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Abstract

Complex mission or task specification languages play
a fundamentally important role in human/robotic in-
teraction. In realistic scenarios such as emergency re-
sponse, specifying temporal, resource and other con-
straints on a mission is an essential component due
to the dynamic and contingent nature of the opera-
tional environments. It is also desirable that in addi-
tion to having a formal semantics, the language should
be sufficiently expressive, pragmatic and abstract. The
main goal of this paper is to propose a mission spec-
ification language that meets these requirements. It is
based on extending both the syntax and semantics of
a well-established formalism for reasoning about action
and change, Temporal Action Logic (TAL), in order to
represent temporal composite actions with constraints.
Fixpoints are required to specify loops and recursion
in the extended language. The results include a sound
and complete proof theory for this extension. To ensure
that the composite language constructs are adequately
grounded in the pragmatic operation of robotic systems,
Task Specification Trees (TSTs) and their mapping to
these constructs are proposed. The expressive and prag-
matic adequacy of this approach is demonstrated using
an emergency response scenario.

Introduction
Imagine an emergency response scenario such as the recent
earthquake and tsunami in Japan. An emergency response
unit has a team of unmanned aerial and ground vehicles
at its disposal in addition to ground operations units which
can command these robotic teams to assist them with situa-
tion assessment and other tasks such as searching for injured
civilians or dynamic placement of sensors in areas inacces-
sible to emergency responders. In order to interact, respon-
ders require a means of specifying, scheduling and deploy-
ing such teams. An example of a simple sequential mission
would be to scan an area for radiation damage and then scan
another area for injured civilians within a specified amount
of time. One might further assume that additional constraints
suitable for the current context and contingencies of the sit-
uation might also be required to specify the mission further.
For instance, in the case of the nuclear reactor meltdown at
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Fukushima, one might restrict the use of UAVs in this mis-
sion to only those with radiation sensors and military grade
hardware to minimize radiation damage to the hardware.

A specification of such a mission would include a tempo-
rally constrained sequence of tasks,

[t1, t2]monitor-radiation(area1); find-injured(area2),

where ”;” is used as a sequence operator. In terms of rep-
resentation, the use of temporal duration introduces some
interesting specification issues even for this simple case. For
instance, it is obvious that monitor-radiation(area1) has to
end before find-injured(area2). It is less obvious whether
monitor-radiation(area1) has to start precisely at t1, whether
find-injured(area2) has to end precisely at t2, or whether gaps
should be allowed between actions in a sequence. Similar
questions arise for concurrency, conditionals, loops and their
combinations when specifying complex temporal tasks.

One of the main issues of focus in this paper is the devel-
opment of a suitable formal semantics for temporally con-
strained composite actions that is flexible enough to be used
in the field with deployable robotic systems interacting with
themselves and with human operators. In this context, tasks
may be distributed among multiple robotic systems and their
execution is often contextualized with constraints associated
with the environmental situations in which they operate.

The approach taken is to formally define temporal com-
posite actions with constraints in Temporal Action Logic
(TAL) (Doherty and Kvarnström 2008), a well established
logic of action and change. It is then shown how such actions
can be mapped into an executable declarative specification
of tasks used in a number of deployable UAV systems us-
ing Task Specification Trees (TSTs) (Doherty, Landén, and
Heintz 2010). TSTs are used in current research with del-
egation frameworks for cooperative robotics (Doherty and
Meyer 2012; Doherty, Heintz, and Landén 2011). They pro-
vide a flexible and formal means for representing robotic
behaviors, (distributed) tasks, compiled plans, etc. One re-
search goal is to be able to specify such tasks in TAL as
composite actions, verify their properties formally using the
logical framework and then compile them into executable
versions as TSTs. One can also reverse compile a TST into
a composite action in TAL and verify its properties formally.

The main representational approach taken is the follow-
ing. A composite action specification will be characterized
recursively using the following construct:
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C-ACT ::= with VARS do TASK where CONS

This states that a complex action C-ACT is always specified
in a context characterized by a set of variables VARS con-
strained by a set of constraints CONS. Formally, constraints
can be as general as a logical formula, or pragmatically as
specific as a set of constraints input to a constraint satisfac-
tion solver. By making the context explicit in terms of a set
of constraints, we can use a policy of least commitment in
terms of both temporal and other types of constraints. This
approach is not only useful in dealing with the temporal is-
sues discussed previously, but may in fact be used explicitly
in a robotic system to formally verify or determine the con-
sistency of a (distributed) task through the use of conven-
tional (distributed) constraint satisfaction techniques. This
will be considered later in the paper.

Structure and Results
This article presents the following results:
• TAL is extended to represent temporal composite ac-

tions with constraints which may include concurrency, se-
quence, conditionals, loops, while-do, and a concurrent
for-each operator. Actions can be recursive and loops can
be unbounded. A translation function maps composite ac-
tions into elementary actions with constraints.

• To provide a formal semantics for loops and recursion,
TAL is extended with a least fixpoint operator. The model
theory is supplemented to use strictly arithmetical struc-
tures. A proof theory for this fixpoint logic is presented
and shown to be sound and complete relative to such
structures. The extended logic is denoted as L (FLFP).

• Additionally, it is shown that if one bounds the strictly
arithmetical structures, one can specify a formal map-
ping between syntactically restricted L (FL) theories and
deductive databases. A provably polynomial inference
method can then be specified.

• A formal grammar and syntax is presented for task speci-
fication trees (TSTs). TSTs provide an executable declar-
ative specification language for defining robot behaviors
or tasks suitable for individual or distributive execution
in multi-robot scenarios. It is then shown how L (FLFP)
can be used as a formal semantics for TSTs. This is done
by providing a formal back and forth mapping between
composite actions in L (FLFP) and TSTs.
• We show the flexibility and benefits of the approach by

specifying part of an emergency response scenario sim-
ilar to one used with currently deployable UAV systems
(Rudol and Doherty 2008; Doherty and Rudol 2007).

The paper is structured as follows: A brief summary of Tem-
poral Action Logic is first provided. It is then extended with
new syntax for fixpoints followed by an extension for spec-
ifying composite actions. Composite actions are used in the
specification of an emergency response scenario. Task Spec-
ification Trees are introduced with a mapping to and from
composite actions. This is followed by a presentation of a
sound and complete proof theory for L (FLFP) and a syn-
tactic restriction relating inference in L (FLFP) to deductive
databases. Related work and conclusions are then provided.

Temporal Action Logic
Temporal Action Logic (TAL) (Doherty and Kvarnström
2001b; 2008) is a well established nonmonotonic tempo-
ral logical formalism for representing and reasoning about
action narratives. It is also used as a semantic basis for
TALplanner (Doherty and Kvarnström 2001b) and TFPOP
(Kvarnström 2011). For further details, see (Doherty and
Kvarnström 2008).
The L (ND) language. A TAL narrative is specified in the
extendible high-level macro language L (ND), which pro-
vides an abstract syntax for specifying action types, action
occurrences, domain and dependency constraints, observa-
tions, etc. This language supports the knowledge engineer
when constructing narratives and allows narratives to be
specified at a higher abstraction level than logical formulas.

The basic ontology for TAL consists of parameterized fea-
tures that have values at specific timepoints, [t] f (x) =̂ v, pa-
rameterized actions that occur at specific intervals of time,
[t1, t2]A(x), and an occlusion operator X([t] f (x)) which ex-
cludes or occludes features from a default inertia assumption
at explicit timepoints. The value of a feature at a timepoint
is denoted by value(t, f ).
The L (FL) language. The Trans

()
function translates

L (ND) expressions into L (FL), a first-order logical lan-
guage that currently uses discrete linear time structures ax-
iomatized as Presburger arithmetic. When adding new con-
structs to the formalism, the basic idea is to define new ex-
pression types in L (ND) and extend the translation function
accordingly. This will in fact be done for composite actions.

L (FL) is order-sorted, supporting subsorts. There are
a number of sorts for values Vi, including the Boolean sort B
with the constants {True,False}. V is a supersort of all such
value sorts. There are a number of sorts for features Fi, each
one associated with a value sort dom(Fi) = V j for some j.
The sort F is a supersort of all fluent sorts. There is also
an action sort A and a temporal sort T . Generally, t, t ′ will
denote temporal variables, while τ,τ,τ1, . . . denote temporal
terms. L (FL) currently uses the following predicates:

• Holds : T ×F ×V , where Holds(t, f ,v) expresses that
a feature f has a value v at a timepoint t, corresponding to
[t] f =̂ v in L (ND).

• Occlude : T ×F , where Occlude(t, f ) expresses that
a feature f is exempt from the inertia assumption at time t.
This corresponds to X([t] f ) in L (ND).
• Occurs : T ×T ×A , where Occurs(ts, te,A) expresses

that a certain action A occurs during the interval [ts, te].
This corresponds to [ts, te]A in L (ND).

Formulas can be defined inductively using the standard
rules, connectives and quantifiers of first-order logic.
Foundational Axioms and Circumscription. When a nar-
rative is translated, macro expansion generates appropriate
Occlude formulas for each action and dependency constraint
(causal) formula as exemplified below. Additional founda-
tional axioms such as unique names and domain closure ax-
ioms are appended (when required). A filtered circumscrip-
tion policy is then used as a basis for solving the frame, rami-
fication and qualification problems, where both Occlude and
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Occurs are minimized relative to specific partitions in the
narrative theory. Although 2nd-order in nature, the circum-
scription axioms used are reducible to equivalent 1st-order
formulas, and can often be replaced using predicate comple-
tion. Therefore, classical first-order theorem proving tech-
niques can be used for reasoning about TAL narratives.

The circumscription policy ensures that actions occur
only when stated and that fluents are occluded only when ex-
plicitly affected by an action or dependency constraint. An
additional axiom states that only occluded fluents are per-
mitted to change value. Dependency constraints can be used
to explicitly specify indirect effects of actions, providing
a means of dealing with the ramification problem. A mod-
ular representation of qualifications is achieved through
a combination of fluents with default values and dependency
constraints affecting such fluents whenever an action is qual-
ified. See (Doherty and Kvarnström 2008) for details.
Elementary Actions. A narrative specification in L (ND)
includes action type specifications, which declare a named
elementary action. The basic structure is as follows:

[t1, t2]A(v) (1)
(Γpre(t1,v)→ Γpost(t1, t2,v))∧Γcons(t1, t2,v),

stating that if A(v) is executed during the interval [t1, t2], then
Γpre(t1,v) is its preconditions, Γpost(t1, t2,v) its postcondi-
tions and Γcons(t1, t2,v) specifies logical constraints associ-
ated with the action during its execution. As an example, the
following defines the elementary action fly-to that will later
be used in an emergency response scenario (the R macro de-
notes assignment at a timepoint or during an interval):
[t, t ′]fly-to(uav,newx,newy) 
[t]fuel(uav)> fuel-usage(uav,x(uav),y(uav),newx,newy)→
R([t +1] hovering(uav) =̂ False)∧
R((t, t ′] x(uav) =̂ newx∧y(uav) =̂ newy∧

fuel(uav) =̂ value(t, fuel(uav)−
fuel-usage(uav,x(uav),y(uav),newx,newy)))∧

t ′− t = value(t,flight-time(uav,x(uav),y(uav),newx,newy))
Its translation into L (FL) is the following, where semantic
attachment is used for greater and minus.
∀t, t ′,uav,newx,newy[
Occurs(t, t ′,fly-to(uav,newx,newy))→ (

Holds(t,greater(fuel(uav),
fuel-usage(uav,x(uav),y(uav),newx,newy)))→

Holds(t +1,hovering(uav),False)∧
Holds(t ′,x(uav),newx)∧Holds(t ′,y(uav),newy)∧
Holds(t ′, fuel(uav),value(t,minus(fuel(uav),

fuel-usage(uav,x(uav),y(uav),newx,newy))))∧
t ′− t = value(t,flight-time(uav,x(uav),y(uav),newx,newy))∧
∀u[t < u≤ t ′→ Occlude(u,x(uav))∧

Occlude(u,y(uav))∧Occlude(u, fuel(uav))]∧
Occlude(t +1,hovering(uav)))]1

Elementary actions will be used as the basic building blocks
when we extend L (ND) to support composite actions, and
their syntax and semantics will remain the same as in TAL.
First, however, we extend the base language L (FL) to sup-
port fixpoints, an elegant and succinct way of expressing un-
bounded loops and recursion in logic.

1Occlude formulas generated by expanding the R macro.

Adding Fixpoints to TAL. The fixpoint extension to TAL
will be denoted as TALF and the fixpoint extension to the
language L (FL) as L (FLFP). Fixpoint logic (Arnold and
Niwiński 2001) strikes a nice balance between 1st-order and
2nd-order logic. The ability to represent loops, recursion and
inductive definitions is essential in the context of reasoning
about action and change, yet the increase in expressivity is
conservative enough to still allow relatively efficient infer-
ence techniques. This is shown later when a proof theory for
TALF is presented with soundness and completeness results.

L (FLFP) is obtained by extending L (FL) to allow fix-
point formulas of the form

LFP X(x̄).
[
Γ(X , x̄, z̄)

]
(2)

to appear within formulas in L (FL) provided that all occur-
rences of X in Γ are positive. The meaning of (2) is provided
by the following Kleene characterization of fixpoints:

LFP X(x̄).
[
Γ(X , x̄, z̄)

]
≡
∨
i∈ω

Γ
i(False, x̄, z̄), where

Γ
i(False, x̄, z̄) def

=

{
False for i = 0
Γ(Γi−1(False, x̄, z̄), x̄, z̄) for i > 0.

Composite Actions
We now extend L (ND) to support composite action type
specifications, which declare a named composite action:

[t, t ′]comp(v̄) A(t, t ′, v̄)
where comp(v̄) is a composite action term such as
monitor-pattern(x,y,dist), consisting of an action name and
a list of parameters, and A(t, t ′, v̄) is a composite action ex-
pression where only variables in {t, t ′}∪ v̄ may occur free.
A composite action expression (C-ACT) supports common
constructs such as sequences (A;B) and concurrency (A ||B),
and is defined as follows:

C-ACT ::= [τ,τ ′]with x̄ do TASK where φ

TASK ::= [τ,τ ′]ELEM-ACTION-TERM |
[τ,τ ′]COMP-ACTION-TERM |
(C-ACT; C-ACT) |
(C-ACT || C-ACT) |
if [τ]ψ then C-ACT else C-ACT |
while [τ]ψ do C-ACT |
foreach x̄ where [τ]ψ do conc C-ACT

where x̄ is a potentially empty sequence of variables, φ is
a TAL logic formula, ELEM-ACTION-TERM is an elementary
action term such as fly-to(uav,x,y), COMP-ACTION-TERM is
a composite action term, and [τ]ψ is a TAL formula referring
to facts at a single timepoint τ .
Timing and Constraints. An essential feature of our ap-
proach is that like elementary actions, every part of a com-
posite action C-ACT is annotated with a temporal interval
during which it is executed. For example, the expression

[t1, t2]with uav, t3, t4, t5, t6 do(
[t3, t4]fly-to(uav,x,y);
[t5, t6]collect-video(uav,x,y)

)
where [t1]has-camera(uav)

denotes a composite action where two elementary actions
take place in sequence within the interval [t1, t2].

The with-do-where construct provides a very flexible means
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of constraining variables as desired for the task at hand. In
essence, “[t1, t2]with x̄ do TASK where φ” states that there ex-
ists an instantiation of the variables in x̄ such that the speci-
fied TASK is executed within the interval [t1, t2] in a manner
satisfying φ , which may be a conjunction of temporal, spa-
tial and other types of constraints. Above, this is used to pick
a UAV that has a camera rather than an arbitrary UAV.

Though the sequence operator (;) could implicitly con-
strain the two actions fly-to and collect-video to cover the en-
tire temporal interval [t1, t2], our aim is to maximize flexibil-
ity. Therefore the implicit constraints associated with each
new composite construct are only as strong as needed to
make it semantically meaningful. In particular, sub-actions
are only constrained to occur somewhere within the execu-
tion interval of a composite action, and gaps are permitted
between sub-actions – but the actions in a sequence must oc-
cur in the specified order without overlapping in time. This
is formally specified in the TransComp function below.

Should stronger temporal constraints be required, they
can be introduced in a where clause. For example, t1 = t3 ∧
t4 = t5∧ t6 = t2 would disallow gaps in the sequence above.
Furthermore, variations and extensions to the constructs pro-
posed here, such as gapless sequences, can easily be added
without modifying the L (FLFP) base logic.
Translation into L (FLFP). A composite action expres-
sion is translated to L (FLFP) by the following extension to
the Trans

()
function from (Doherty and Kvarnström 2008),

which calls a new translation function TransComp(τ,τ ′,T )
to translate the task T . The intended meaning is that T oc-
curs somewhere within the interval [τ,τ ′].

Trans
(
[τ,τ ′]with x̄ do T where φ

) def
=

∃x̄
[
TransComp(τ,τ ′,T )∧Trans

(
φ
)]

If the task is a call to an elementary action elem(v̄), then
TransComp calls the standard Trans

()
function. Calls to

named composite actions are discussed later.

TransComp(τ,τ ′, [τ1,τ2]elem(v̄)) def
=

Trans
(
[τ1,τ2]elem(v̄)

)
∧ τ ≤ τ1 < τ2 ≤ τ ′

Two potentially concurrent actions are simply constrained
to occur within the given interval [τ,τ ′]. A sequence of
two actions must additionally occur in the stated order. An
if/then/else statement is translated into a conjunction of con-
ditionals, where both the timepoint τc at which the condition
is checked and the execution interval of the selected action
(A1 or A2) must be within [τ,τ ′].

TransComp(τ,τ ′,
(
[τ1,τ2]A1 || [τ3,τ4]A2

)
)

def
=

Trans
(
[τ1,τ2]A1

)
∧Trans

(
[τ3,τ4]A2

)
∧

τ≤τ1≤τ2≤τ ′∧ τ≤τ3≤τ4≤τ ′

TransComp(τ,τ ′,
(
[τ1,τ2]A1; [τ3,τ4]A2

)
)

def
=

Trans
(
[τ1,τ2]A1

)
∧Trans

(
[τ3,τ4]A2

)
∧

τ≤τ1≤τ2≤τ3≤τ4≤τ ′

TransComp(τ,τ ′, if [τc]F then [τ1,τ2]A1 else [τ3,τ4]A2)
def
=

Trans
(
[τc]F

)
→ Trans

(
[τ1,τ2]A1

)
∧

Trans
(
[τc]¬F

)
→ Trans

(
[τ3,τ4]A2

)
∧

τ ≤ τc ≤ τ ′∧ τc≤τ1≤τ2≤τ ′∧ τc≤τ3≤τ4≤τ ′

A concurrent foreach statement allows a variable number of
actions to be executed concurrently. An example is given in

the next section, where all available UAVs with the ability
to scan for injured people should do so in parallel. Below, x̄
is a non-empty sequence of value variables. For all instan-
tiations of x̄ satisfying [τc]F(x̄), there should be an interval
within [τ1,τ2] where the composite action A(x̄) is executed.

TransComp(τ,τ ′, foreach x̄ where [τc]F(x̄) do conc [τ1,τ2]A(x̄))
def
=

∀x̄[Trans
(
[τc]F(x̄)

)
→ Trans

(
[τ1,τ2]A(x̄)

)
]∧

τ ≤ τc ≤ τ1 ≤ τ2 ≤ τ ′

A while loop is translated into a least fixpoint. Informally, the
LFP parameter u represents the time at which the previous it-
eration ended, and is initially given the value τ as seen in the
final line below. In each iteration the temporal variable tc is
bound to the timepoint at which the iteration condition F is
tested, which must be at least u and at most τ ′. If the condi-
tion holds, the variables [t1, t2] are bound to an interval where
the inner action A is executed (similarly constrained to be in
[tc,τ ′]), the action occurs, and the next iteration may start no
earlier than t2, specified by X(t2).

TransComp(τ,τ ′, while [tc]F do [t1, t2]A)
def
=

τ≤τ ′∧LFP X(u).
[

∃tc[u≤ tc ≤ τ ′∧
(Trans

(
[tc]F

)
→∃t1, t2[tc≤ t1≤ t2≤ τ ′∧

Trans
(
[t1, t2]A

)
∧X(t2)])]]

(τ)

Assume a composite action is named using a statement such
as [t, t ′]comp(x̄) A(t, t ′, x̄). A named action can be called in
two places: As part of a composite action expression, where
one composite action calls another, and at the “top level” of
a narrative, where one states that a specific composite action
occurs. We therefore extend both Trans and TransComp:

Trans
(
[τ1,τ2]comp(ā)

) def
=

LFP Y (t, t ′, x̄).
[
Trans

(
A′(t, t ′, x̄)

)]
(τ1,τ2, ā)

TransComp(τ,τ ′, [τ1,τ2]comp(ā)) def
=

Trans
(
[τ1,τ2]comp(ā)

)
∧ τ ≤ τ1 ≤ τ2 ≤ τ ′

where A′(t, t ′, x̄) is A(t, t ′, x̄) with all occurrences of comp re-
placed with Y . This use of fixpoints permits direct recursion,
where an action may call itself. Full support for mutually re-
cursive action definitions is added through simultaneous fix-
points. We omit this in the paper for brevity and readability.
Relaxed Syntax. Omitting “with x̄ do” is considered equiva-
lent to specifying the empty sequence of variables and omit-
ting where φ is equivalent to specifying where TRUE. Also,
the ; and || constructs are easily extended to allow an arbi-
trary number of actions, as in (A;B;C;D).
Extensions. We have now defined a small core of important
composite actions. This is not an exhaustive list, and addi-
tional macros can easily be added. For example, to wait for
a formula φ to become true, we can define [τ,τ ′]wait-for(φ)
as Trans

(
∀u[τ ≤ u < τ ′→ [u]¬φ ]∧ [τ ′]φ ∧ τ ′ > τ

)
.

Preserving Solutions to the Frame,
Ramification and Qualification Problems

As discussed earlier, the TAL solution to the frame, ramifica-
tion and qualification problems uses a filtered circumscrip-
tion policy involving the minimization of both action occur-
rences and spurious change. We will now show that this so-
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lution carries over directly to TALF. In the following, we as-
sume familiarity with circumscription and common notation
used to denote circumscription policies (Lifschitz 1991).

A TAL narrative consists of a logical theory that can be
partitioned into specific types of formulas. Let Γ denote the
translation of a narrative N in L (ND) into L (FL) using
the Trans function,

Γ = Γper∧Γobs∧Γdom∧Γocc∧Γdep∧Γacs,

where Γper, Γobs, Γocc, Γacs, Γdom, and Γdep denote the persis-
tence formulas, observation formulas, action occurrence for-
mulas, action type specifications, domain constraint formu-
las, and dependency constraint formulas in Γ, respectively.

Filtered circumscription is used to minimize Occurs in
Γocc and Occlude in Γdep∧Γacs as follows:

Γ1 = Γper∧Γobs∧Γdom∧CIRC[Γocc;Occurs]∧
CIRC[Γdep∧Γacs;Occlude]. (3)

Let Γ2 = Γfnd ∧Γtime, where Γfnd and Γtime denote additional
foundational and temporal axioms. For any narrative N in
TAL whose translation into L (FL) is Γ, a preferred narrative
theory in the base logic L (FL) is defined as ∆N = Γ2∧Γ1.
We say that a formula α in the base logic L (FL) is prefer-
entially entailed by N iff ∆N |= α . It can also be shown
that both circumscription formulas are reducible to logically
equivalent first-order formulas by showing that Occurs and
Occlude only appear positively in CIRC[Γocc;Occurs] and
CIRC[Γdep∧Γacs;Occlude], respectively.

It is straightforward to show that the solutions to the
frame, ramification and qualification problems are preserved
with the addition of composite actions to L (ND) and the
extension of L (FL) with fixpoints to L (FLFP). Trans and
TransComp only introduce changes to the narrative partition
Γocc of action occurrence formulas. Rather than just a con-
junction of Occurs atoms, Γocc can now consist of boolean
combinations of Occurs atoms and fixpoint formulas.

Lemma 1 Let Γ = Γocc ∧ Γ′ be the translation of a nar-
rative N in L (ND) into L (FLFP) using Trans() and
TransComp(). The Occurs predicate only occurs positively
in Γocc.
Proof. By structural induction. �

Lemma 2 The circumscription of Occurs in Γocc can be ex-
pressed as follows:

CIRC[Γocc(Occurs);Occurs]≡ Γocc(Occurs)∧
¬∃x̄[Occurs(x̄)∧Γocc(λ ȳ(Occurs(ȳ)∧ x̄ 6= ȳ))] (4)

Proof. By Lemma 1 and the following proposition (Lifschitz
1991, p. 316): If A(P,Z) is positive relative to P, then the
circumscription CIRC[A(P,Z);P;Z] is equivalent to

A(P,Z)∧¬∃x,z[P(x)∧A(λy(P(y)∧ x 6= y),z)].
�

Note that the formula on the rhs of the equivalence in
Lemma (2) can be a fixpoint formula in the general case.

Lemma 3 Let Γocc ∧ Γ′ be the translation of a narra-
tive N in L (ND) into L (FLFP) using Trans() and
TransComp(). Assume that there is a finite bound on time-
points and other domains used in the narrative translation.

Then CIRC[Γocc(Occurs);Occurs] is reducible to a logically
equivalent 1st-order formula. �

The Scenario, Formalized
Several composite actions that can be useful in disasters
such as the Fukushima scenario will now be considered. In
particular, multiple UAVs will be used to monitor radiation
and scan for injured people in a regular grid around a dam-
aged reactor. Note that our focus is on demonstrating the
L (ND) composite action constructs and some aspects of the
actions are necessarily simplified for expository reasons.

We assume a set of elementary actions whose meaning
will be apparent from their names and from the explana-
tions below: hover-at, fly-to, monitor-radiation, collect-video,
and scan-cell. Each elementary action is assumed to be de-
fined in standard TAL and to provide suitable preconditions,
effects, resource requirements and (completely or incom-
pletely specified) durations. For example, only a UAV with
suitable sensors can execute monitor-radiation.

In the following composite action, a UAV hovers at a loca-
tion (xuav,yuav) while using its on-board sensors to monitor
radiation and collect video at (xtarg,ytarg).

[t, t ′]monitor-single(uav,xuav,yuav,xtarg,ytarg) 
[t, t ′]with t1, t2, t3, t4, t5, t6 do (

[t1, t2]hover-at(uav,xuav,yuav) ||
[t3, t4]monitor-radiation(uav,xtarg,ytarg) ||
[t5, t6]collect-video(uav,xtarg,ytarg)

) where t1 = t3 = t5 = t ∧ t2 = t4 = t6 = t ′

The constraints in the where clause model a requirement for
these particular actions to be synchronized in time and for
the UAV to hover in a stable location throughout the execu-
tion of monitor-single. These constraints could easily be re-
laxed, for example by stating that hovering occurs through-
out the action but monitoring occurs in a sub-interval.
The following action places four UAVs in a diamond pattern
to monitor a given location at a given distance, counted in
grid cells. The UAVs involved are not specified as parame-
ters, but are chosen freely among those available UAVs that
are equipped for surveillance and have radiation sensors.
[t, t ′]monitor-pattern(x,y,dist) 
[t, t ′]with s1, . . . ,w4,uav1,uav2,uav3,uav4 do (
([s1,s2]fly-to(uav1,x+dist,y);
[s3,s4]monitor-single(uav1,x+dist,y,x,y)) ||

([u1,u2]fly-to(uav2,x−dist,y);
[u3,u4]monitor-single(uav2,x−dist,y,x,y)) ||

([v1,v2]fly-to(uav3,x,y+dist);
[v3,v4]monitor-single(uav3,x,y+dist,x,y)) ||

([w1,w2]fly-to(uav4,x,y−dist);
[w3,w4]monitor-single(uav4,x,y−dist,x,y)) ||

) where
[t]surveil-equipped(uav1)∧ has-radiation-sensors(uav1)∧
[t]surveil-equipped(uav2)∧ has-radiation-sensors(uav2)∧
[t]surveil-equipped(uav3)∧ has-radiation-sensors(uav3)∧
[t]surveil-equipped(uav4)∧ has-radiation-sensors(uav4)∧
s3 = u3 = v3 = w3∧ s4 = u4 = v4 = w4∧
s4− s3 ≥ minduration

Four sequences are executed in parallel. Within each se-
quence, a specific UAV flies to a suitable location and then
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monitors the target. We require the target to be monitored
simultaneously by all four UAVs (s3 = u3 = v3 = w3 and
s4 = u4 = v4 = w4), while s4− s3 ≥ minduration ensures this
is done for at least the specified duration.

As flying does not need to be synchronized, the intervals
for the fly-to actions are only constrained implicitly through
the definition of a sequence. For example, the translation en-
sures that t ≤ s1 ≤ s2 ≤ s3 ≤ s4 ≤ t ′, so that each fly-to must
end before the corresponding monitor-single.

All grid cells must also be scanned for injured people. The
following generic action makes use of all available UAVs
with the proper capabilities, under the assumption that each
such UAV has been assigned a set of grid cells to scan. An
assignment could be generated by another action or provided
as part of the narrative specification.

[t, t ′]scan-with-all-uavs() [t, t ′]with u,u′ do
foreach uav where [t]can-scan(uav) do conc

[u,u′]scan-for-people(uav)

As shown below, each UAV involved in this task iterates
while there remains at least one grid cell that it has been
assigned (“owns”) and that is not yet scanned. In each iter-
ation, it scans one of those cells: The “with” clause states
that there exist coordinates (x,y) that are scanned, while the
“where” clause ensures that the selected coordinates do be-
long to the given UAV and have not already been scanned.
Also in each iteration, the variable tc is bound to the time
at which the condition is tested and u,u′ are bound to the
timepoints at which the inner action is performed.

[t, t ′]scan-for-people(uav) [t, t ′]with u,u′ do
[u,u′]while [tc]∃x,y[owns(uav,x,y)∧¬scanned(x,y)] do
[u,u′]with x,y do

[u,u′]scan-cell(uav,x,y)
where [tc]owns(uav,x,y)∧¬scanned(x,y)

Finally, we can define a small mission to occur within the
interval [0,1000], where scanning may utilize the entire in-
terval while the grid cell (20,25) is monitored at a distance
of 3 cells between time 0 and time 300.

[0,1000](
[0,1000]scan-with-all-uavs() ||
[0,300]monitor-pattern(20,25,3)

)

Task Specification Trees and Robotics
The composite action extension to TAL is intended to deal
with a number of representational and pragmatic issues
which arise in research with complex autonomous robotics
systems. In the field, use of robotic systems requires a well-
specified representational formalism for specifying high-
level missions which are easily understood by ground oper-
ators. Such missions often have explicit temporal deadlines
and resource constraints which require the use of schedul-
ing. Additionally, generic mission patterns often need to be
constrained dynamically and incrementally relative to envi-
ronmental and contingent conditions in the field. Thus, con-
straints offer a natural way to enhance missions. Also, one
often wants to analyze mission properties both during pre-

and post-mission phases. Since a composite action is a the-
ory in L (FLFP), questions about missions become queries
relative to an inference mechanism. Composite actions in
TAL provide just such a well-specified representational for-
malism for each of these requirements.

Although it is essential to have an abstract, formally
grounded mission specification, it is equally essential to
tightly ground such specifications into the actual operations
of robotic systems. Current practice in robotic systems em-
ploys the use of what are informally called 3-layered ar-
chitectures (Gat 1998; Doherty et al. 2004), consisting of
a control, reactive and deliberative layer. Many of these sys-
tems are reactive concentric in the sense that (reactive) tasks
or behaviors consist of both calls to deliberative capabili-
ties such as a planner or reasoner in addition to calls to
control modes which interface to sensors and actuators in
a robotic system. In some systems, there is very little delib-
eration and these task behaviors acquire the role of compiled
plans which need to be executed.

In recent work with delegation-based frameworks for
cooperative robotics (Doherty and Meyer 2012; Doherty,
Heintz, and Landén 2011), a formal task specification lan-
guage for robotics was proposed that represents tasks as
Task Specification Trees (TSTs) (Doherty, Landén, and
Heintz 2010; Landén, Heintz, and Doherty 2010). TSTs
map directly to executable procedural representations in
a robotic architecture. The UAV robotic architecture itself
has a FIPA (FIPA-AAS 2002) compatible agent layer im-
plemented using JADE (F. Bellifemine and Poggi 2005)
with FIPA ACL (FIPA-ACL 2002) used as the communi-
cation protocol. Each node in a TST can be delegated to
a robotic system and each node can be directly executed in
such systems. Such representations have to be highly flex-
ible, sharable, dynamically extendable during runtime and
distributed in nature. Viewed in the context of composite ac-
tions in TAL, a TST may be characterized as consisting of
temporal parameters + control + constraints + elementary
actions. Constraint solving techniques are in fact used to de-
termine whether a TST can be consistently executed in a sin-
gle robotic system or distributed among multiple systems.

We will now provide a brief description of TSTs and show
how composite actions in TAL provide a formal semantics
for TSTs. The basic formal relationship is that the set of
traces (models) for a composite action in TAL constrain the
space of execution traces for the corresponding TST. During
execution, the trace that results from the execution of the
TST in the robotic system is a member of the set of legal
traces (models) for the composite action in question.

Syntax. The syntax of a TST specification is as follows:

TST ::= NAME ’(’ VARS ’)’) ’=’
(with VARS)? TASK (where CONS)?

TSTS ::= TST | TST ’;’ TSTS
TASK ::= ACTION | GOAL | call NAME ’(’ ARGS ’)’ |

sequence TSTS | concurrent TSTS |
if [VAR] COND then TST else TST |
while [VAR] COND TST |
foreach VARS where [VAR] COND do conc TST

VAR ::= <variable name>
VARS ::= VAR | VAR ’,’ VARS
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Figure 1: Example mission with corresponding TST.

ARG ::= VAR | VALUE
ARGS ::= ARG | ARG ’,’ ARGS
CONS ::= <constraint> | <constraint> and CONS
VALUE ::= <value>
NAME ::= <node name>
COND ::= <FIPA ACL query message requesting the value of

a boolean expression>
GOAL ::= <goal statement name(x)>
ACTION ::= <elementary action call name(x)>

Each TST corresponds to a specific named and parameter-
ized node. The parameters, VARS, specify a node interface
which can be accessed from the outside. As exemplified be-
low, the first two parameters always specify the start and
end time for the node. As in TAL composite actions, these
can be constrained relative to each other using constraints in
a where clause. A separate node type exists for each differ-
ent TASK. For example, a sequence node specifies sequential
execution of its children.

Some node types use FIPA ACL queries, which can be
TAL formulas sent to a theorem proving module such as the
deductive database-based inference mechanism presented in
this paper or the one in (Magnusson and Doherty 2008).
Example. Consider a small scenario where the mission is to
first scan AreaA and AreaB, and then fly to Dest4 (Figure 1).
In the associated TST, nodes marked S and C are sequential
and concurrent nodes, respectively, while nodes marked E
are elementary action nodes. The corresponding TST speci-
fication associates each node with a task name τi. There are
two composite actions, sequence (τ0) and concurrent (τ1),
and three elementary actions of type scan-area and fly-to:
τ0(TS0 ,TE0 ) =

with TS1 ,TE1 ,TS4 ,TE4 sequence
τ1(TS1 ,TE1 ) =

with TS2 ,TE2 ,TS3 ,TE3 concurrent
τ2(TS2 ,TE2 ) = scan-area(TS2 ,TE2 ,Speed2,AreaA),
τ3(TS3 ,TE3 ) = scan-area(TS3 ,TE3 ,Speed3,AreaB)

where consτ1 ,
τ4(TS4 ,TE4 ) = fly-to(TS4 ,TE4 ,Dest4x, Dest4y)

where consτ0

consτ0 = TS0 ≤ TS1 ≤ TE1 ≤ TS4 ≤ TE4 ≤ TE0

consτ1 = TS1 ≤ TS2 ≤ TE2 ≤ TE1 and TS1 ≤ TS3 ≤ TE3 ≤ TE1

Translation. A translation from TAL composite actions into
TSTs is specified below. In this translation, temporal con-
straints implicit in a composite action must be “lifted” into
the nearest enclosing with clause in a TST, to make them
available to a constraint solver. The TransTST() function
therefore relies on a TransTask() function, corresponding
closely to TransComp(), which returns a tuple containing
both a TST TASK and a constraint.

TransTask(τ,τ ′, [τ1,τ2]elem(v̄)) def
=

〈elem(τ1,τ2, v̄),τ ≤ τ1 ≤ τ2 ≤ τ ′〉
TransTask(τ,τ ′, [τ1,τ2]comp(v̄)) def

=
〈call comp(τ1,τ2, v̄),τ ≤ τ1 ≤ τ2 ≤ τ ′〉

TransTask(τ,τ ′,
(
[τ1,τ2]A1; [τ3,τ4]A2

)
)

def
=

〈(sequence TransTST([τ1,τ2]A1),TransTST([τ3,τ4]A2)),
τ ≤ τ1 ≤ τ2 ≤ τ3 ≤ τ4 ≤ τ ′〉

TransTask(τ,τ ′,
(
[τ1,τ2]A1 || [τ3,τ4]A2

)
)

def
=

〈(concurrent TransTST([τ1,τ2]A1),TransTST([τ3,τ4]A2)),
τ ≤ τ1 ≤ τ2 ≤ τ ′∧ τ ≤ τ3 ≤ τ4 ≤ τ ′〉

TransTask(τ,τ ′, if [τc]F then [τ1,τ2]A1 else [τ3,τ4]A2)
def
=

〈(if [τc]F then TransTST([τ1,τ2]A1)
else TransTST([τ3,τ4]A2)),

τ ≤ τc ≤ τ ′∧ τc≤τ1≤τ2≤τ ′∧ τc≤τ3≤τ4≤τ ′〉
TransTask(τ,τ ′,while [tc]F do [t1, t2]A)

def
=

〈while [tc]F TransTST([t1, t2]A),
τ ≤ tc ≤ τ ′∧ τ ≤ t1 ≤ t2 ≤ τ ′〉

TransTask(τ,τ ′, foreach x̄ where [τc]F(x̄) do conc [τ1,τ2]A(x̄))
def
=

〈foreach x̄ where [τc]F(x̄) do conc TransTST([τ1,τ2]A(x̄)),
τ ≤ τc ≤ τ1 ≤ τ2 ≤ τ ′〉

TransTST() translates a full TAL C-ACT into a TST node.
A composite action type specification is translated as fol-
lows, given that TransTask(τ,τ ′,T ) = 〈T ′,ψ〉:

TransTST([t, t ′]comp(v̄) [t, t ′]with x̄ do T where φ)
def
=

comp(t, t ′, v̄) = with x̄ T ′ where φ and ψ

Finally, a C-ACT can also occur nested inside another com-
posite action. Since all TST nodes must be named, a new
name must be automatically generated. Then,

TransTST([τ,τ ′]with x̄ do T where φ)
def
=

name(τ,τ ′) = with x̄ T ′ where φ and ψ

TSTs can be translated back into TAL composite actions in
a very similar manner, with the current exception of GOAL
nodes which will in the future be handled through planning
(Doherty and Kvarnström 2001a; Kvarnström 2011).

Reasoning in Fixpoint TAL
We now present a proof system for TALF which is complete
relative to a class of arithmetical structures. The idea is to
reduce reasoning about fixpoints in TALF to classical first-
order reasoning over a fixed arithmetical structure, modeling
the application domain. We follow the line of research on
relative completeness initiated in (Cook 1978) and further
developed in numerous papers. The closest to the approach
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presented in this section are (Harel 1978) and (Szałas 1991).
Below we adjust the results of (Szałas 1991). For a sequent
calculus closer to the implementation see (Szałas 1996).

Let us discuss the class of interpretations we deal with.
First, we assume such interpretations contain the sort ω of
natural numbers and the constants 0, 1 and functions +, ∗.
Next, note that in applications one deals with potentially
infinite data types whose elements are finitely represented:
Any symbol, number, list, tree, etc., is finite. We formulate
this condition as a technical assumption that for each sort
there is a relation “encoding” its elements as natural num-
bers. Let us now formally define the considered structures.

Definition 4 A first-order interpretation I is called strictly
arithmetical (s-arithmetical, in short) provided that:

• I contains the sort ω of natural numbers and the constants
0, 1 and functions +, ∗, with the standard interpretation;
• for each sort s of I there is an effective binary relation es

such that for each x of sort s there is exactly one i ∈ ω

with es(x, i) true in I. �

It is worth emphasizing that TAL structures, as used in ap-
plications, are always strictly arithmetical.

Definition 5 A proof system P is s-arithmetically sound
(complete), provided that for any s-arithmetical interpreta-
tion I and any formula φ ,

T hI ` φ implies (is implied by) I |= φ , (5)
where T hI denotes the set of all classical first-order formulas
valid in I. �

The above definition differs from relative completeness
(Cook 1978) and arithmetical completeness (Harel 1978) in
the class of admissible interpretations. In particular, the class
of s-arithmetical interpretations is a proper subclass of the
arithmetical interpretations of (Harel 1978).

Note that the set of classical formulas validated by an
s-arithmetical interpretation is highly undecidable. On the
other hand, the complexity of reasoning remains no worse
than of TALF itself. The major advantage of the approach
is that we reduce reasoning to classical logic by providing
useful and intuitive proof rules reflecting reasoning based
on invariants and backward induction. These rules are prov-
ably strongest in the considered context in the sense that
they guarantee s-arithmetical completeness. In particular,
they are stronger than those considered in (Magnusson and
Doherty 2008). Also, in practice one does not use all formu-
las valid in I, but only some of them and perhaps not that
complex. In particular, such formulas may not involve mul-
tiplication, so we frequently end up in decidable Presburger
arithmetics. What is important is that when bounds on time
are set so that structures become finite, we may still improve
the complexity even to PTIME when formulas are suitably
restricted.

Definition 6 By proof system PTAL for TALF we shall mean
the proof system containing the following axioms and infer-
ence rules:

• all instances of classical propositional tautologies;
• ∀x[φ(x)]→ φ(t), where t is a term;

• the following inference rules:
φ , φ → ψ

ψ

φ → ψ

∀xφ(x)→∀xψ(x)
(6)

Γ(φ)→ φ , φ → ψ(
LFP X .

[
Γ(X)

])
→ ψ

(7)

φ→∃nψ(n), ψ(n+1)→Γ(ψ(n)),¬ψ(0)
φ → LFP X .

[
Γ(X)

] , (8)

where n is a variable not appearing in Γ. �

Adapting the results of (Szałas 1991) gives the following:

Theorem 7 The proof system PTAL for TALF is s-arithmeti-
cally sound and s-arithmetically complete. �

Note that Definition 5 refers to a single arithmetical struc-
ture. A natural question is what happens when the the-
ory one deals with can have more than one model. In this
case, at least one considers a fixed model for arithmetics
〈ω,0,+,∗,=〉 to represent time structure. Therefore, rather
than considering in (5) the theory ThI one considers a theory
consisting of two parts:

• Thω – an interpreted classical first order theory of arith-
metics 〈ω,0,+,∗,=〉 formalizing the TALF time structure

• Threal – the translated narrative theory

The theory Thω ∪Threal is then to be taken as the underly-
ing theory. Relative soundness is obviously still preserved
while relative completeness may be lost. However, the proof
system PTAL defined in Definition 6 still remains powerful.

If the domains and timepoints are finite and bounded, as
in Lemma 3, then we have the following theorem which can
be proved by a direct application of Theorem 6.1 (Doherty,
Łukaszewicz, and Szałas 1996).

Theorem 8 Assume that there is a finite bound on time-
points and other domains used in the narrative transla-
tion. Then the proof system obtained from PTAL defined in
Definition 6 by removing rule (8) and adding the axiom
Γ(LFP X .

[
Γ(X)

]
) ≡ LFP X .

[
Γ(X)

]
is sound and complete

for TALF. �

Querying Bounded TAL Structures
Let us continue to assume that time is bounded, i.e., there
is a constant c ∈ ω such that for any considered timepoint t
we have 0≤ t ≤ c, and only finitely many fluents, say n, are
allowed. Then one can represent any such TAL (so TALF,
too) structure as a deductive database. That is, one has:

• an extensional database consisting of facts (positive
ground literals) of the form Holds(t, f ,v), Occlude(t, f )
and Occurs(ts, te,a);
• an intensional database consisting of relations defined by

means of fixpoints, i.e., of the form
R(x̄)≡ LFP X(x̄).

[
φ(X(x̄))

]
such that x̄ consists of all free variables in φ(X(x̄)).

For example, the formula:
R(t,x,y)≡ LFP X(t,x,y).

[
Holds(t, f (x,y),True)∨

∃z[Holds(t, f (x,z),True)∧X(t,z,y)]
]
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defines R(t,x,y) to be the transitive closure of the fluent f at
time t. That is, R(t,x,y) holds when f ∗(x,y) holds, where f ∗
is the transitive closure of f computed at timepoint t.

Assuming that a TAL structure is given, e.g., generated by
a partial expansion of a composite action, one may be inter-
ested in whether a particular elementary or composite action
φ(x̄) is scheduled for execution within a given time interval,
say [τ,τ ′], i.e., whether all elementary actions have their oc-
currences defined and all associated constraints are satisfied.
Such queries can easily be formulated by using Trans:

Trans
(
[τ,τ ′]φ(x̄)

)
. (9)

If there are no free variables in (9), the query returns True
(if A is scheduled) or False (otherwise). If (9) contains free
variables, the query returns tuples satisfying the query, such
as timepoints when the action is scheduled.

It is well known that relations defined using fixpoints are
computable in PTIME w.r.t. (c+n+m), where m is the num-
ber of objects other than timepoints and fluents stored in the
database (see, e.g., (Abiteboul, Hull, and Vianu 1996)), so
both constructing such relations and querying them using
first-order or fixpoint formulas is in PTIME. Moreover, such
queries capture PTIME when the database domain is linearly
ordered, which can safely be assumed for TAL structures.

Alternatively, one can replace fixpoint definitions by
a more comfortable rule language with fixpoint seman-
tics such as Semi-Horn Query Language, SHQL (Doherty,
Łukaszewicz, and Szałas 1999). Other rule languages, like
stratified DATALOG¬, can also be applied (for a survey see,
e.g., (Abiteboul, Hull, and Vianu 1996)), but SHQL allows
for quite immediate translations of fixpoints. Any definition
of the least fixpoint, say LFP X(x̄).

[
Γ(X , x̄, z̄)

]
, can be ex-

pressed by the following rule:
Γ(X , x̄, z̄)→ X(x̄).

For example, the translation of the while loop appearing in
the definition of scan-for-people(uav) is:

TransComp
(
t, t ′,

while [tc]∃x,y[owns(uav,x,y)∧¬scanned(x,y)] do
[u,u′]with x,y do [u,u′]scan-cell(uav,x,y) where

[tc]owns(uav,x,y)∧¬scanned(x,y)
)
=

t≤ t ′∧LFP X(u).
[
φ
]
(t),

where φ is
∃v[u≤ v≤ t ′∧
(∃x,y[Holds(v,owns(uav,x,y))∧¬Holds(v,scanned(x,y))]→
∃t1, t2[v≤ t1≤ t2≤ t ′∧
∃x,y[Trans

(
t1, t2,scan-cell(uav,x,y)

)
]∧

Holds(tc,owns(uav,x,y))∧
¬Holds(tc,scanned(x,y))∧X(t2)])]

and Trans
(
t1, t2,scan-cell(uav,x,y)

)
is the standard TAL

translation of the scan-cell action. Therefore, the SHQL rule
expressing the least fixpoint of this translation is:

φ → X(u)
in addition to the fact X(t) expressing the application of the
fixpoint to timepoint t.

Related Work
Logics of action and change have been studied extensively
(Gelfond and Lifschitz 1993; Sandewall 1994; Shanahan

1997; Reiter 2001; Thielscher 2005; Doherty and Kvarn-
ström 2008), yet there has been relatively less research
which focuses specifically on composite actions in all their
generality. An early precursor is the use of strategies in the
situation calculus (McCarthy and Hayes 1969). A more ex-
tensive and recent study of complex actions is the Golog
(Levesque et al. 1997) framework which is also based on
a dialect of the situation calculus (McCarthy 1963; Reiter
2001). Customizability of Golog programs has recently been
considered in the context of semantic web services (McIl-
raith and Son 2002). Focus in this section will be placed
primarily on Golog and its extensions. Although a full com-
parison of this rich body of work is not possible to do within
the confines of this section, a number of comparative obser-
vations can be made related to the respective logics and their
semantics while saving comparisons with the pragmatics of
use in robotics for a future publication.

Like earlier logics in the Features and Fluents framework
(Sandewall 1994), TAL uses a macro language that can be
expanded into standard formulas in a base logic. TALF lever-
ages this approach by introducing new composite action
constructs in L (ND) and providing a translation into stan-
dard elementary actions in L (FLFP). The Golog framework
uses a similar approach, where complex action expressions
are macros which can be expanded into standard formulas
in the situation calculus. Primitive actions are defined in the
usual situation calculus manner using action preconditions,
effect axioms and successor state axioms which are used to
deal with the frame problem, in contrast to the TAL solution
which is based on minimization of occlusion.

The approach to representing complex actions in Golog
draws considerably on the intuitions from dynamic logic
(Harel 1978) where primitive actions, test actions, sequences
of actions, nondeterministic choice of actions, choice of
action arguments, and iteration are used in their construc-
tion. The nondeterministic operators are essential in Golog
and are used to define conditional and while loop expres-
sions. TALF does not have explicit nondeterministic expres-
sions but instead defines concurrency, conditional and while-
do operators directly and with the help of fixpoints. Non-
deterministic choice of action arguments is easily express-
ible using the with VARS do TASK where CONS construct
in TALF. Additionally, procedures are also introduced in
Golog to be able to call complex actions recursively. TALF
uses the names in composite action type specifications and
provides a recursive semantics directly in terms of fixpoints.

In the situation calculus, do(a,s) returns the situation re-
sulting from executing action a in situation s. In Golog, this
is generalized for complex actions using an abbreviation,
Do(δ ,s,s′), which states that s′ is one possible terminat-
ing situation when the complex action δ is executed in s.
Since complex actions can be non-deterministic, there may
be other terminating situations and consequently, alternative
execution traces. The Golog interpreter is responsible for
(non-deterministically) choosing actions to construct an exe-
cution trace satisfying the background theory. An execution
trace is a sequence of primitive actions which can then be
passed to an execution module in a robotic or other system.

There have been many extensions to the Golog framework
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that require extending the basic ontology used in the situa-
tion calculus. The main extensions of relevance to this com-
parison are those involving time (Reiter 1998b), durative ac-
tions (Pinto 1994; Reiter 1998b) and concurrency (Baier and
Pinto 1999; Reiter 1998a). These concepts are already onto-
logically grounded in the original TAL formalism with no
changes required for composite actions. Since actions are
instantaneous in the situation calculus, one models a du-
rative action as a process which is both started and termi-
nated with an instantaneous action. In order to specify tem-
poral duration explicitly, one adds a standard interpretation
of the reals with appropriate operators in addition to axioms
specifying the occurrence time of instantaneous actions and
start time of situations. With these extensions, one can rep-
resent interleaved concurrent actions with duration and the
Golog interpreter can be modified accordingly. ConGolog
(Giacomo, Lespérance, and Levesque 2000) uses an inter-
leaving view of concurrency, while TConGolog (Baier and
Pinto 1999) is an extension which can model true concur-
rency. This requires further extensions to the ontology where
sets of instantaneous actions which are restricted to starting
at the same time are introduced. The cc-Golog language in-
troduces continuously changing fluents whose values may
trigger events (Grosskreutz and Lakemeyer 2003).

Sequential (or concurrent) temporal Golog programs re-
quire a temporal reasoning component to reason about tem-
poral constraints. One choice is to use ECLIPSE, a logic
programming language with constraint solving capability.
When such a program is executed, it generally does not re-
sult in a fully instantiated sequence of actions but instead
yields occurrence times representing all feasible solutions to
the temporal constraints. Using a strategy of minimizing ac-
tion duration in sequence, a specific schedule for the actions
is generated and can be sent to a robotic system for execu-
tion. In TALF, the approach is somewhat different. Compos-
ite actions are compiled into TSTs and the generation and
execution of elementary actions is done dynamically. Dur-
ing runtime, a TST calls a constraint solver to either check
feasibility of all constraints associated with it, or to gener-
ate a specific schedule using various optimization strategies.
During the execution of the TST, if any constraints are vi-
olated a temporal-logic based execution monitor (Doherty,
Kvarnström, and Heintz 2009) identifies failure, and failure
mitigation strategies are then employed which may involve
additional calls to the constraint solver at that point in time.

In its full generality, 2nd-order logic is required to
characterize the meaning of Golog programs. This is due
to the need to formally characterize recursion and non-
deterministic iteration. In TALF, the use of a fixpoint logic
suffices for characterizing recursion and iteration. In fact, it
is probably adequate for the situation calculus too, since the
requirement there is to formally specify transitive closure
and inductive sets. Even though second-order logic is unde-
cidable, one can develop a sound and complete proof theory
for the fixpoint logic described here.

Although the motivations for developing TALF and Golog
have some overlap, the work described here is actually de-
rived from an analysis of a deployed UAV system which
uses a software architecture with TSTs as a central part.

TSTs are in fact used as a basis for current work with
cooperative robotics (Doherty, Heintz, and Landén 2011;
Doherty et al. 2010). We consider the back and forth incre-
mental development of both robotic systems and their formal
correlates to be an appealing methodology which contributes
to both formal and pragmatic development of robotic sys-
tems in a highly productive and novel manner.

Conclusions
The focus of this paper has been to formally characterize
temporal composite actions with constraints in TAL by us-
ing a fixpoint semantics in addition to providing a sound
and complete proof theory for these additions. Additionally,
through the use of TSTs, the pragmatic relation between a
logical specification language for composite actions and an
executable representation for robotic tasks was presented.
Future work will include additional development of the co-
operative robotic framework with appropriate extensions to
the logical specification language. Additionally, effort will
be placed on generalization of our planners for composite
tasks and their tighter integration with the TST-based soft-
ware architecture and execution monitoring systems.
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