
Fixpoints and Iterated Updates
in Abstract Argumentation

Davide Grossi
Department of Computer Science

University of Liverpool, UK

Abstract

Fixpoints play a key role in the mathematical set up of
abstract argumentation theory but, we argue, have been
relatively underexamined in the literature. The paper
studies the logical structure underlying the computation
via approximation sequences of the sort of fixpoints rel-
evant in argumentation. Concretely, it presents a number
of novel results on the fixed point theory underpinning
the main Dung’s semantics and, inspired by recent liter-
ature on the logical analysis of equilibrium computation
in games, it provides a characterization of those seman-
tics in terms of iterated model updates.

Introduction
Abstract argumentation theory (Dung 1995) studies argu-
ments as further unanalyzed elements in a graph of attacks.
One of the key questions it addresses is when an argument
can be considered ‘justified’ or ‘tenable’ given a graph of
this type. To this aim, several structural properties of attack
graphs have been defined and studied to account for differ-
ent notions of justifiability. These properties are commonly
called extensions and form the core of abstract argumenta-
tion theory (cf. (Baroni and Giacomin 2009) for a recent
overview).

Dynamic epistemic logic (DEL, see (van Ditmarsch,
Kooi, and van der Hoek 2007; van Benthem 2011) for re-
cent overviews) is a broad family of logical systems extend-
ing epistemic logics à la Hintikka (Hintikka 1962) in or-
der to account for processes in which agents engage while
acquiring new information, revising beliefs, reasoning and
learning. The present paper takes inspiration from recent
influential applications of DEL, which have provided log-
ical analyses of solution concepts of game theory, such as
the iterated elimination of strictly dominated strategies (van
Benthem 2007) or backwards induction (Baltag, Smets, and
Zvesper 2009; van Benthem and Gheerbrant 2010).

The paper focuses on the fixpoint-theoretic underpinnings
of extensions viewed as ‘solution concepts’ of attack graphs.
It studies a number of theorems—some well-known, some,
to the best of our knowledge, new—concerning the com-
putation via approximation sequences of some of the main

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

types of extensions (viz., grounded, complete, stable and
preferred). Following the DEL methodology, these theo-
rems are then analyzed in modal logic via iterated updates,
making explicit their procedural nature and enabling precise
epistemic interpretations of the approximation sequences.

Technically, the paper exploits the link between abstract
argumentation and modal logic investigated in (Grossi 2009;
2010) and applies notions on iterated updates developed in
(Baltag and Smets 2009). Some of the results we present on
approximation sequences of Dung’s extensions are inspired
by old results on the logical analysis of self-reference (Yablo
1984).

All in all, the paper lays a first bridge between DEL and
argumentation theory. It is our hope that the results presented
here could spark future interaction between these two lively
fields of research which, although by different mathematical
means, pursue strictly related questions.

Structure of the paper: The first two sections introduce
some preliminaries on abstract argumentation theory and the
modal languages that can be used to study it. The third sec-
tion presents an analysis in public announcement logic of
the approximation sequence computing the grounded exten-
sions. The fourth and fifth section pursue a similar analysis
of the complete and stable extensions via an operation of
update of the valuation function of a model. Those sections
also present some original results on the fixpoint computa-
tion of complete and stable extensions.

Preliminaries
We introduce some key notions of abstract argumentation.

Attack graphs
We start by the key notion of (Dung 1995):
Definition 1 (Attack graph). An attack graph—or Dung
framework—is a tuple A = 〈A,�〉 where:

• A is a non-empty finite set—the set of arguments;
• �⊆ A2 is a binary relation—the attack relation.

The set of all Dung frameworks on a given set A is denoted
A(A). The set of all Dung frameworks is denoted A. With
x � y we indicate that x attacks y, and with X � x we
indicate that ∃y ∈ X s.t. y � x. Similarly, x � X indicates
that ∃y ∈ X s.t. y � x.

65

Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning

These relational structures are the building blocks of ab-
stract argumentation theory. Once A is taken to represent a
set of arguments, and � an ‘attack’ relation between argu-
ments (so that a � b means “a attacks b”), the study of these
structures provides very general insights on how competing
arguments interact and structural properties of subsets of A
can be taken to formalize how collections of arguments form
‘tenable’ or ‘justifiable’ positions in an argumentation.

Characteristic functions of attack graphs
The formulation of all main argumentation theoretic proper-
ties makes use of two functions that can be naturally associ-
ated to each attack graph.

The first one is the function called in (Dung 1995) ‘char-
acteristic function’, which we will call here defense func-
tion.

Definition 2 (Defense function). Let A = 〈A,�〉 be a
Dung framework. The defense function dA : ℘(A) −→
℘(A) for A is so defined:

dA(X) = {x ∈ A | ∀y ∈ A : IF y � x THEN X � y} .

Given a set of arguments X , the n-fold iteration of dA is de-
noted dnA for 0 ≤ n < ω and its infinite iteration is denoted
dωA. For a given X , an infinite iteration generates an infinite
sequence, or stream, d0A(X), d1A(X), d2A(X), A stream
is said to stabilize if and only if there exists 0 ≤ n < ω such
that dnA(X) = dn+1

A (X). Such set dnA(X) is then called the
limit of the stream and is denoted d?A(X).

In other words, for a given A, function dA encodes for
each set of arguments X , which other arguments X is able
to defend in A.

The second function was first introduced in (Pollock
1987; 1991) and further studied in (Dung 1995). It is not
known with a specific name in the literature. We call it here
neutrality function.

Definition 3 (Neutrality function). Let A = 〈A,�〉 be an
attack graph. The neutrality function nA : ℘(A) −→ ℘(A)
for A is so defined:

nA(X) = {x ∈ A | NOT X � x}

The definitions of n-fold iteration, stream, stabilization and
limit are like in Definition 2.

Intuitively, given A, function nA encodes for each set X
of arguments in A, the arguments about which X is neutral
in the sense of not attacking any of those arguments.

Example 1 (Defensibility and neutrality in Figure 1). The
functions applied to the symmetric graph on the left of Fig-
ure 1 yield the following equations:

d(∅) = ∅ n(∅) = {a, b}
d({a}) = {a} n({a}) = {a}
d({b}) = {b} n({b}) = {b}
d({a, b}) = {a, b} n({a, b}) = ∅

a

b

c

a

b

d e

Figure 1: Two attack graphs.

Solving attack graphs
Table 1 recapitulates the basic notions of abstract argumen-
tation which will be dealt with in the paper. They are all
formulated either as fixpoints (X = f(X)) or post-fixpoints
(X ⊆ f(X)) of the defense and neutrality functions, or as
combinations of the two.1

Intuitively, conflict-freeness demands that the set of argu-
ments at issue is not able to attack itself. Self-acceptability
requires that the set of arguments is able to defend itself. An
admissible set is then a set of arguments which is conflict-
free and is able to defend all its attackers. So, as the name
suggests, admissible sets can be thought of as ‘admissible’
positions within an attack graph. By considering those ad-
missible sets which also contain all the arguments they are
able to defend—viz., the admissible sets that are fixpoints
of the defense function—we obtain the notion of complete
extension. It formalizes the idea of a fully exploited admis-
sible position, that is, a position which has no conflicts, and
which consists exactly of all the arguments it can success-
fully defend. Stable extensions are the fixpoints of the neu-
trality function, that is, they are precisely the complement
of the set of arguments they attack. The grounded extension
represents what all complete extensions have in common. In
a way, it formalizes what at least must be accepted as ‘rea-
sonable’ within the graph. At the other end of the spectrum,
preferred extensions are the maximal complete extensions
which are also conflict-free. As such, they formalize the idea
of a maximal coherent and admissible position in the graph.
Example 2 (Extensions in Figure 1). Consider the graph
on the right of Figure 1. The grounded extension is ∅. There
are two complete extensions which are also preferred and
stable: {a, d} and {b, d}. An example of a conflict-free set
which is not admissible is {c, e}.

Argumentation in modal logic
This section presents a modal logic for abstract argumenta-
tion theory first introduced in (Grossi 2009; 2010). The logic
is based on the intuition that attack graphs (Definition 1) can
be viewed as Kripke frames and can therefore be used to
interpret modal formulae.

A simple modal language for argumentation
Once an attack graph is viewed as a Kripke frame, the addi-
tion of a function assigning names to sets of arguments—a

1We are not aware of any work in argumentation which, like
we do, formulates conflict-freeness as a post-fixpoint and stable
extensions as fixpoints of the neutrality function.

66

X is conflict-free in A iff X ⊆ nA(X)
X is self-acceptability in A iff X ⊆ dA(X)
X is admissible in A iff X ⊆ nA(X) and X ⊆ dA(X)
X is a complete extension of A iff X ⊆ nA(X) and X = dA(X)
X is a stable extension of A iff X = nA(X)
X is the grounded extension of A (GrnA) iff X = lfp.dA
X is a preferred extension of A iff X is a largest complete extension of A

Table 1: Some of the key notions of abstract argumentation theory from (Dung 1995). Expression lfp.dA denotes the least
fixpoint of the defense function.

labeling or valuation function—yields a Kripke model.

Definition 4 (Attack models). Let P be a set of atoms. An
attack model is a tupleM = 〈A,V〉 where A = 〈A,�〉 is
an attack graph and V : P −→ ℘(A) is a valuation function.
A pointed attack model is a pair 〈M, a〉 with a ∈ A. The set
of all attack models is denoted M.

Intuitively, an attack model is nothing but an attack graph
where arguments are labeled by propositional atoms or,
equivalently, where sets of arguments are named. So, the fact
that an argument a belongs to the set V(p) in a given model
M reads in logical notation as 〈A,V〉, a |= p. By using the
language of propositional logic we can then form ‘complex’
labels ϕ for sets of arguments stating, for instance, that “a
belongs to both the sets called p and q”: 〈A,V〉, a |= p ∧ q.
Consider now statements such as: “there exists an argument
in a set named ϕ attacking argument a” or “for all attack-
ers of argument a there exist some attackers in a set named
ϕ”. These are statements involving a bounded quantification
and they can be naturally formalized by a modal operator ♦
whose reading is: “there exists an attacking argument such
that . . . ”. To this we turn in the next section.

Syntax & semantics Language L is a standard modal lan-
guage with two modalities: ♦ and 〈U〉 (the universal modal-
ity). It is built on the set of atoms P by the following BNF:

L(P) : ϕ ::= p | ⊥ | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | 〈U〉ϕ

where p ranges over P. Standard definitions for the remain-
ing Boolean operators and the duals � and [U] are assumed.

Definition 5 (Satisfaction for L). Let ϕ ∈ L. The satisfac-
tion of ϕ by a pointed attack model (M, a) is inductively
defined as follows:

M, a |= ♦ϕ ⇐⇒ ∃b ∈ A : a � b ANDM, b |= ϕ

M, a |= 〈U〉ϕ ⇐⇒ ∃b ∈ A :M, b |= ϕ

Boolean clauses are omitted. As usual, ϕ is valid in an attack
modelM iff it is satisfied in all pointed models ofM, i.e.,
M |= ϕ. The truth-set of ϕ, i.e., {a ∈ A | M, a |= ϕ}, is
denoted JϕKM. The set of L-formulae which are true in the
class A of all attack models is called KU.

These are fully standard clauses for modal logic se-
mantics, but let us see what their intuitive reading is in
argumentation-theoretic terms. The first clause states that ar-
gument a belongs to the set called ♦ϕ iff some argument b is
reachable via the inverse of the attack relation and b belongs

to ϕ or, more simply, iff a is attacked by some argument
in ϕ. The second clause states that argument a belongs to
the set called 〈U〉ϕ iff there exists some argument b in ϕ, in
other words, iff the set called ϕ is non-empty. Similarly, for
the duals: �ϕ expresses that all attackers have property ϕ,
and [U]ϕ expresses that all arguments have property ϕ.

Example 3. Consider the graphs in Figure 1 and call the
graph on the left AL and the one on the right AR. Let then
V : {p} −→ ℘(A) be a valuation function interpreting atom
p on a set of arguments such that V(p) = {b}. Here are a
few illustrative modal statements:

〈AL,V〉, b |= ¬�⊥ 〈AR,V〉, b |= 〈U〉(♦♦p ∧ ♦♦♦p)
〈AL,V〉, b |= �♦p 〈AR,V〉, b |= 〈U〉�(p ∨ ♦p)

The two on the left state that b inAL is not ‘unattacked’ and,
respectively, that all its attackers are attacked by some argu-
ment labeled p (in this case b itself). The one at the top right
corner states that in AR there exists an argument (namely
d) which has both a chain of two and three attackers ending
in some argument labeled p. The last one states that there
exists an argument (c) such that all its attackers (a and b)
are either in p or are attacked by some argument in p.

Properties of the logic Logic KU is a well-studied and
well-behaved system: it has a simple strongly complete ax-
iomatics, a polynomial model checking problem and an
EXPTIME-complete satisfiability problem (cf. (Blackburn,
de Rijke, and Venema 2001, Ch. 7)).

Defense and neutrality in modal logic
We show that functions dA and nA correspond to the func-
tions denoted in L by the modal expressions �♦ and, re-
spectively, ¬♦ on a given graph A.2

Lemma 1 (Defence and neutrality in modal logic). Let A
be an attack graph and V a valuation function.

〈A,V〉, a |= �♦ϕ ⇐⇒ a ∈ dA(JϕK〈A,V〉)

〈A,V〉, a |= ¬♦ϕ ⇐⇒ a ∈ nA(JϕK〈A,V〉)

2Technically, the claim is a direct consequence of the ex-
istence of a homomorphism from the term algebra Term =
〈L,∧,¬,⊥,♦〉 of language L (without universal modality) to the
complex algebra SetA = 〈2A,∩,−, ∅, f〉 where f : ℘(A) −→
℘(A) such that f(A) = {a ∈ A | ∃b ∈ A : a � b} (Blackburn, de
Rijke, and Venema 2001, Ch. 5). Nonetheless, we find it worth-
while to state it explicitly for �♦- and ¬♦-formulae.

67

Sketch of proof. For �♦ we have these equivalences:

J�♦ϕK〈A,V〉 = {a | ∀b : IF a � b THEN b � JϕK〈A,V〉}
= dA(JϕK〈A,V〉).

The equations hold by the semantics of �♦ and Definition
2. The reasoning for ¬♦ϕ is analogous.

A direct consequence of this lemma is that L can express
some of the properties of Table 1 in the following way: atom
p denotes a set of arguments which is admissible (Formula
1 below), complete (Formula 2), and stable (Formula 3):3

[U](p→ �♦p) ∧ [U](p→ ¬♦p) (1)
[U](p↔ �♦p) ∧ [U](p→ ¬♦p) (2)
[U](p↔ ¬♦p) (3)

Modal principles Emphasizing the modal nature of dA
and nA has the advantage of allowing us to use available
modal principles in our proofs without having to resort to
longer direct arguments. All the theorems of logic KU con-
cerning �♦- and ¬♦-formulae can legitimately be seen as
theorems of abstract argumentation. Here we list a sample
of these theorems which will be used in the paper. They all
express known fundamental properties of defense and neu-
trality functions, albeit in a more concise way. Proofs are
standard and are omitted.
Fact 1. The following are theorems of KU:

�♦ϕ ↔ ¬♦¬♦ϕ (4)
�♦�♦⊥ ↔ �♦⊥ ∨�♦�♦⊥ (5)

[U](ϕ→ ψ) → [U](�♦ϕ→ �♦ψ) (6)
[U](ϕ→ ψ) → [U](¬♦ψ → ¬♦ϕ) (7)

Formula (4) is the modal counterpart of the equivalence
of the defense function and the 2-fold iteration of the neu-
trality function, i.e., for any X and graph A: dA(X) =
nA(nA(X)). Formula (5) states that, for any A, the finite
union of subsequent iterations of dA over ∅ is equivalent to
the longest iteration; Formula (6) expresses, for any A, the
monotonicity of dA while Formula (7) expresses the anti-
tonicity of nA.

In the remaining of the paper, in order to concisely express
the nth iteration of �♦ (resp., ¬♦) we will write (�♦)n

(resp., (¬♦)n).

Dynamics of the grounded extension
The present section is devoted to a logical analysis of the
process of computation of the grounded extension.

Computing the grounded extension
As we have seen in Table 1, the grounded extension is the
least fixpoint of the defense function. By the monotonicity
of the defense function (Fact 1), and the Knaster-Tarski theo-
rem4, we know that the grounded extension exists for any at-
tack graph and is equal to the intersection of all pre-fixpoints
of the defense function, i.e.,

⋂
{X ⊆ A | dA(X) ⊆ X}.

3To express also the grounded and the preferred extensions
richer modal languages are needed. See (Grossi 2010; 2011).

4See (Davey and Priestley 1990, Ch. 10).

Our starting point here is a known result, due to (Dung
1995), according to which, under some specific conditions
such as the finiteness of A, the grounded extension of an
attack graph can be ‘approximated from below’, that is, it
can be obtained as the limit of a sequence of iterations of the
defense function starting at the empty set.5

The result relies on the following lemma expressing a
general stabilization property of the streams generated by
the defense function.

Lemma 2 (Stabilization). Let A = 〈A,�〉 be an attack
graph and X ⊆ A. If X ⊆ dA(X) then the stream gener-
ated by dωA stabilizes.

Sketch of proof. Function dA is monotonic (Fact 1) hence
the stream generated by dωA is increasing. By the finiteness
of A (Definition 1), the stream cannot be strictly increasing,
hence there exists a limit.

Theorem 1 (Approximating the grounded extension).
For any attack graph A:

lfp.dA =
⋃

0≤n<ω

dnA(∅)

Proof. By Lemma 2 the stream stabilizes at limit d?A(∅).
By the monotonicity of dA (Fact 1), and the finite-
ness assumption on A (Definition 1) we have that
d?A(∅) =

⋃
0≤n<ω dnA(∅) since dA

(⋃
0≤n<ω dnA(∅)

)
=⋃

0≤n<ω dnA(∅). Then, by monotonicity again, we conclude
that d?A(∅) is the smallest fixpoint.6

Intuitively, the grounded extension is the set of arguments
built in the limit of the process that starts by taking the set
of arguments defended by the empty set, then adding the set
of arguments that are defended by the set defended by the
empty set, and so on.

Approximation and hard updates
Basic intuition The idea behind this section is that the
approximation sequence computing the grounded extension
can be viewed as a dual process of iterated removal of ‘un-
feasible’ arguments. Intuitively, an agent confronted with an
attack graph will at first consider all arguments as equally
cogent. She will then engage in a step-wise process of
scrutiny of the graph, which reduces her uncertainty about
which arguments are to be considered justified by removing
arguments that are clearly unjustified. The upshot is that, at
the end, she will remain with only justified arguments.

5The condition in (Dung 1995) is weaker than finiteness,
namely that no argument is attacked by infinitely many attack-
ers. Here we limit ourselves to the version of the result for finite
graphs, since the logical structure of the approximation sequence
is the same in the finite or infinite case. This allows us to avoid
some complications that would make proofs lengthier.

6In the case of infinite graphs the assumption that no argument
is attacked by infinitely many attackers still guarantees that the
limit of the stream dωA(∅) is a fixpoint, and hence the smallest.

68

The “being defended” formula In the case of the
grounded extension this process of elimination concerns
the iterated elimination of arguments satisfying the modal
formula ♦�⊥, that is, arguments that are attacked by an
unattacked argument.

This is, in essence, the same process used in game the-
ory to compute equilibria via iterated elimination of strictly
dominated strategies, which has been object of logical inves-
tigation in, amongst others, (van Benthem 2007). In general,
processes of this type have been extensively studied in the
last decade in that branch of epistemic logic that has come
to be known as DEL (Dynamic Epistemic Logic, (van Dit-
marsch, Kooi, and van der Hoek 2007)). The iterated elim-
ination of ♦�⊥-arguments corresponds to what in DEL is
called a public announcement or hard update of the negation
of ♦�⊥, i.e., of �♦> which we will abbreviate by DF. The
formula expresses the property that “all attackers (of the cur-
rent evaluation point in the graph) are attacked” or, roughly,
that “the current argument is defended by at least one argu-
ment”. We will also abbreviate �⊥ by UA (‘unattacked’). Ar-
guments satisfying UA will be sometimes called dead ends,
according to the standard modal logic terminology.

Remark 1 (Frame language). Properties DF and UA are
both expressible in a limited fragment of the language L in-
troduced above. The fragment, which we call Lframe , is de-
fined by the following BNF:

ϕ ::= ⊥ | ¬ϕ | ϕ ∧ ϕ | ♦ϕ

Notice that this is a so-called frame language (Blackburn, de
Rijke, and Venema 2001, Ch. 3.1), which does not use propo-
sitional atoms. In fact this language does not need models to
be interpreted, but simply attack graphs (Definition 1). In the
current section we will work only with this fragment, coming
back to L in the last two sections dedicated to complete and
stable extensions. This might look like a radical restriction,
but we will see that this is really all we need for a dynamic
analysis of the grounded extension.

Hard updates The intuition behind the hard update of a
formula ϕ over an attack graph is that, after ϕ has been
publicly announced (or learnt), all arguments satisfying the
negation of ϕ will be removed from the graph as deemed
unplausible. Here is the formal definition:

Definition 6 (Hard updates and their iteration). Let ϕ ∈
Lframe . The hard update by ϕ is a function !ϕ : {A ∈
A | JϕKA 6= ∅} −→ A. The value of !ϕ given A is
A!ϕ = 〈A!ϕ,�!ϕ〉 where:

• A!ϕ := JϕKA, i.e., the new set of arguments are the ones
that satisfy the announced formula;

• �!ϕ:=� ∩A2
!ϕ, i.e., the restriction of the attack relation

to A!ϕ.

When defined, we denote the n-fold finite iteration of a
hard update !ϕ by !ϕn and its infinite iteration by !ϕω .
An infinite iteration !ϕω generates a stream of graphs:
A!ϕ0 ,A!ϕ1 ,A!ϕ2 , A stream is said to stabilize if and
only if there exists 1 ≤ n < ω such that A!ϕn = A!ϕn+1 .
A!ϕn is then called the limit of the stream and denotedA!ϕ? .

So, the hard update of a formula ϕ transforms a given at-
tack graph A in which ϕ has a non-empty denotation, into a
new graph A′ where all arguments that did not satisfy ϕ in
A have been eliminated. Such updates can be iterated giv-
ing rise to streams of attack graphs which stabilize when no
further hard update by ϕ changes the graph any more.

Hard update of ‘being defended’ We study here some
relevant properties of DF and its hard update !DF.
Fact 2. For any attack graphA: i) ifA, a |= UA thenA, a |=
DF; ii)JDFKA 6= ∅; iii) !DF is a function !DF : A −→ A; iv)
dA!DFn

(X) = dA(X) where X ⊆ AA!DFn
for any 0 ≤ n <

ω. v) JDFKA!DF
= J�♦DFKA; vi) JUAKA!DF

= J�♦UAKA.

Sketch of proof. i) If a is a dead-end, then it trivially sat-
isfies �♦>. ii) Suppose towards a contradiction that for
all a, A, a |= ¬�♦> and, by modal principles, for all a,
A, a |= ♦�⊥. Hence ∃b such that A, b |= �⊥. But by i)
it follows that JUAK = ∅. Contradiction. iii) follows directly
from ii) as {A ∈ A | JDFKA 6= ∅} = A. iv) is proven by a
simple induction on the length n of the iteration of the hard
update; v) is proven by the following series of equations:

J�♦>KA!�♦> = dA!�♦>(J>KA!�♦>)

= dA(J�♦>KA)
= J�♦�♦>KA

The first equation holds by Lemma 1, the second by Defi-
nition 6 and item iv, and the third again by Lemma 1. vi) is
proven in a similar fashion.

These are the intuitive readings of the above properties:
i) if an argument has no attackers, than it is (trivially) de-
fended; ii) in every attack graph there exist arguments that
are defended by some argument; iii) the hard update of ‘be-
ing defended’ is a total function; iv) the defense function af-
ter n hard updates coincides with the defense function of the
original graph restricted to the subsets of the domain at the
nth update; v) and vi) the arguments that are defended (resp.,
unattacked) after update !DF, are the same arguments that are
acceptable with respect to the defended (resp. unattacked)
arguments in the original graph.
Remark 2. In the DEL jargon, DF is what is sometimes
called a successful formula, that is, a formula ϕ for which it
holds that: for any pointed frame (A, a), if A, a |= ϕ ∧ ♦ϕ
then A!ϕ, a |= ϕ (Holliday and Icard 2010). However, DF
can change its truth value from true to false after an update
!DF. This is the case of argument b in Figure 2.

Grounded extension via iterated update
We can now present a characterization of the grounded ex-
tension via the iteration of hard update !DF. First, the stream
generated by this update always stabilizes:
Lemma 3. Function !DF stabilizes for any attack graph.

Sketch of proof. First observe that the stream of sets
A!DF0 , A!DF1 , . . . generated by A!DFω is decreasing since
A!�♦> = A − J¬�♦>KA (Definition 6). However, by the
finiteness assumption on A, the stream cannot be strictly de-
creasing, hence there exists a limit.

69

aA : b c d e

aA!DF : b c e

aA!DF2 : c e

Figure 2: Example of iterated hard update of !DF. After the
first update by !DF argument d is eliminated since A, d |=
¬DF. Similarly, after the second update b is eliminated since
A!DF, b |= ¬DF.

It is instructive to notice that the stream may stabilize triv-
ially and without any argument removal, e.g., in Figure 1
where the depicted graphs are already limits of the stream.
This is in general the case whenever the graph does not con-
tain any dead end. We now get to the theorem we are after.
Theorem 2 (The grounded extension via iterated up-
dates). For any graph A = 〈A,�〉:

lfp.dA = JUAKA!DF?

Proof. We first prove the following lemma:

J
∨

0<i≤n

(�♦)i⊥KA = JUAKA!DFn−1

By induction on the length of the �♦-iteration:
B: For n = 1: J�⊥KA = J�⊥KA.
S: Assume (IH) that J

∨
0<i≤n(�♦)i⊥KA = J�⊥KA!DFn−1 .

We show that J
∨

0<i≤n+1(�♦)i⊥KA = J�⊥KA!DFn
. The

claim is proven by the following series of equations:
J�⊥KA!DFn

= J�♦�⊥KA!DFn−1

= dA!DFn−1 (J�⊥KA!DFn−1)

= dA!DFn−1 (J
∨

0<i≤n

(�♦)i⊥KA)

= dA!DFn−1 (J(�♦)n⊥KA)
= J(�♦)n+1⊥KA
= J

∨
0<i≤n+1

(�♦)n+1⊥KA

The first equation holds by Fact 2, the second by Lemma 1,
the third by IH, the fourth and last by modal principles (Fact
1), and the fifth by Lemma 1 and Fact 2. By Lemma 1 and
Theorem 1 we then get the following series of equations:

JUAKA!DF?
=

⋃
0≤n<ω

J(�♦)n⊥KA =
⋃

0≤n<ω

dnA(∅) = lfp.dA

thereby completing the proof.

Intuitively, the theorem states that the grounded extension
coincides with the unattacked arguments in the graph ob-
tained at the limit of the iteration of the !DF update. In other
words: a ∈ lfp.dA if and only if A!DF? , a |= UA. Figure 2
illustrates this process on a simple graph.

Remark 3 (Largest fixpoint of the defense function). The
largest fixpoint of the defense function can be obtained in
the same fashion, and it coincides with the whole domain of
the limit graph: A!DF? = gfp.dA.

On the epistemic interpretation of !DF
The intuitions that drove our analysis in this section have
been mainly epistemic: an agent confronted with an attack
graph engages in a process of reduction of her uncertainty
concerning which arguments are to be considered justified.
Although it is not our aim here to provide a fully fledged ren-
dering of our results in epistemic logic it is worth spending
a few words on the issue.

Logic KU can be viewed as an extension of an epistemic
S5 system with the attack modality ♦, where the univer-
sal modality 〈U〉 is taken to be the epistemic operator. The
interaction axiom between the two modalities is the inclu-
sion principle: ♦ϕ → 〈U〉ϕ. So the update !DF reduces
the range of the 〈U〉 modality, thereby modelling the ac-
quisition of knowledge. In this view, Theorem 2 has also
the following interesting consequence: a ∈ lfp.dA if and
only if A!DF? , a |= [U]UA. That is, an argument belongs to
the grounded extension if and only if, in the announcement
limit, it is known that there are no attackers.

We conclude with one DEL-related remark. Although we
have used the notion of hard update, we have not extended
the language of KU to talk about such operations, viz. modal-
ities [!ϕ] for ϕ in the extended language. An extension of this
type is obviously possible and an axiomatization of these op-
erators could be obtained, as usual in DEL, via reduction ax-
ioms. All we have to do is to extend one of the existing com-
plete axiomatizations of Public Announcement Logic (see
(Wang 2011) for a recent overview) with axiom:

[!ϕ]�ψ ↔ (ϕ→ �(ϕ→ [!ϕ]ψ)

Roughly, the axiom states that �ψ holds after the hard up-
date !ϕ if and only if, if the current argument satisfies ϕ then
all attackers satisfying ϕ will also satisfy ψ after the update.
The soundness of this axiom with respect to models on at-
tack graphs is easily proven.

Dynamics of complete extensions
We turn now to a similar analysis, but with different logical
tools, of the process of computation of complete extensions.

Fixpoint computation of complete extensions
The section moves from a slight generalization of Theorem
1, which accounts for the computation via approximation
sequences of any complete extension—hence including the
grounded. Although applying the very same ideas behind the
approximation sequence for the grounded extension, this re-
sult has, to the best of our knowledge, never been reported
in the literature.

We start with a lemma that relates admissibility of a set of
arguments to the generation of a conflict-free fixpoint of the
defense function as the limit of a stream starting at that set:
Lemma 4. LetA = 〈A,�〉 be an attack graph and X ⊆ A.
If X is admissible then:

70

i) d?A(X) is the smallest fixpoint of dA containing X;
ii) d?A(X) is conflict-free.

Sketch of proof. i) By Lemma 2 we know that the limit ex-
ists. To prove that d?A(X) is the smallest fixpoint of dA
containing X , assume towards a contradiction that there ex-
ists Y s.t. X ⊆ Y = dA(Y) ⊂ d?A(X). By the mono-
tonicity of dA, dnA(X) ⊆ Y for all 0 ≤ n < ω. Hence
d?A(X) ⊆ Y , against the assumption. ii) Assume towards a
contradiction that d?A is not conflict-free. By the finiteness
assumption over A (Definition 1), and the assumption that
X is admissible, it follows that there exists a 0 ≤ n < ω
such that dn−1A (X) is conflict-free and dnA(X) is not. Let
a, b ∈ dnA(X) = dA(d

n−1
A (X)) such that a � b. Hence

∃c, d ∈ dn−1A (X) such that b � c and c � d, contradicting
the conflict-freeness of dn−1A (X).7

Theorem 3 (Approximating complete extensions). Let
A = 〈A,�〉 be an attack graph and X ⊆ A be admissi-
ble:

cmpA(X) =
⋃

0≤n<ω

dnA(X)

where cmpA(X) denotes the smallest complete extension of
A containing X .

Proof. Like in for Theorem 1, the finiteness ofA guarantees
that d?A(X) =

⋃
0≤n<ω dnA(X). The fact that d?A(X) =

cmpA(X) follows then directly from Lemma 4.

Intuitively, starting with an admissible set, we can obtain
the smallest complete extension containing it by a finite it-
eration of the defense function.
Remark 4 (Preferred extensions). Notice that, under some
specific assumptions on X , d?A(X) generates the preferred
extension containing X . Such an assumption is that X is
‘big enough’ in the precise sense that it contains enough
arguments to be able, from some argument in X , to reach
any argument in the graph via the attack relation, i.e., ifA =
{a | ∃b ∈ X S.T. a �+ b}, where �+ denotes the transitive
closure of the � relation.

Approximation and valuation updates
Basic intuition Notice, first of all, that Theorem 2 is the
special case of Theorem 3 where X = ∅. The process of
approximation at issue in both these theorems starts with a
given admissible set and iteratively extends it to incorporate
the arguments it defends. However, to analyze Theorem 2 we
have resorted to a dual process of elimination of unjustified
arguments which we have modeled via hard updates.

In this section, we analyze the more general Theorem
3 not through argument elimination, but rather directly
through an iterated reinterpretation of a designated atom P
of our language. We call it ‘position atom’ as we take it to
denote a position in an argumentation, i.e., a designated set
of arguments to which an agent commits during a step-wise
process of solution of the attack graph.

7It might be instructive to mention that this is also, in essence,
the argument behind the fundamental lemma in (Dung 1995).

1

2

3

V:=DF0P
(P) = {1}

V:=DF1P
(P) = {3}

V:=DF2P
(P) = {2}

V:=DF3P
(P) = {1}

.

Figure 3: A 3-cycle attack graph, and the first four elements
of the stream := DFωP generated at the model whose valua-
tion is V(P) = {1}. The stream cycles every three steps.

Valuation update The tool we borrow from DEL for our
analysis consists in a model-change operation which targets
the valuation function, called valuation update or propo-
sitional change (e.g., (van Benthem, van Eijck, and Kooi
2006)). Here we focus on a version of this operation that
only modifies the valuation of a designated atom P.

Definition 7 (Valuation update). Let M = 〈A,�,V〉 be
an attack model and ϕ ∈ LU. The valuation update := ϕ is
a function := ϕ : M −→M. The value of := ϕ givenM is
M:=ϕ = 〈A:=ϕ,V:=ϕ〉 where:

• A:=ϕ = A and �:=ϕ=�, i.e., the set of arguments and
the attack relation remain the same;

• V:=ϕ is such that V:=ϕ(P) = JϕKM, i.e., the designated
atom P is given as value the truth-set of ϕ in the model
before the update.

Iteration, streams, stabilization and limits are defined just
like for the case of hard updates (Definition 6).

Iterated valuation update of “being defended by P”
The natural candidate for the property driving the update
iteration is expressed by formula �♦P, which we will ab-
breviate by DFP, and which denotes the set of arguments de-
fended by the arguments in position P. The update we will
focus on is, therefore, := DFP.

From a DEL point of view, the first thing to notice by
looking at the stream generated by := DFωP is that the stream
does not stabilize in general. Figure 3 provides a simple ex-
ample, well-known to the argumentation theorists as typi-
cal instance of an odd loop of attacks.8 However, our modal
language has the necessary resources to recast Lemma 2 ob-
taining a stabilization result and, consequently, a characteri-
zation of complete extensions via iterated valuation updates.

Theorem 4 (Complete extensions via iterated updates).
For any model M, if M |= (P → �♦P) ∧ (P → ¬♦P)
then:

cmpA(JPKM) = JPKM:=DF?
P

Sketch of proof. Observe first of all that M:=DFωP
gener-

ates the stream JPKM
:=DF0

P

, JPKM
:=DF1

P

, This stream, by
Lemma 1 and Definition 7, is identical to the stream

8Recent work in DEL has dedicated quite some attention to
updates that do not necessarily stabilize (e.g. (Baltag and Smets
2009)). To the best of our knowledge, however, no work in that
literature has studied oscillatory behavior of valuation updates.

71

d0A(JPKM), d1A(JPKM), Hence the stream reaches a
limit by Lemma 2. The claim follows then from a direct ap-
plication of Theorem 3 and Lemma 1.

From this it directly follows that a ∈ cmpA(JPKM) if and
only ifM:=DF?P

, a |= P∧ [U](P→ ¬♦P)∧ [U](P↔ �♦P).
Intuitively, argument a belongs to the smallest complete ex-
tension containing the truth-set of P if and only if the truth-
set of P in limit of the valuation update by �♦P is a com-
plete extension and a belongs to it.

On the epistemic interpretation of := DFP
The analysis proposed makes use of a designated atom P.
We have chosen this formal set up for conciseness. However,
there are strict relationships with the literature in epistemic
logic. Roughly, once we cast the valuation of P into a desig-
nated subset of the support of the frame, thus working with
frames 〈A,P,�〉,9 formulae of the form [U](P → ϕ) simu-
late a modal operator [P]ϕ with the following semantics:

M, a |= [P]ϕ ⇐⇒ ∀b ∈ P :M, b |= ϕ

This operator has been proposed for instance in (Meyer and
van der Hoek 1995), in order to extend S5 with an operator
modeling a “working belief”, i.e., a set of assumptions an
agent can entertain before evaluating a formula. The same
operator has also been used in (Grossi, Meyer, and Dignum
2006) to give a simple modal rendering of a notion of con-
text. Finally, the set P can be viewed as an accessibility re-
lation RP such that: aRPb iff b ∈ P. It is easy to see that
this is a transitive and euclidean relation (with the extra con-
straint that the set of accessible states does not vary across
the model). Hence, these are models of logic K45, the sub-
system of the basic doxastic logic KD45 allowing for possi-
bly inconsistent beliefs.10

In this perspective, P can legitimately be viewed as mod-
eling one’s belief within an argumentation in terms of the
arguments she is ready to accept. Consequently, the update
:= DFP can be viewed as the expansion of one’s argumenta-
tive position as a process of inference of what follows from a
position, where ‘to follow’ does not denote a logical conse-
quence relation, but the argumentation theoretic relation of
defense. Implicit in the definition of complete extension is,
therefore, that one must accept what one can defend.

We conclude with a few words on the dynamic operator
[:= ϕ] that can be associated to the := ϕ update. The exten-
sion of KU with these operators can be axiomatized via the
following simple axioms:11

〈:= ϕ〉♦ψ ↔ ♦〈:= ϕ〉ψ
〈:= ϕ〉〈U〉ψ ↔ 〈U〉〈:= ϕ〉ψ

9Slightly abusing notation we take P here to be a subset of A
rather than an atom.

10A detailed study of the relations between [P] and the modal
operator of KD45 is carried out in (Grossi, Meyer, and Dignum
2008), where it is shown that the logic of [P] is, in fact, K45.

11An equivalent system extending the context logic of (Grossi,
Meyer, and Dignum 2006) with dynamic operators of this sort has
been studied in (Aucher et al. 2009).

The dynamics of stable extensions
In this final section we will focus on the issues arising when
attempting a computation of stable extensions via approxi-
mation sequences.

Computing stable extensions
In studying complete extensions we saw that, although not
stabilizing in general (recall Figure 3), dωA(X) would gen-
erate a stabilizing stream on any graph A provided X be
self-acceptable, i.e, be a post-fixpoint of dA: X ⊆ dA(X)
(Lemma 2). This good behavior relied on the monotonicity
of the defense function.

Monotonicity is, however, not satisfied by nA, which
is instead antitone (recall Fact 1). Besides, even initiating
an approximation sequence at a post-fixpoint of nA (i.e.,
a conflict-free set) will not, in general, yield a stabiliz-
ing stream (see example below). The question arises then
of which conditions can still generate some form of well-
behaved stream.

Example 4. Consider again the graph in Figure 3. The
stream generated by nωA starting at the conflict-free set {1}
is {1} , {1, 2} , {2} , {2, 3} , {3} , {1, 3} , {1} , . . . and loops
with an orbit containing all the sets of arguments of cardi-
nality one and two.

Decomposition, stabilization and limits The interesting
result, inspired by work on logical semantics for self-
referential statements (Yablo 1984), is that if X is taken to
be a post-fixpoint of both dA and nA then the stream gener-
ated by nωA(X), although not always stabilizing, does exhibit
some good behavior:

Lemma 5. For any attack graph A = 〈A,�〉 and X ⊆ A,
if X is admissible then:

i) the stream n0A(X), n2A(X), . . . , n2nA (X), . . . for 0 ≤
n < ω stabilizes;

ii) the stream n1A(X), n3A(X), . . . , n2n+1
A (X), . . . for 0 ≤

n < ω stabilizes.

Proof. Recall that dA(X) = n2A(X) for any A and X ⊆ A
(Fact 1). i) The stream of even iterations is stream dωA(X)
and hence, by Lemma 2, it stabilizes. ii) The stream of odd
iterations is stream dωA(nA(X). By a simple induction we
can prove that the stream is decreasing, since nA is antitone
(Fact 1). The base case n3A ⊆ nA(X) follows from X being
such that X ⊆ n2A. The claim follows by A’s finiteness.

The proof makes explicit several interesting features of
the stream generated by nωA on an admissible set X: first,
the stream can be split in two parts, the part consisting of
even and, respectively, odd iterations of nA; second, the two
parts grow towards each other as the stream of even itera-
tions is increasing, while the one of odd iterations is decreas-
ing; third, the two streams can actually be viewed as streams
of the defense function dA applied to X and to nA(X);
finally—and that is the consequence of these observations,
both parts stabilize. These features are depicted in Figure 4.

Based on this lemma, we can identify the limits of the
stream as special fixpoints of the defense function.

72

X

nA(X)

n2A(X)

n3A(X)

n4A(X)

n5A(X)

n6A(X)

. . .

. . .

Figure 4: Decomposability of the stream generated by
nωA(X). The horizontal axis indicates the number of itera-
tions, while the vertical axis indicates set theoretic inclusion.

Theorem 5. For any attack graphA = 〈A,�〉 and X ⊆ A,
if X is admissible then:

i) the limit (n2A)
?(X) of the stream of even iterations of

nA is the smallest fixpoint of dA containing X;
ii) the limit (n2A)

?(nA(X)) of the stream of odd iterations
nA is the largest fixpoint of dA containing X .

Proof. i) The claim follows directly from Lemma 4 and
the fact that nA(nA(X)) = dA(X) (Fact 1). ii) By Fact
1 and the finiteness of A we have that: (n2A)

?(nA(X)) =⋂
0≤n<ω dnA(nA(X)).

Stable extensions We finally arrive at a characterization
of stable extensions as limits of streams generated by the
neutrality function:

Theorem 6 (Approximating stable extensions). For any
attack graph A = 〈A,�〉 and X ⊆ A, if X is admissible
then:

stbA(X) = n?A(X) ⇐⇒ d?A(X) = d?A(nA(X))

where stbA(X) denotes the unique stable extension con-
taining X .

Proof. [RIGHT TO LEFT] By the finiteness of A, from
d?A(X) = d?A(nA(X)) follows that

⋂
0≤n<ω dnA(nA(X)) =⋃

0≤n<ω dnA(X) hence there exists one unique limit of the
stream generated by nωA which equals the only fixpoint of
nA containing X . [LEFT TO RIGHT] Straightforward.

The theorem provides a novel characterisation of stable
extensions in terms of the behavior in the limit of the it-
eration of the neutrality function. It states that, by starting
with an admissible set, the infinite iteration of the neutral-
ity function will reach a fixpoint, viz., the stable extension
containing the original set, if and only if the streams of even
and odd iterations of the function converge to the same limit.
Two remarks on this theorem are in order:

Remark 5 (Preferred extensions (continued)). An inter-
esting consequence of the theorem is that stable extensions
can be approximated from below starting from admissible
sets if and only if they actually coincide with a preferred ex-
tension. This is so because the limits of the even and odd
streams in nωA coincide only if there exists only one fixpoint

⊥

>

�⊥

�♦>

(�♦)2�⊥

(�♦)2>

(�♦)3�⊥

. . .

. . .

Figure 5: Decomposability of the stream := ¬♦⊥ω .

of dA containing the admissible set, and hence that fixpoint
must be a preferred extension. Notice that this convergence
condition is implied by the condition introduced in Remark
4.

Remark 6 (A special case). The case of Theorem 6 for
X = ∅ is reported in (Lifschitz 1996) and, in the con-
text of abstract argumentation, in (Dung 1995) where for-
mal relationships between the grounded extension and a
semantics for argumentation proposed in (Pollock 1987;
1991) are discussed. That semantics is based on the stream
generated from the empty set by the neutrality function, i.e.,
the limit of the even iterations stream in nωA(∅). Figure 5 de-
picts this special case in its modal formulation.

Iterated update of “not being attacked by P”
The logical set up of valuation updates introduced for the
analysis of complete extensions can be fully reused here.
Valuation updates will now be driven by the formula ¬♦P,
which we abbreviate by NP and which denotes the set of ar-
guments which are not attacked by position P.

Theorem 6 could then be recast in DEL exactly like The-
orem 3 has been recast in Theorem 4 in the previous section,
and the stream generated by := NωP will be decomposable in
one stream of even and one stream of odd iterated updates
with possibly distinct limits.

The epistemic considerations of the previous section also
carry over: P can be taken to denote one agent’s belief over
the to-be-accepted arguments, and := NP as the basis of a
process of update of that belief. The stream generated by
:= NωP can then be interpreted as an attempt at expanding
one’s argumentative position P by incorporating what is not
attacked by that position. If the initial position is admissible,
in the general case, this incorporation process produces two
limits. If they coincide, then the process has led the truth-set
of P to be a stable extension. If they do not, the difference
between the truth-set of P in the limit of odd iterations and
the truth-set of P in the limit of even iterations represents the
set of arguments about which the iterated update is unable
to decide, letting the agent’s belief oscillate between the two
positions.

Conclusions
The paper has provided a novel understanding of the process
of computation of Dung’s semantics via fixpoint computa-

73

tion. It has presented a DEL analysis of some of the main se-
mantics for argumentation: grounded, complete, stable and
preferred (although the latter has only collaterally been dealt
with in Remarks 4 and 5). This has allowed us to provide
an epistemic interpretation of the process of approximation
which, we hope, could bring abstract argumentation closer
to some of the concepts and techniques of modern epistemic
logic. On the argumentation theory side, the paper has also
proven novel results on the fixpoint computation of complete
(Theorem 3) and stable (Theorem 6) extensions.

Acknowledgments
The author would like to thank the anonymous reviewers of
KR 2012 for the very useful comments that helped improv-
ing the paper to its current version.

References
Aucher, G.; Grossi, D.; Herzig, A.; and Lorini, E. 2009.
Dynamic context logic. In He, X.; Horty, J.; and Pacuit,
E., eds., Proceedings of LORI 2009, volume 5834 of LNAI.
Springer.
Baltag, A., and Smets, S. 2009. Group belief dynamics
under iterated revision: Fixed-points and cycles of joint up-
grades. In Proceedings of the 12th Conference on Theoret-
ical Aspects of Rationality and Knowledge (TARK’09), 41–
50. ACM.
Baltag, A.; Smets, S.; and Zvesper, J. 2009. Keep ‘hoping’
for rationality: a solution to the backward induction paradox.
Synthese 169:301–333.
Baroni, P., and Giacomin, M. 2009. Semantics of abstract
argument systems. In Rahwan, I., and Simari, G. R., eds.,
Argumentation in Artifical Intelligence. Springer.
Blackburn, P.; de Rijke, M.; and Venema, Y. 2001. Modal
Logic. Cambridge: Cambridge University Press.
Davey, B. A., and Priestley, H. A. 1990. Introduction to
Lattices and Order. Cambridge University Press.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence
77(2):321–358.
Grossi, D.; Meyer, J.; and Dignum, F. 2006. Classificatory
aspects of counts-as: An analysis in modal logic. Journal of
Logic and Computation 16(5):613–643. Oxford University
Press.
Grossi, D.; Meyer, J.; and Dignum, F. 2008. The many
faces of counts-as: A formal analysis of constitutive-rules.
Journal of Applied Logic 6(2):192–217.
Grossi, D. 2009. Doing argumentation theory in modal
logic. ILLC Prepublication Series PP-2009-24, Institute for
Logic, Language and Computation.
Grossi, D. 2010. On the logic of argumentation theory. In
van der Hoek, W.; Kaminka, G.; Lespérance, Y.; and Sen, S.,
eds., Proceedings of the 9th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2010),
409–416. IFAAMAS.

Grossi, D. 2011. An application of model checking games
to abstract argumentation. In van Ditmarsch, H.; Lang, J.;
and Ju, S., eds., Logic, Rationality and Interaction: Third
Internalional Workshop (LORI 2011), volume 6953 of LNAI,
74–86.
Hintikka, J. 1962. Knowledge and Belief: An Introduction
to the Logic of the Two Notions. Ithaca: Cornell University
Press.
Holliday, W., and Icard, T. 2010. Moorean phenomena in
epistemic logic. In Beklemishev, L.; Goranko, V.; and She-
htman, V., eds., Advances in Modal Logic. College Publica-
tions. 178–199.
Lifschitz, V. 1996. Foundations of logic programming.
In Principles of Knowledge Representation. CSLI Publica-
tions. 69–127.
Meyer, J., and van der Hoek, W. 1995. Epistemic Logic for
AI and Computer Science, volume 41 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University
Press.
Pollock, J. L. 1987. Defeasible reasoning. Cognitive Science
11:481–518.
Pollock, J. L. 1991. A theory of defeasible reasoning. Inter-
national Journal of Intelligent Systems 6(1):33–54.
van Benthem, J., and Gheerbrant, A. 2010. Game solution,
epistemic dynamics and fixed-point logics. Fundamenta In-
formaticae 1(4):19–41.
van Benthem, J.; van Eijck, J.; and Kooi, B. 2006. Logics of
communication and change. Information and Computation
204(11):1620–1662.
van Benthem, J. 2007. Rational dynamics and epistemic
logic in games. International Game Theory Review 9(1):13–
45.
van Benthem, J. 2011. Logical Dynamics of Information
and Interaction. Cambridge University Press.
van Ditmarsch, H.; Kooi, B.; and van der Hoek, W. 2007.
Dynamic Epistemic Logic, volume 337 of Synthese Library
Series. Springer.
Wang, Y. 2011. On axiomatizations of pal. In van Dit-
marsch, H.; Lang, J.; and Ju, S., eds., Proceedings of the
Third international conference on Logic, rationality, and
interaction (LORI’11), volume 6953 of LNCS, 314–327.
Springer.
Yablo, S. 1984. Truth and reflection. Journal of Philosoph-
ical Logic 14:297–349.

74

