shap-
ley extensions which do not satisfy the RESP property. This
is the case, for example, of a family of trichotomous total
preorders (Brams and Fishburn 1994; Ju 2005) on 2X

k

, for
each k = 2, . . . , |X|, where (non-singleton) subsets of X of
cardinality k are partitioned into three indifference classes.
This kind of preferences are particularly realistic in voting
situations (Brams and Fishburn 2002), where voters face the
problem to choose from a set of candidates a non-empty
subset of committee members and they not have much in-
formation about the quality of possible committees, but they

still are able to distinguish “best”, “worst” and sometimes
“medium” committees.

Precisely, we say that a total preorder on 2X is trichoto-
mous (per cardinality k) if, for each k = 2, . . . , |X|, the
elements of 2X

k

can be partitioned into three indifference
classes, which are called the set of good subsetsGk = {G ∈
2X

k |G w S for each S ∈ 2X
k}, the set of bad subsets

Bk = {B ∈ 2X
k |S w B for each S ∈ 2X

k} and the set
of null subsetsNk = {N ∈ 2X

k |G = N = B for each G ∈
Gk and each B ∈ Bk}.
Proposition 6. Let w be a trichotomous (per cardinal-
ity k) total preorder on 2X . For each i ∈ X and each
k = 2, . . . , |X| − 1, let Gk

i = {S ∈ Gk : i ∈ S} be
the set of good subsets of cardinality k containing i, and let
Bk

i = {S ∈ Bk : i ∈ S} be the set of bad subsets of car-
dinality k containing i. If |Gk

i | ≥ |Gk
j | and |Bk

i | ≤ |Bk
j | for

each k = 2, . . . , |X| − 1 and each i, j ∈ X with {i} w {j},
then w is a Shapley extension.

Proof. By Proposition 5, it is sufficient to prove that w sat-
isfies the PR property. First, for each i, j ∈ X and each
k = 1, . . . , |X| − 2, define the set of good subsets of car-
dinality k containing i but not j as the set Gk

ij = {S ∈
Skij :

(
S ∪ {i}

)
∈ Gk+1

i }; in a similar way, define the set of
bad subsets of cardinality k containing i but not j as the set
Bk

ij = {S ∈ Skij :
(
S ∪ {i}

)
∈ Bk+1

i }.
Note that, for each i, j ∈ X and each k = 1, . . . , |X| − 2,

|Gk+1
i | ≥ |Gk+1

j | ⇔ |Gk
ij | ≥ |Gk

ji|, (22)

and
|Bk+1

i | ≥ |Bk+1
j | ⇔ |Bk

ij | ≥ |Bk
ji| (23)

Now, let i, j ∈ X be such that {i} w {j}. Define a bijec-
tion F k

ij : Skij → Skij such that, for each k = 1, . . . , |X| − 2,
Gk

ji ⊆ F k
ij [G

k
ij ] and F k

ij [B
k
ij ] ⊆ Bk

ji, where F k
ij [G

k
ij ] and

F k
ij [B

k
ij ] are, respectively, the images of Gk

ij and Bk
ij under

F k
ij (by relations (22) and (23) such a bijection F k

ij exists, for
each k = 1, . . . , |X| − 2). So, for each S ∈ Gk

ij ∪ Bk
ij and

for each k = 1, . . . , |X| − 2, condition (16) is satisfied. On
the other hand, for each S ∈ Skij \

(
Gk

ij ∪Bk
ij

)
and for each

k = 1, . . . , |X| − 2, we have that
(
S ∪ {i}

)
∈ Nk

i , whereas(
F k
ij(S)∪ {j}

)
∈ Nk

j or
(
F k
ij(S)∪ {j}

)
∈ Bk

j , and, conse-
quently, S ∪ {i} w F k

ij(S) ∪ {j}. It remains proved that w
satisfies the PR property.

Remark 4. A total preorder w on 2X such that each (non-
singleton) subset of X of cardinality k, for each k =
2, . . . , |X|−1, is classified either as “good” (i.e., it belongs
to the indifference class Gk) or as “bad” (i.e., it belongs
to the indifference class Bk), is said dichotomous (per car-
dinality k). As a direct consequence of Proposition 6, a di-
chotomous (per cardinality k) total preorder w on 2X such
that |Gk

i | ≥ |Gk
j | for each k = 2, . . . , |X| − 1 and each

i, j ∈ X with {i} w {j}, is a Shapley extension.
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Example 6. Let X = {1, 2, 3, 4} and let we be a total
preorder such that {1, 2, 3} we {1, 3, 4} 'e {1, 2, 4} =e

{1, 2, 3, 4} =e {2, 3, 4} =e {1, 2} we {1, 3} we {2, 3} =e

{1} =e {2} =e {3} =b {4} =e {1, 4} we {2, 4} we

{3, 4} =e ∅. Note that we is a dichotomous total preorder
on 2X . Moreover, we have that

G2
1 = {{1, 2}, {1, 3}}, G2

2 = {{1, 2}, {2, 3}},
G2

3 = {{2, 3}, {1, 3}}, G2
4 = ∅;

G3
1 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}},

G3
2 = {{1, 2, 3}, {1, 2, 4}}, G3

3 = {{1, 2, 3}, {1, 3, 4}},
G3

4 = {{1, 2, 4}, {1, 3, 4}}.

By Remark 4, it follows that we is a Shapley extension.
We conclude this section with some remarks about the

comparison of Shapley extensions with extensions corre-
sponding to other probabilistic values (Dubey, Neyman, and
Weber 1981; Weber 1988; Monderer and Samet 2002), that
are a natural generalization of the Shapley value where play-
ers possess their own probabilistic distribution over all coali-
tions that can be formed. Let X be a finite set and let
p = ((pSi )S⊂X,i/∈S)i∈X be a collection of probability dis-
tributions (so, for all i ∈ X , pSi ≥ 0 for each S ∈ 2X with
i /∈ S and

∑
S⊂X,i/∈S p

S
i = 1).

The probabilistic value πp : CX → IRX is then defined
as the vector of expected payoffs of each player with respect
to p, that is

πp
i (v) =

∑
S⊂X:i/∈S

pSi m
S
i (v), (24)

for each v ∈ CX and each i ∈ X . Note that the Shapley
value φ(v) equals the probabilistic value πp̂(v), where, for
each i ∈ X , p̂Si = 1

|X|(|X|−1
|S| )

= |S|!(|X|−|S|−1)!
|X|! for each

S ⊂ X such that i /∈ S (i.e., coalitions of the same cardinal-
ity k, for each k = 0, 1, . . . , |X| − 1, have equal probability,
and each cardinality is selected with the same probability).
Another very well studied probabilistic value is the Banzhaf
value (Banzhaf III 1964), which is defined according to re-
lation (24) as the function πp̃

i (v), where, for each i ∈ X ,
p̃Si = 1

2|X|−1 for each S ⊂ X such that i /∈ S (i.e., each
coalition has an equal probability to be chosen).

Consequently, other “probabilistic extensions” can be de-
fined according to Definition 1, with πp, for some collec-
tion of probability distributions p, in the role of φ. Formally,
given a probabilistic value πp, where p is a collection of
probability distributions as defined above, a πp-based ex-
tension is defined as a total preorder w on 2X such that

{i} w {j} ⇔ πp
i (v) ≥ πp

j (v)

for each numerical representation v ∈ GXw ofw and all i, j ∈
X . For instance, adopting the collection p̃ defined above, a
Banzhaf extension is defined.

Now, a probabilistic value πp corresponding to a collec-
tion of probability distributions p such that coalitions of the
same size have equal probability, i.e. p satisfies the condi-
tion pSi = pk for each k = 0, 1, . . . , |X| − 1 and each
S ⊂ X such that i /∈ S and |S| = k, is a semivalue

(Dubey, Neyman, and Weber 1981; Weber 1988). In addi-
tion, a semivalue with all positive probabilities is a regu-
lar semivalue (Carreras and Freixas 1999; 2000; Lucchetti,
Radrizzani, and Munarini 2010) as, for instance, the Shapley
value or the Banzhaf value.

According to Remark 2, for every regular semivalue πp

we have that
πp
i (v)− πp

j (v) =
∑

S⊂X:i,j /∈S

(p|S| + p|S+1|) dSij(v). (25)

Following the same arguments used in the proof of Propo-
sition 3 for Shapley extensions, with πp in the role of φ, it
can be easily verified that an extension which satisfies the
RESP property is also a πp-based extension, for every regu-
lar semivalue πp. Moreover, it is also possible to reformulate
the SE property for every regular semivalue πp in the follow-
ing way.
Property 5 (Sub-Extendibility?, SE?). Let πp be a regular
semivalue. A πp-based extension w on 2X satisfies the sub-
extendibility? property iff for each S ∈ 2X \ {∅} we have
that wS is a πp-based extension on 2S .

Then, it is straightforward to adapt the arguments of
Proposition 4, with a regular semivalue πp in the role of φ
and probabilities p|S| in the role of w(S), for each S ∈ 2X

with i /∈ S. Consequently, we can state the following result,
which extends Theorem 1.
Theorem 2. Let πp be a regular semivalue. Let w be a to-
tal preorder on 2X which satisfies the MON property. The
following two statements are equivalent:
• (i) w satisfies the RESP property.
• (ii) w is a πp-based extension and satisfies the SE? prop-

erty.
As a side-product of Theorem 2 we have that for a large

family of coalitional games (precisely, those coalitional
games who are a numerical representation of a total preorder
that satisfies the RESP property) regular semivalues are ordi-
nal equivalent (Tomiyama 1987; Carreras and Freixas 2008;
Freixas 2010), i.e. the rankings on the set of players in-
duced by regular semivalues coincide. For instances, airport
games (Littlechild and Owen 1973; Littlechild and Thomp-
son 1977) fall in this large family of coalitional games. In
airport games, the objective is to divide the costs of a land-
ing strip of an airport among the landings that occur during
the lifetime of the airport. Since not all planes will need a
landing strip of the same length, the cost imputed to a coali-
tion of landings S is the cost associated with a landing strip
long enough to accommodate all of the landings in S. As-
suming that the cost of the landing strip increases with its
length, it follows that the marginal contribution (to every
possible coalition) of a landing that need a longer strip is
always higher than the marginal contribution of a landing
that need a shorter one. In other words, an airport game is
a numerical representation of a total preorder that satisfies
the RESP property and, consequently, all regular semivalues
applied to an airport games are ordinal equivalent.

However, in general, an extension based on a certain reg-
ular semivalue does not need to coincide with another exten-
sion based on a different regular semivalue. For example, a
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Shapley extension is not, in general, a Banzhaf extension, as
it is shown by the following example.
Example 7. Let X = {1, 2, 3, 4, 5}. Consider the total pre-
order wd on 2X of Example 5. First, note that

p̃|S| + p̃|S+1| =
1

2|X|−1
+

1

2|X|−1
=

1

8
for each S ⊂ X such that i, j /∈ S. Then, by relation (25),
we have that

πp̃
1 (v)− πp̃

2 (v) =

1
8Kv + 1

8 (−3Kv) + 1
8 (Kv − 2Kv) + 1

8Kv =

− 1
4Kv < 0,

(26)

for every numerical representation v of wd in GXwd , and
where Kv = v(S)− v(T ) > 0 for each S ∈ G and T ∈ B.
On the other hand, {1} =d {2}. Therefore, wd is not a πp̃-
based extension, i.e. it is not a Banzhaf extension.

Note that the extensionwd used in Examples 5 and 7 does
not satisfy the PR property. In fact, by the proof of Proposi-
tion 5, with πp in the role of φ and (p|S|+p|S+1|) in the role
of p(S) for each S ⊂ X such that i, j /∈ S, it can be also
verified that an extension which satisfies the PR property is
also a πp-based extension, for every regular semivalue πp.

6 Conclusions
In this paper we introduced the class of Shapley extensions
for the problem of ranking sets of objects of a universal set
X when only a primitive ranking on X is given. We showed
that this family of extensions is flexible enough to represent
possible effects of interaction among objects. We also dis-
cussed some properties for extensions with the purpose of
studying under which conditions Shapley extensions may be
applied to represent preferences over sets of objects exclud-
ing or including interaction effects among the objects.

We want to remark that the the family of lexicographic
rank-ordered extensions introduced by Bossert (1995), and
which generalize rankings like lexi-min and lexi-max, sat-
isfy the RESP property (Bossert 1995), and indeed are Shap-
ley extensions. More precisely, since lexicographic rank-
ordered extensions have been originally defined for ranking
sets of objects with a fixed cardinality (Bossert 1995), we
may conclude that each ranking on the power set of a univer-
sal set X that ranks subsets of a fixed cardinality q, for each
q = 2, . . . , |X|, according to a lexicographic rank-ordered
extension, is a Shapley extension.

The direction of our future research is the analysis of sub-
families of Shapley extensions, driven by properties which
are aimed at represent intermediate levels of interactions,
possibly specified together with the information concerning
the primitive ranking on X .
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