
 

 
 

Abstract 
Applicative languages (Church’s λ-calculus and Curry’s 
combinatory Logic) and functional types are useful logical 
tools for studying and representing the meanings of verbal 
predicates and other linguistic operators (prepositions, 
preverbs …) of natural languages by means of combinations 
of abstract and cultural primitives. The situations are 
semantic expressions associated to sentences; they are 
written by means of applicative expressions (ae) generated 
from semantic abstract primitives: (i) cognitive basic types 
(individual, massive, distributive class, abstract places, 
activity, situations…); (ii) operators transforming assigned 
types (as topological operators : take the interior, exterior, 
boundary, closure of an abstract place); (iii) kinematic, 
dynamic, cause relators:  MOVT and CHANG expressing 
movement or change the state of an entity; FAIRE, CONTR 
(to control) and TELEO (to intend a teleonomic situation) 
introducing a link between a kinematic situation and an 
entity (agent, intermediary instrument…); CAUSE 
establishing a link between two different situations (a cause 
and an effect). These abstract primitives are interpreted 
inside of the cognitive fields of perception and action. They 
are sources of numerous grammaticalizations in languages. 
Verbal predicates involve an actualization over topological 
intervals of instants; thus, it is necessary to introduce 
complex operators for transforming a situation into an 
aspectual situation (state, event, process …). This article 
presents systematically these abstract primitives with some 
examples of meanings represented inside the applicative 
framework. The applicative expressions of situations 
(semantic schemes) defined to a semantic level can be 
integrated into lexical predicates of another level, by using 
combinators of combinatory logic; this integration process 
in Cognitive and Applicative Grammar (GAC) has already 
been presented (in precedent FLAIRS).  

Applicative representations and functional 
types   

Applicative expressions, designated by ‘ae’, are generated 
from a set of elementary operators and absolute operands 
by means of the operation of application of an operator ‘X’ 
doing an act over an operand ‘Y’; the result, designated by 
‘XY’, is an ‘ae’ that can be again an operator or an operand 
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according to the context. The objects are always absolute 
operands. There are different types of objects and 
operators. The Church’s functional types are generated 
from basic types by the following rules: (i) The basic types 
are functional types; (ii) If ‘α’ et ‘β’ are functional types, 
than ‘Fαβ’ is a functional type (Church 1941; Curry 1958). 
A functional type ‘α’ assigned to an ‘ae’ ‘X’ is noted 
[X: α]. The types of operators are always with the form 
‘Fαβ’. Let an operator ‘X’ and an operand ‘Y’ of ‘X’, the 
applicative rule with types is: 
  
[X: Fαβ] , [Y:α]  => [XY :β] 

 
A product of types is canonically associated to a functional 
type: any operator ‘fn’ with a product of types is 
transformed into an unary operator ‘Curry(fn)1’, according 
to the Curryfication principle : 
 
[ fn : F(α1  x  α2 … x αn )β ]   ≈   [ Curry(fn)1 :  Fα1F α2 
…Fαn β ] 
 
Remark : We use two notations; one is prefixed : an 
operator ‘f’ is always positioned before his operand: ‘fXY 
=def ((fX)Y) ; the second is infixed : a binary relator ‘f2’ is 
positioned between two successive operands according to 
the notational equivalence : [X f2 Y]  =def   f2YX.  
 
The Church’s lambda calculus and Curry’s Combinatory 
Logic (Hindley and Seldin, 1986) are two examples of 
applicative languages. In Combinatory Applicative 
Categorial Grammars (CACG) (Desclés and Biskri 1995), 
Universal Applicative Grammar (GAU) (Shaumyan 1987) 
and Applicative and Cognitive Grammar (GAC) (Desclés, 
1990), all linguistics units (grammatical and lexical units) 
are operators or absolute operands with assigned functional 
types; in these formal frameworks, the meanings of verbal 
predicates and other linguistic operators are also analysed 
by ‘ae’ generated from semantic primitives: basic cognitive 
types; topological operators and locating relators; static, 
kinematic, dynamic, causal relators; aspectual operators, 
enuntiative and commitment operators (Desclés 2009). For 
instance, the meanings of prepositions are analysed by 
means of topological operators and by change relating 
different static situations. Thus, in the sentence the book is 
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on the table, the preposition on express an upper side of the 
place “the table”.  The verbal meanings are analysed by 
means of different and successive situations located in a 
temporal framework reference and represented by semantic 
and cognitive schemes (SSC); the components of these 
SSC are ‘ae’ with assigned functional cognitive types 
(Abraham 1995; Abraham and Desclés 1992; Djioua 
2000). The “combinators” (abstract operators for 
combining and transforming operators) of Combinatory 
Logic (Curry 1958) are useful tools to explain on one side, 
in a top down approach (or in a synthetic integrative way), 
how a scheme - an applicative representation of a verbal 
meaning - can be integrated into a predicate frame with an 
appropriate  number of terms functioning as operands and, 
in other side, in a bottom up approach (or an analytic way), 
how a lexical predicate can be semantically decomposed 
and represented by an applicative scheme (Desclés 1990, 
2004, 2010). In this presentation, in first, we list basic 
cognitive primitives types, associated to different kinds of 
objects and secondly, we precise systematically different 
primitive semantic operators and relators used by building 
static and evolutive (kinematic and dynamic) schemes. The 
basic types, operators and relators can be closely linked to 
a cognitive perception of environment and to actions onto 
this environment. Thus, this model belongs to the field of 
cognitive representations (Langacker 1987, 1991; Cruse 
1986; Desclés 1990, 1995; Lüdi and al. 1995; Croft and 
Cruse 2004; Pottier 2000) where the categories of natural 
languages interact with the categorizations organized by 
perception and action abilities of humans, with a more or 
less important intention.  
 
Basic cognitive types 
 
We consider different cognitive types of absolute operands 
(“objects”): 
 
- J  :  type of individual (and enumerable) objects as: John, 
this car, a table, an human 
- M : type of massive (and no enumerable) objects as: 
butter, water,  
- I : type of content of information as: (read in) the 
newspaper 
- L : type of abstract places with subtypes : LS :   spatial 
place as: in this street /  on the table;  LT :  temporal place 
as an interval of successive instants: (in) afternoon, (in) 
this year; LA :  activity: (in) love, (in) working  
- D : type of  distributive classes as: the humans  (a class of 
humans), the cars (a class of cars) 
- K :type of collective class as: the army, an administration 
- H : type of propositional expressions with two possible 
values: true and false 
- T : type of intervals of instants 
- Sit : type of situations with subtypes of situations : 
- Sitstatic : type of static situations  

- Sitstatic-space  : type of static situations in the space  
- Sitevol : type of evolutive situations with two subtypes : 
Sitkinem : type of cinematic situations and Sitdynam : type of 
dynamic situations   
- Sitcaus : type of causal situations 
 
The meanings of lexical predicates are represented by 
situations viewed as applicative expressions that are 
compositions of the above abstract semantic primitives 
with some other cultural primitives deeply related to social 
experiences and technology. For instance, to-be-alive is 
related to the human experience, it is considered as a 
cultural primitive. A situation is an ‘ae’ representing a fact 
(actual or imaginary), that is a denotation associated to a 
propositional expression. There is a deep relation between 
the type ‘Sit’ of situations and the type ‘H’ of true values; 
indeed, a situation must be actualized onto a temporal 
domain (or spatio-temporal) and this actualisation entails 
an evaluation by true values, hence : [situation : Sit] if and 
only if  [actualization (situation) : H ] 
 
Remarks : 1°) The type of a relation between n entities is: 
‘Fα1F α2 …FαnH’. A binary relator ‘f2’, used for 
expressing a situation with two operands, builds up, by the 
same way, an expression with the type H, hence the 
equivalence: 
 
[U:α], [V:β], [f2: FαFβSit] <=> [U:α], [V:β],[f2: FαFβH]  
 
2°) The type ‘FJH’ is the type of a property (or a concept 
applied to individuals with type J); it is a subtype of the 
type D of distributive classes. 
 
Operators for changing basic types 
Different operators transform the cognitive types assigned 
of a given entity. Let us take examples: 
 
- The operator Loc transforms the type J of an individual 
object A into the type L : Loc(A) is now viewed as a place: 
[Loc : FJL], [A : J]  => [Loc(A) : L]; 
 
- Topological operators act upon a place Loc(A) to define a 
part of this place: 
[A : J], [Loc : FJL], [Top : FLL]  => Top(Loc(A)) : L]; 
   
- The operator Ind transforms an entity (with any type α) 
into an entity with the type ‘J’ of individual objects:  
[Ind : FαJ], [A: α]  => [Ind(A) : J]. 
 
 Let us give some examples: 
- [Loc: FJL] , [an house : J] => [Loc(an house) : L]  
To sell two houses  /  to be in an house; 
- [a-part-of : FMJ], [butter : M] => [a part of  butter : J ];  
- [one book : J ] => [ Top (Loc(one book)) : L ]  
one book  / on a book. 
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Topological operators defined on abstract places  
There are topological operators acting onto places with the 
type ‘L’: “to take the interior of” (Int), “to take the closure 
of” (Clos), “to take the exterior of” (Ext), and “to take the 
boundary (a frontier) of” (Fro) ; for instance: 
  
- in a house → Int(Loc(house))  
- at the house → Clos(Loc(house))  
- out of a house → Ext(Loc(house))  
- on the boundary of the river → Fro(Loc(the-river)) 
 
Let us take a global space Loc(U), defined as a set of 
possible positions taken by an object in this space; Loc(X) 
is a part of the global place Loc(U).  The two topological 
operators ‘Int’ and ‘Clos’ define a Kuratowski’s algebra 
(Kelley 1961 : 43; 56-57) on places with the following 
properties: 
 
Int(Loc(X)) = Loc(X)  
Int(Loc(X))  ⊆   Loc(X)   
Int(Loc(X1) ∩ Loc(X2)) = Int(Loc(X1)) ∩ Int(Loc(X2) 
Int(Int(Loc(X)) = Int(Loc(X))  
Clos(Loc(∅)) = Loc(∅) = ∅  
Clos(Loc(X)) ⊇ Loc(X)  
Clos(Clos(Loc(X)) = Clos(Loc(X))     
 
We derive other topological operators from these two basic 
operators ant the complementary operator with specific 
properties: 
 
Ext(Loc(X))   =def   Loc(U) − Clos(Loc(X)) 
Fro(Loc(X))   =def   Clos(Loc(X)) − Int(Loc(X))   
Fro(Loc(X))   =def   Clos(Loc(X))  ∩  Clos(Ext(Loc(X))    
Int(Loc(X) is the biggest open place contained in Loc(X) 
Clos(Loc(X)) is the most small place containing Loc(X) 

 
The different topological places of a global place Loc(U) 
are organized in a network with inclusions between places, 
overlapping, connection by boundaries... (Egenhofer and 
Herring 1990; Casati and Varzi 1999; Pustejovsky 2009). These 
topological operations are used for representing the 
meanings of prepositions (Desclés and Guentchéva 2010). 
 
Static Archi-relator (rep) for locating  
Locating archir-relator ‘rep’, introduced in linguistics by 
A. Culioli (1968, 1999) and formalised by (Desclés and 
Froidevaux, 1982; Desclés 1990) generates abstract 
schemes of locating ‘rep VU’ (or, with a prefixed notation: 
[U rep V]) between a located entity ‘U’ and a locating 
entity ‘V’: 
 
[U : α], [V: β],  [rep: FαFβ H]  =>  [rep VU : H] 
 
Several semantic values are specifications of this general  
archir-relator ‘rep’ : identification (=) between entities; 

membership (∈) of an individual entity to a class; 
mereonomic ingredience (ε) between a part and a whole; 
inclusion (⊂) between classes; relators of locating (is-
located) relative to an abstract place, for instance 
topological places; relator (has-access-to) meaning that 
somebody may access to an object, a place, an activity…: 
 
[ =  FJFJH ] :    [Socrates =  the master of Plato]  
[ε : FMFMH] :   [butter ε   butter] ; [water ε  a river] 
[∈ : FJFDH] :    [ Socrates ∈  {x; is-a-philosopher (x)} ] 
[⊂ : FDFDH] :   [{x; is-a-man(x)} ⊂  {x; is-an-animal 
(x)}] 
[is-located : FJFLH] : [John is-located (Int(Loc(Florida))) ] 
[has-access-to: FJFJH] : [John has-access-to books ] 
 
Static situations expressing different spatial positions of an 
object (the ball) relative to a place (the swimming pool) are 
for instance: 
 
- [(the-ball) is-located (Int(Loc(the- swimming pool))) ]  
- [(the-ball) is-located (Ext(Loc(the- swimming pool)))]  
- [(the-ball) is-located (Fro(Loc(the-swimming pool))) ]  
 
Evolutive (kinematic and dynamic) operators 
 
A kinematic situation express a transformation (a 
movement or a change) from one static situation SIT1 
oriented towards a terminal situation (or to a situation in 
progress) SIT2. ‘MOVT’ and ‘CHANG’  are two kinematic 
relators with functional types: 
 
MOUVT :  F Sitstatic-space  F Sitstatic-space Sitkinem 
CHANG :  Fsitstatic F Sitstatic Sitkinem 

 
The relator MOUVT is restricted to movements in space; 
the relator CHANG is used for changing or transforming 
the properties affecting an object. In a spatial movement, a 
new situation SIT2 is built from a given SIT1 by the 
operator MOVT° (with the type Fsitstatic sitstatic ) and the 
kinematic situation (viewed as a binary relation): 
 
[ SIT2  =  MOVT° (SIT1) ] 
[ Sitkinem  =   MOVT (SIT1) (SIT2) ]  
 
The change of properties of an entity generates a similar 
unary operator CHANG° and binary relation. 
 
Remark : We designate by ‘SIT [x,y,..]’ a situation where 
‘x’, ‘y’, … are involved as being parameters.  For instance, 
the meaning of the lexical verb to enter in the sentence The 
ball enters the room, is represented by the following 
kinamatic scheme (a movement from the outside of into 
inside of a same place): 
 
MOVT  (SIT1 [x, y]) (SIT2 [x, y]) 
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whith : SIT1 [x, y]  =def  is-located (Ext(Loc(y))) x  
 SIT2 [x, y]  =def  is-located (Int(Loc(y))) x 
 [ x := the-ball] ; [y := the-room]  
 
A dynamic situation express that an entity (often an 
individual entity) produces a kinematic situation by 
controlling or not this production. The primitives FAIRE, 
CONTR and TELEO are dynamic relators. FAIRE builds a 
relation between the entity producing and a produced 
cinematic transformation. CONTR (to control) express that 
an agent has a control over a kinematic situation (or a 
dynamic situation), that is this agent has the ability to start 
and also to stop a movement or a change expressed by a 
kinematic or a dynamic situation. An agent can control a 
transformation (a movement or a change) by an 
intermediary (for instance, an instrument) that produces 
effectively this transformation. TELEO holds between an 
agent (an entity having the ability to start and to stop a 
cinematic or dynamic situation) and an intended situation. 
The primitive CAUSE establish a relation between two 
situations where the first is the cause (an event or a class of 
events), of the second (the effect, result, side effect …). 
The types of these dynamic relators are: 
 
- FAIRE :   FJ F Sitkinem Sitdynam 
- CONTR : FJ F Sitevol Sitdynam 
- TELEO :  F J F Sit H 
- CAUSE :  F Sit Sit 
 
We can express different dynamical semantico-cognitive 
schemes (SSC); for instance: 
 
- FAIRE (CHANG (SIT1

stat [y] )( SIT2
stat [y])) x 

- CONTR (CHANG (SIT1
stat  [x])( SIT2

stat [x])) x 
- CONTR (FAIRE (CHANG (SIT1

stat [x,y])( SIT2
stat [x,y])) v) x 

- [ (CONTR (FAIRE (CHANG (SIT1
stat [x,y])( SIT2

stat [x,y]))v)x)         
  & (TELEO (SIT2

stat [x,y]) x) ] 
- CAUSE (SIT1 [x,y]) (SIT2 [u,v]) 

 
These schemes are useful to explain the grammatical roles 
(“agent”, “patient”, “instrument”, “experiencer” “location”, 
…) by means of abstracts relations defined inside a SSC. 
For instance, a middle scheme indicates that an agent 
controls his action affecting himself; a semantic transitive 
scheme indicates that an agent controls a change affecting 
a patient and not directly the patient. Let us give examples 
of SSC. The meaning of the lexical verb to enter in the 
sentence John enters the room is represented by the 
dynamic scheme (without a control onto the movement): 
 
CONTR (MOUVT (SIT1

stat
 [u,y]) (SIT2

stat [u,y])   
 
with :  SIT1

stat
 [u,y]  =def  is-located (Ext(Loc(y))) u 

 SIT2
stat

 [u,y]  =def  is-located (Int(Loc(y))) u 
 [ u := John]; [y := the-room] 

  
The lexical verb to enter in the sentence John enters his 
car in the garage is now represented by the dynamic 
scheme (with a control onto the movement):  
 
CONTR (MOUVT (SIT1

stat
 [x,y]) (SIT2

stat [x,y]) u  
 
with :  SIT1

stat
 [x,y]  =def is-located (Ext(Loc(y)))  

 SIT2
stat

 [u,y]  =def is-located (Int(Loc(y))) x 
 [ u := John]; [y := the-garage] ; [ x := his-car]
  
The meaning of to involve in the sentence Being a soldier 
involves getting killed is represented by a causal scheme: 
  
CAUSE (SIT1

stat [x]) (SIT2 cinem [x]) 
 
with:  SIT1

stat [x])  =def  being-a-soldier (x) 
 SIT1

kinem [x]) =def  getting (to-be killed (x))(x) 
 [ x = anybody ] 

 
Aspectual operators : EVEN F, STATE O, 
PROC J 
 
A situation is expressed by an ‘ae’; it represents a fact 
(actual or imaginary), it is a denotation associated to a 
proposition. Since each verb contains an underlying 
temporal dimension, it is necessary to introduce aspectual 
operators for giving this dimension. Each aspectual 
operator transforms into an aspectualised situation a 
proposition - a predicative relation or a “lexis”, designated 
by ‘Λ’, in the sense of Culioli (1999), -; this aspectualised 
situation is actualised over a topological interval of instants 
(with open or closed bounds). The aspectual scheme 
associated to this operator ASPI is given by: 
   
 [Λ: H ] , [ ASPI : F Sit FT Sit ]  [ I : T]  =>    
  [ ASPI (Λ) : Sit ]  &  [ASPI(Λ) : H]  
 
The expression ‘ASPI(Λ)’ is an aspectualised situation; it 
express that the predicative relation ‘Λ’ is viewed as a state 
or an event or a process actualised over a topological 
interval ‘I’ (where ‘T’ is the type of intervals of instants) 
and it is true at different instants of this interval ‘I’ 
according to the choice of aspect (Desclés 1989; Desclés 
and Ro 2011).  
An state is actualised as a static situation actualised over 
an open interval O : ‘Λ’ is true at any instant of O; for each 
open interval O’ included into O, ‘Λ’ is also true. 
An event is actualised as an evolutive situation : ‘Λ’ has 
been actualised on the close interval F; it is true at the 
closed bound at right of F; for any closed interval F’ 
included in F, ‘Λ’  is in general no true. 
A process is an actualisation of an evolutive situation such 
that it is actualized over an interval J with a closed bound 
at left and an open bound at right ; it is true at any instant 
of the interval J but it is not true at the right open bound of 
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J, because the process is not complete. If an interval J’, 
with an open bound at right, is such that the closed bounds 
at left of J’ and J are the same, then ‘Λ’ is also true for any 
instant of J’. In a complete process, the right bound of the 
interval J became closed, then the complete process 
generates an event. 
An event is an aspectual specification of a situation 
expressed by a predicative relation; it does not admit a 
subclassification into “Processes”, “States” and 
“Transitions” as Pustejovsky (1995: 68, 246) assumes (see 
also Pustejovsky and al., 200); for us, event is not a generic 
notion but a transition between two states and it can be 
generated from a complete process.  
 
Analysis of the meaning of to kill 
 
It is known that the meaning of to kill has been analysed by 
McCawley (1993) (from the deep predicates CAUSE, 
BECOME, TO BE ALIVE and the negation NEG (Dowty, 
1979; Cann, 1993). By a different way in using other 
primitives and an applicative language, we analyse the 
meaning of the tensed verb killed in the sentence John 
killed a deer from the following scheme: 
    
EVENTF (CONTR (CHANG (SIT1

stat
 [x])(SIT2

stat [y]) x )) 
 
with :  SIT1

stat
 [y]  =def STATE O1 (∈ { z : is-alive(z)}y) 

 SIT2
stat

 [y]  =def  STATE O2  ( ¬ (∈ { z : is-alive(z)}y )) 
 [δ(O1) = γ(F)] & [δ(F) = γ(O2)] 
 [ x := John] ; [ y := the-deer] 
 
The primitive CAUSE is not used (as in Seohyun and 
Pustejovsky 2010 or McCawley 1993) since, for us, the 
situation underlying to kill integrates an agent and a patient 
in a same situation and not in two different events. The 
analysis of the meaning of lexical predicate to assassinate 
introduces the primitive of teleonomy (TELEO) since the 
murderer has planed an aim (the victim must be killed).    
The grammatical meaning of the “perfect” of the tensed 
verb has killed in the sentence John has killed a deer, 
(now, he is happy is analysed as follows: 
 
STATEO3 (has-killed y, x)  &  
∃ (EVENTF (CONTR(CHANG(SIT1

stat
 [y])(SIT2

stat [y]) x ))) 
 
with :     SIT1

stat
 [y]  =def  STATE O1 (∈{z : is-alive(z)} y) 

 SIT2
stat

 [y]  =def  STATE O2  ( ¬ (∈{z : is-alive(z)} y)) 
 [δ(O1) = γ(F)] & [δ(F) = γ(O2)] 
 [δ(F) = γ(O3)] & [ O3 ⊆ O2] 
 [x := John] ; [y := the-deer] 
 
This resulting state is actualised over an interval O3 
contained in O2 and such that O3 is contiguous to the 
previous event already actualised over F. The relation [δ(F) 
= γ(O3)] express the continuity (in the well know 
Dedekind”s sense of a continuous cut) : the closed 

boundary δ(F) at right of F is identical with the open 
boundary γ(O3) at left of O3 (Desclés 2005; Desclés and Ro 
2011). 
 
Analysis of the meaning of to give 
  
A lot of linguistic publications in Cognitive Semantics (for 
instance, R. Langacker 1987, 1991; Pottier 2000) present 
an analysis of the meaning of the lexical predicate to give, 
by using the primitive of “possession”. We replace this 
primitive by the more abstract and general primitive has-
access-to to take in account different uses of this lexical 
predicate. Indeed, when somebody gives his arm or gives 
information, he does not lose his arm or the exchanged 
information. The more general representation of to give in 
John gave information to his friend is: 
  
EVENTF (CONTR (CHANG (SIT1

stat
 [x,y,z])(SIT2

stat [x,y,z]) x )) 
 
with :  SIT1

stat
 [x,y,z]  =def STATE O1 ([ [x have-access-to y] 

   & [¬ [z has-access-to y] ]) 
 SIT2

stat
 [x,y,z]  =def  STATE O2  ( [ [z has-access-to y] 

   & [x has-access-to y] ] ) 
 [δ(O1) = γ(F)] & [δ(F) = γ(O2)] 
 [x := John: J] ; [y = information: I]; [ z := his-friend: J] 
 
As for the same lexical predicate to give in John gives a 
book to his friend, the representation is different with  
  
STATE O2  ([z has-access-to y]  &  (¬ [x has-access-to y]) 
 
since the types of a-book and information are different: [a-
book: J], [information: I]. With this primitive has-access-
to, it becomes possible to analyse and to represent the 
polysemy of verbs as to give and their equivalents in other 
languages (French, Russian, Korean…).  
 
Conclusion 
 
We have presented the different abstract primitives used 
for representing meanings by semantic and cognitive 
schemes (SSC) defined at a semantic level. The SSC was 
already presented in different publications (for instance: 
Abraham 1995; Djioua 2000; Desclés 1990, 2004) in using 
applicative formalisms, with a lot of analysis of the 
meaning of lexical predicates. The applicative situations 
built by combination of abstract and cultural primitives can 
be integrated into predicate frames of another level. A 
predicate frame is a combination of a lexical predicate with 
an appropriate number of arguments. For this formal 
integrative process, the combinators of Curry’s 
Combinatory Logic are used as it was already been 
presented in other publications (for instance in precedent 
FLAIRS) about Cognitive and Applicative Grammars 
(CAG). In this computational and linguistic model, 
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different levels of autonomous representation are defined 
and articulated between them by means of abstract 
operators (combinators), giving the possibility to explain 
how it is possible to pass from one level to another level 
(Desclés 2004, 2005, 2010; Desclés and Ro 2011). The 
topological notions are abstracted into topological 
operators of typed applicative expressions and used for a 
processing of aspectualised situations located in a temporal 
framework anchored onto enunciator (speaker). The above 
semantic analysis is a contribution to a linguistic ontology 
of time (Arena 2012, Desclés 2010). It will be interesting 
to compare the above approach of temporal relations and 
aspectual operators in natural languages with other 
linguistic ontologies (Pustejovsky 2009) and TimeML 
annotations guides (Pustejovsky and al. 2005; Sehoyun and 
al. 2010). 

References 
Abraham, M. 1995. Analyse sémantico-cognitive des verbes de 
mouvement et d’activité, Ph-D, EHESS : Paris. 
Abraham, M., and Desclés, J-P. 1992. “Interaction between 
Lexicon and Image : Linguistic specifications of Animation”, 
Proc. of COLING-92. 
Arena, A., 2012. Ontologie de la temporalité pour application au 
web sémantique, Ph-D, Université de Paris-Sorbonne. 
Cann, R., 1993. Formal semantics. An introduction, Cambridge 
Univerqsity Press. 
Casati R. and Varzi A.C., 1999. Parts and Places: the Structures 
of Spatial Representations, The MIT Press. 
Church, A. 1941. The Calculi of Lambda Conversion, Princeton 
University Press. 
Culioli, A., 1968. La formalisation en linguistique, Cahiers pour 
l’Analyse, 9, Paris : Seuil, 106-117 . 
Culioli, A., 1999. Pour une linguistique de l’énonciation. 
Formalisation et opérations de repérage, tome 2, Paris: Ophrys, 
17-29. 
Croft, W. and Cruse , D.A.. 2004. Cognitive Linguistics, 
Cambridge University Press. 
Cruse, D.A., 1986. Lexical Semantics, Cambridge University 
Press. 
Curry, H.B., and Feys, R. 1958. Combinatory logic. Vol. I. 
Studies in logic and the foundations of mathematics, Amsterdam: 
North-Holland Publishing. 
Desclés, J.-P., 1989. State, Event and Process and Topology, 
General Linguistics, 29, 3, University Park and London: 
Pennsylvania State University Press, 159-200. 
Desclés, J.-P., 1990. Langages applicatifs, langues naturelles et 
cognition, Paris : Hermès. 
Desclés, J.-P., 1995, Langues, langage et cognition, in Lüdi et 
al.,1995, 1-32. 
Desclés, J.-P., 2004. Combinatory Logic, Language, and 
Cognitive Representations, in Weingartner, P. (ed.) Alternative 
Logics. Do Sciences Need Them ?, Springer, 115-148. 
Desclés, J.-P., 2005. Reasoning and Aspectual-temporal calculus, 
in Vanderveken, D. (ed.) Logic, Thought and Logic, Springer, 
217-244. 

Desclés, J.-P., 2010. Reasoning in Natural Language in Using 
Combinatory Logic and Topology. An Example with Aspect and 
Temporal Relations, FLAIRS 2010. 
Desclés, J.-P. and Froidevaux C., 1982. Axiomatisation de la 
notion de repérage abstrait, Mathématiques et sciences humaines, 
78, 73-119. 
Desclés, J.-P. and Biskri I., 1995. Logique combinatoire et 
linguistique : grammaire catégorielle combinatoire applicative, 
Mathématiques et sciences humaines, 132, 39-68. 
Desclés J.-P. and Guentchéva Z., 2010. Quasi Topological 
Representations (QTR) of Spatial Places and Spatio-temporal 
Movements in Natural Languages, in G. Marotta et al. (eds), 
Space in Language, Proceedings of the Pisa International 
Conference, Edizioni ETS, 213-233.  
Descles, J.-P. and Ro, H.-J., 2011. Opérateurs aspecto-temporels 
et logique combinatoire, Mathématiques et Sciences humaines, 
194, 39-70. 
Djioua, B., 2000. Modélisation informatique d’une base de 
données lexicales (DISSC) : réseaux polysémiques et schemes 
sémantico-cognitifs, Ph-D, Université de Paris-Sorbonne. 
Dowty D.R. 1979. Word Meaning and Montague GrammarThe 
semantics of Verbs and Times in Genrative Semantics and in 
Montague ‘SPTQ, Dordrecht and Boston: Reidel Publishing 
Company. 
Egenhofer M.J. and Herring J., 1990. A mathematical framework 
for the definition of  topological relationships, in Brassel K. and 
Kishimoto, H. (eds), Proceedings of the Fourth International 
Symposium on Spatial data banding, Zurich, Switzerland, 457-
472.  
Hindley, J.R. and Seldin, J.P., 1986. Introduction to Combinators 
and Lambda-Calculus, Cambridge University Press. 
Kelley, J.L., 1961. General Topology, New York : Van Nostrand. 
Langacker, R., 1987, 1991. Foundations of Cognitive Grammar, 
vol. 1 and vol. 2, Stanford, Calf.: Standford University Press. 
Lüdi G. and Zuber C.A. (eds), 1995. Linguistique et modèles 
cognitifs, Contributions à l’Ecole d’été de la Société Suisse de 
Linguistique, Sion, 6-10 septembre 1993, 3 Acta Romanica 
Basiliensia, ARBA, Université de Bâle. 
Shaumyan, S. 1987. A Semiotric Theory of Language, 
Bloomington and Indianapolis: Indiana University Press. 
McCawley, J., 1993. Everything that linguists have always 
wanted to know about logic (but were ashamed to ask), (2nd ed.), 
Chicago : University of Chicago Press. 
Pottier, B., 2000. Représentations mentales et catégorisations 
linguistiques, Louvain, Paris: Editions Peeters. 
Pustejovsky, J., 1995. The generative lexicon. Cambridge, 
Mass.:MIT Press. 
Pustejovsky, J., Ingria R., Sauri R., Castano J., Littman J., 
Gaizaukas R., Setze A., Katz G., Mani I., 2005. , The 
Specification Language Time ML, in The Language of Time. A 
Reader, New York : Oxford University Press.  
Pustejovsky, J., 2009. Linguistic ontologies for time and space, 
FLAIRS 22. 
Seohyun I. and Pustejovsky, J. 2010. Annotating Lexically 
Entailed Subevents for Textual Inference Tasks, FLAIRS 23. 
 
 

288




