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Abstract

A bipolar framework is introduced for combining
agents’ beliefs so as to enable them to reach a common
shared position or viewpoint. Our approach exploits the
truth-gaps inherent to propositions involving vague con-
cepts, by allowing agents to soften directly conflicting
opinions. To this end we adopt a bipolar truth-model
for propositional logic characterised by lower and up-
per valuations on the sentences of the language. Ac-
cording to this model sentences may be absolutely true,
absolutely false or borderline (i.e. neither absolutely
true nor absolutely false). The added flexibility of a
possible truth-gap between absolutely true and abso-
lutely false allows agents with inconsistent viewpoints,
in which a proposition p is absolutely true according
to one view and absolutely false according to the other,
to reach a compromise position in which p is border-
line. Within this framework four combination operators
are proposed for combining different viewpoints as rep-
resented by different valuation pairs. Intuitively, these
correspond to compromise positions with different lev-
els of semantic precision (or vagueness). Kleene belief
pairs are then introduced as lower and upper measures
quantifying epistemic uncertainty about the sentences
of the language when valuation pairs provide the under-
lying truth model. The combination operators on val-
uation pairs are then extended to belief pairs using a
general schema incorporating a probabilistic model of
the interaction between agents. The properties of the
four operators are then investigated within this extended
framework.

Introduction
In many decision making and negotiation scenarios intel-
ligent agents need to arrive at a common shared position
or viewpoint concerning a set of relevant propositions. One
route to such a consensus is for each agent to adopt a more
vague interpretation of underlying concepts so as to soften
directly conflicting opinions. In this regard, a defining fea-
ture of vague concepts is their admittance of borderline cases
which neither absolutely satisfy the concept nor its negation.
For example, there are some height values which would nei-
ther be classified as being absolutely short nor absolutely not
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short. For propositions involving vague concepts this natu-
rally results in truth-gaps. In other words, there are cases in
which a proposition is neither absolutely true nor absolutely
false but instead borderline. The fundamental idea of this
paper is that such truth-gaps can be exploited to provide ad-
ditional flexibility when combining different, and possibly
inconsistent, viewpoints and beliefs in order to achieve con-
sensus. In particular, two inconsistent points of view each
giving different truth values to a certain proposition p might
be combined into a compromise position in which p is a bor-
derline case. We illustrate this idea with a simple example as
follows:

Consider a scenario in which two agents a1 and a2 need to
agree about the truth or falsity of the proposition p =‘UK in-
flation is currently low’. Now the truth of p is principally de-
pendent on two factors; the actual level of UK inflation f as a
percentage, and the definition of the predicate low when ap-
plied to inflation rates. In this example we can view f as be-
ing objectively known to both a1 and a2 having been estab-
lished by using generally accepted economic metrics, while
the definition of low in this context is subjective and may
differ between a1 and a2. For instance, one possible bipolar
model of low could be as follows: Suppose each agent ai
defines lower and upper thresholds f

i
≤ f i on percentages

so that, for them, p is absolutely true if f ≤ f
i
, absolutely

false if f > f i and borderline if f
i
< f ≤ f i. Now further

suppose that initially f
1
< f1 < f ≤ f

2
< f2 and hence a1

views p as being absolutely false, while a2 views it as being
absolutely true. One way in which a1 and a2 can adapt their
viewpoints to a obtain a common position would be for a1 to
increase their upper threshold so that f1 ≥ f and for a2 to
decrease their lower threshold so that f

2
< f thus allowing

both a1 and a2 to agree on a truth valuation of borderline for
p.

The adequate representation of epistemic uncertainty is
of central importance in any effective model of belief. Typ-
ically we think of uncertainty as arising because of insuffi-
cient information about the state of the world. However, in
the presence of vagueness there may also be semantic uncer-
tainty due to our partial knowledge of language conventions.
For instance, in the above example each agent may be un-
certain about the truth-value of p for the following reasons:
There may be some doubt as to the actual current inflation
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rate f , perhaps because of inherent measurement errors or
simply because the agent does not have access to the most
up to date information. In this case, the agent would be un-
certain as to the ordering of the actual inflation value f rela-
tive to the thresholds f

i
and f i and consequently be uncer-

tain as to whether p was absolutely true, absolutely false or
borderline. Alternatively, the agents may be uncertain about
exactly what threshold values f

i
and f i they should adopt in

their definition of the concept low. This is a form of seman-
tic uncertainty which may arise from the empirical manner
in which we learn the appropriate use of description labels
in natural language. Clearly, even if the actual inflation rate
is known exactly, this kind of semantic uncertainty can re-
sult in an agent still being uncertain as to the truth-value of
p. It is worth noting that in our approach we do not propose
to model epistemic uncertainty using truth-gaps, which are
instead assumed to be a manifestation of the inherent flexi-
bility in the underlying language conventions. Consequently
in the absence of epistemic uncertainty an agent may be cer-
tain that a particular proposition is borderline, as would be
the case for p if agent ai had no doubt about the values of f ,
f
i

and f i, and if f
i
< f ≤ f i. The potential confusion re-

sulting from using truth-gaps to model epistemic uncertainty
is highlighted in (Dubois 2008).

In this paper we investigate a number of belief combi-
nation operators which exploit truth-gaps associated with
vague propositions so as to reach a compromise viewpoint,
but where agents may also have epistemic uncertainty about
underlying truth-values. Furthermore, we will introduce be-
lief combination operators where agents’ beliefs are given
by bipolar belief measures, recently proposed in (Lawry and
González-Rodrı́guez 2011), and which combine probabilis-
tic uncertainty with truth-gaps as represented in Kleene’s
strong three-valued logic (Kleene 1952). An outline of the
paper is as follows: Section 2 gives an introduction to Kleene
valuation pairs, relates them to Kleene’s strong three-valued
logic and gives a characterisation in terms of positive and
negative sets of propositions. In addition, we shall propose
a consistency condition between different valuation pairs.
In section 3 we define a partial ordering on valuation pairs
reflecting semantic precision. We then propose four oper-
ators for combining valuation pairs and consider their rel-
ative semantic precision in terms of this ordering. Section
4 introduces Kleene belief pairs to model epistemic uncer-
tainty within this framework and section 5 extends the com-
bination operators defined in section 3 to belief pairs. Sec-
tion 6 briefly discusses the difference between the proposed
bipolar model of vague propositions and superficially simi-
lar models of incomplete information. Section 7 then gives
some conclusions.

Kleene Valuation Pairs
In this section, we introduce valuation pairs as a bipolar
model of truth which allows for the explicit representation
of borderline cases. Here we are assuming that all proposi-
tions admit truth-gaps in that they may be neither absolutely
true nor absolutely false. Typical examples are declarative
sentences containing vague adjectives e.g. low, tall, fast etc,

although truth-gaps can of course result from other sources
of vagueness such as from verbs and nouns. In the sequel
a fundamental assumption will be that all propositions un-
der consideration should not only have the potential to ex-
hibit truth-gaps, but that agents should be willing and able to
adapt their subjective definitions of relevant vague concepts
so as to reach a compromise agreement with other agents
by exploiting these truth-gaps. We now propose to model
truth-gaps by replacing a single binary, true or false, valua-
tion on propositions with distinct lower and upper valuations
representing absolutely true and not absolutely false respec-
tively. Borderline cases then correspond to those sentences
in which the lower and upper valuation differ.

Let L be a language of propositional logic with con-
nectives ∧, ∨ and ¬ and propositional variables P =
{p1, . . . , pn}. Let SL denote the sentences of L. We also
define LL = P ∪ {¬pi : pi ∈ P} to be the literals of L. A
valuation pair on SL consists of two binary functions v and
v representing lower and upper truth-values. The underly-
ing idea is that v represents the strong criterion of absolutely
true while v represents the weaker criteria of not absolutely
false. In accordance with (Parikh 1996), we might think of a
sentence being absolutely true as meaning that it can be un-
controversially asserted without any risk of censure, while
being not absolutely false only means that it is acceptable
to assert i.e. one can get away with such an assertion. For
example, consider a witness in a court of law describing a
suspect as being short. Depending on the actual height of
the suspect this statement may be deemed as clearly true or
clearly false, in which latter case the witness could be ac-
cused of perjury. However, there will also be an intermediate
height range for which, while there may be doubt and differ-
ing opinions concerning the use of the description short, it
would not be deemed as definitely inappropriate and hence
the witness would not be viewed as committing perjury. In
other words, for certain height values of the suspect, it may
be acceptable to assert the statement the suspect was short,
even though this statement would not be viewed as being
absolutely true.

Definition 1. Kleene Valuation Pairs
A Kleene valuation pair on L is a pair of functions ~v =

(v, v) where v : SL → {0, 1} and v : SL → {0, 1} such
that v ≤ v and where ∀θ, ϕ ∈ SL the following hold:

• v(¬θ) = 1− v(θ) and v(¬θ) = 1− v(θ)
• v(θ ∧ ϕ) = min(v(θ), v(ϕ)) and
v(θ ∧ ϕ) = min(v(θ), v(ϕ))

• v(θ ∨ ϕ) = max(v(θ), v(ϕ)) and
v(θ ∨ ϕ) = max(v(θ), v(ϕ))

The link to three-valued logic is clear when we view the
three possible values of a valuation pair for a sentence as
truth values i.e. t = (1, 1) as absolutely true, b = (0, 1)
as borderline and f = (0, 0) as absolutely false. From def-
inition 1 we can then determine truth-tables for the con-
nectives ∧, ∨ and ¬ in terms of the truth-values {t,b, f}
identical to those of Kleene’s logic (Kleene 1952). Shapiro
(Shapiro 2006) has recently proposed the use of Kleene’s
three-valued logic to model truth-gaps in vague predicates,
arguing that Kleene’s truth tables ‘reflect the open-texture of
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vague predicates’. For example, if instead we were to adopt
Lukasiewicz logic (Łukasiewicz 1920) this would mean that
for two borderline propositional variables their conjunction
would be absolutely false, even though neither conjunct was
absolutely false. This would seem to be a totally unwar-
ranted elimination of vagueness. One might of course con-
sider a non-functional calculus for valuation pairs based,
for example, on supervaluationist principles (Fine 1975). In-
deed, this idea is explored in forthcoming work (Lawry and
Tang 2011). Shapiro also emphasises that interpretations of
predicates can be defined by sets of positive and negative
cases. For example, an interpretation of tall might corre-
spond to two disjoint subsets of heights identifying those
heights which are absolutely tall and those which are abso-
lutely not tall. The heights lying outside either of these two
sets are then borderline cases both of tall and of not tall. In
the following we shall show that for the propositional logic
case this means that a valuation pair can be characterised by
disjoint sets of positive and negative propositional variables
identifying those propositions which are absolutely true and
those which are absolutely false respectively.

A Positive and Negative Characterisation
In this sub-section we consider a characterisation of Kleene
valuation pairs in terms of positive and negative propositions
as represented by the sets of absolutely true propositional
variables and negated propositional variables respectively.
More formally, a Kleene valuation pair ~v can be charac-
terised by an orthopair (P,N) ∈ 2P×2P where P = {pi ∈
P : v(pi) = 1} and N = {pi ∈ P : v(¬pi) = 1}. Notice,
that from definition 1 it holds immediately that P ∩N = ∅.
Given an orthopair (P,N) ∈ 2P × 2P we denote the associ-
ated Kleene valuation pair by ~v(P,N). The following results
show how the value of ~v across SL can be determined di-
rectly from its associated orthopairs (P,N).

Definition 2. λ-mapping
Let λ : SL → 22

P×2P be defined recursively as follows:
∀θ, ϕ ∈ SL
• λ(pi) = {(F,G) ∈ 2P × 2P : pi ∈ F}
• λ(θ ∧ ϕ) = λ(θ) ∩ λ(ϕ)
• λ(θ ∨ ϕ) = λ(θ) ∪ λ(ϕ)
• λ(¬θ) = {(Gc, F c) : (F,G) ∈ λ(θ)}c

Notice that the λ-mapping in definition 2 is not restricted
solely to orthopairs but also includes pairs of sets of propo-
sitional variables with non-empty intersection. As described
in (Lawry and González-Rodrı́guez 2011), such sets charac-
terize a more general class of binary function pairs (v1, v2)
which satisfy the duality and min-max combination rules of
definition 1 but without the requirement that v1 ≤ v2. This
class of functions clearly includes Kleene valuation pairs as
a special case. Consequently, many of the results in (Lawry
and González-Rodrı́guez 2011) carry across to the current
context including the following characterization theorem.

Theorem 3. (Lawry and González-Rodrı́guez 2011) For a
Kleene valuation pair ~v(P,N) = (v, v), ∀θ ∈ SL, v(θ) = 1
if and only if (P,N) ∈ λ(θ) and v(θ) = 1 if and only if
(P,N) ∈ λ(¬θ)c.

Example 4. Let pi, pj ∈ P then
λ(pi) = {(F,G) : pi ∈ F}, λ(¬pj) = {(F,G) : pj ∈ G}
and λ(pi ∧ ¬pj) = {(F,G) : pi ∈ F, pj ∈ G}. Hence,
v(pi) = 1 iff pi ∈ P and v(pi) = 1 iff pi 6∈ N . Similarly,
v(¬pj) = 1 iff pj ∈ N and v(¬pj) = 1 iff pj 6∈ P . Fur-
thermore, v(pi ∧ ¬pj) = 1 iff pi ∈ P and pj ∈ N , and
v(pi ∧ ¬pj) = 1 iff pi 6∈ N and pj 6∈ P .

Theorem 5. (Lawry and González-Rodrı́guez 2011) ∀θ ∈
SL if (P,N) ∈ λ(θ) and P ′ ⊇ P and N ′ ⊇ N then
(P ′, N ′) ∈ λ(θ)

We now propose a consistency condition between distinct
valuation pairs which takes account of truth-gaps.

Definition 6. Consistency
Kleene valuation pairs ~v1 and ~v2 are consistent if and only

if ∀θ ∈ SL,

min(max(v1(¬θ), v2(θ)),max(v2(¬θ), v1(θ))) = 1

The underlying intuition behind definition 6 is that two
valuations are consistent provided that, if a sentence is ab-
solutely true according to one valuation it is not absolutely
false according to the other, and vice versa. A consequence
of this definition is that if a proposition is classified as being
borderline in a given valuation then that proposition cannot
be the source of conflict with any other valuation.

Theorem 7. Valuation pairs ~v1 and ~v2 are consistent if and
only if P1 ∩N2 = P2 ∩N1 = ∅.

Proof. (⇒) Let pi ∈ P1, so that v1(pi) = 1 and
v1(¬pi) = 0. Hence, v2(pi) = 1 which implies that
pi ∈ N c

2 . Therefore, P1 ⊆ N c
2 . Similarly, if pi ∈ P2 then

v2(pi) = 1 and v2(¬pi) = 0 and hence v1(pi) = 1. This
implies that pi ∈ N c

1 and hence P2 ⊆ N c
1 as required.

(⇐) Suppose P1 ∩ N2 = P2 ∩ N1 = ∅ but ∃θ ∈ SL, such
that min(max(v1(¬θ), v2(θ)),max(v2(¬θ), v1(θ))) = 0.
In this case either max(v1(¬θ), v2(θ)) = 0 or
max(v2(¬θ), v1(θ)) = 0 and w.l.o.g assume
max(v1(¬θ), v2(θ)) = 0. In this case v1(¬θ) = v2(θ) = 0.
Hence, by definition 1 v1(θ) = 1 − v1(¬θ) = 1 and
similarly v2(¬θ) = 1 − v2(θ) = 1. v1(θ) = 1 implies
that (P1, N1) ∈ λ(θ) by theorem 3. Also, by theorem 3
v2(¬θ) = 1 implies that (P2, N2) ∈ λ(¬θ). Hence, by defi-
nition 2 (P2, N2) 6∈ {(Gc, F c) : (F,G) ∈ λ(θ)}. Therefore.
(N c

2 , P
c
2 ) 6∈ λ(θ). However, since P1∩N2 = ∅ we have that

N c
2 ⊇ P1 and furthermore since P2∩N1 = ∅ then P c

2 ⊇ N1.
Hence, since (P1, N1) ∈ λ(θ) it follows by theorem 5 that
(N c

2 , P
c
2 ) ∈ λ(θ) which is a contradiction.

In this paper we view belief combination as a mechanism
by which agents can adapt their beliefs in order to achieve
a shared position or viewpoint. Consequently, from this per-
spective we would expect a valid combination operator to
generated a new valuation which is always consistent (in the
sense of definition 6) with both the original valuations. This
is a minimal requirement which will hold for all the combi-
nation operators introduced in the following section.
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Ordering and Combining Valuation Pairs
We now use the orthopair characterisation described above
to inspire a number of operators for combining valuation
pairs representing different viewpoints or opinions. These
result in new valuation pairs of different semantic precision,
where the relative semantic precision of valuation pairs is
determined by the extent to which they tend to categorize
sentences of L as being borderline cases. This is formalized
by a partial ordering on the set of Kleene valuation pairs,
denoted by V, as follows: Let ~v1 and ~v2 be Kleene valuation
pairs with associated orthopairs (P1, N1) and (P2, N2) re-
spectively. Then we defined the ordering � on V according
to:

Definition 8. Semantic Precision
~v1 � ~v2 iff P1 ⊆ P2 and N1 ⊆ N2.

Shapiro (Shapiro 2006) proposed essentially the same or-
dering of interpretations which he refers to as sharpening i.e.
~v1 � ~v2 means that ~v2 extends or sharpens ~v1. Here we shall
refer to � as the semantic precision ordering on valuation
pairs whereby, as the following theorem shows, if ~v1 � ~v2
then ~v1 tends to classify more sentences of L as borderline
than ~v2. In other words, one might think of � as ordering
valuation pairs according to their relative vagueness.

Theorem 9. ~v1 � ~v2 iff ∀θ ∈ SL v1(θ) ≤ v2(θ) and
v1(θ) ≥ v2(θ).

Proof. (⇒) Suppose v1(θ) = 1 then by theorem 3
(P1, N1) ∈ λ(θ). By theorem 5 this implies that (P2, N2) ∈
λ(θ) and hence v2(θ) = 1. Similarly, suppose v2(θ) = 1
then by theorem 3 (P2, N2) ∈ λ(¬θ)c. Therefore, by theo-
rem 5 (P1, N1) ∈ λ(¬θ)c and hence v1(θ) = 1. (⇐) Triv-
ial.

Notice that it follows immediately from theorem 7 and
definition 8 that if ~v1 � ~v2 then ~v1 and ~v2 are consistent.

We now define four combination operators generated by
taking different Boolean combinations of P1 and P2, andN1

and N2 to obtain new orthopairs.

Definition 10. Conservative Combination Operator
Given Kleene valuation pairs ~v1 and ~v2 with associated or-
thopairs (P1, N1) and (P2, N2) we define the conservative
combination operator such that:

~v1 ⊗ ~v2 = ~v(P1∩P2,N1∩N2)

⊗ is a semantically conservative operator. Trivially, we
have that ~v1 ⊗ ~v2 � ~v1 and ~v1 ⊗ ~v2 � ~v2. Together with
theorem 9 this implies that ∀θ ∈ SL;

v1 ⊗ v2(θ) ≤ min(v1(θ), v2(θ)) and

v1 ⊗ v2(θ) ≥ max(v1(θ), v2(θ)

Indeed, the following result shows that if we restrict atten-
tion to literals then the inequalities in the above formula can
be replaced by equality.

Theorem 11. ∀l ∈ LL, v1 ⊗ v2(l) = min(v1(l), v2(l)) and
v1 ⊗ v2(l) = max(v1(l), v2(l)).

Proof. v1 ⊗ v2(pi) = 1 iff pi ∈ P1 ∩ P2 iff pi ∈ P1 and
pi ∈ P2 iff v1(pi) = 1 and v2(pi) = 1 as required. Also,
v1 ⊗ v2(pi) = 1 iff pi 6∈ N1 ∩ N2 iff pi 6∈ N1 or pi 6∈ N2

iff v1(pi) = 1 or v2(pi) = 1 as required. The results for
negated propositional variables follow by duality.

Notice, however, that theorem 11 does not extend to
all sentences in SL. Consider, for example, Kleene valu-
ation pairs ~v1 and ~v2 such that (P1, N1) = ({pi}, ∅) and
(P2, N2) = (∅, {pi}) and take θ = pi ∨ ¬pi. In this case
~v1 ⊗ ~v2 has orthopairs (∅, ∅) and hence ~v1(θ) = (1, 1),
~v2(θ) = (1, 1) while ~v1 ⊗ ~v2(θ) = (0, 1).

We can also see that ~v1 ⊗ ~v2 is the greatest lower bound
of ~v1 and ~v2 with respect to� as the following result shows.

Theorem 12. If ~v3 � ~v1 and ~v3 � ~v2 then ~v3 � ~v1 ⊗ ~v2

Proof. Let ~v1, ~v2 and ~v3 have orthopairs (P1, N1), (P2, N2)
and (P3, N3) respectively. Then P3 ⊆ P1 and P3 ⊆ P2

implies that P3 ⊆ P1 ∩ P2. Similarly, N3 ⊆ N1 ∩N2.

In other words, ~v1 ⊗ ~v2 is the most semantically precise
valuation pair which is less precise than both ~v1 and ~v2. The
following theorem highlights the fact that ⊗ is a conserva-
tive operator in that, for any sentence θ for which ~v1 and ~v2
have different values, ~v1⊗~v2 returns a borderline truth-value
for θ.

Theorem 13. ∀θ ∈ SL, If ~v1(θ) 6= ~v2(θ) then
~v1 ⊗ ~v2(θ) = (0, 1)

Proof. If ~v1(θ) 6= ~v2(θ) then either v1(θ) 6= v2(θ) or
v1(θ) 6= v2(θ)
Case 1: v1(θ) 6= v2(θ)
w.l.o.g suppose v1(θ) = 1 and v2(θ) = 0. Now v2(θ) = 0
implies that (P2, N2) 6∈ λ(θ) and hence by theorem 5
(P1 ∩ P2, N1 ∩ N2) 6∈ λ(θ) and hence v1 ⊗ v2(θ) = 0.
Also, since v1(θ) = 1 then by definition 1 v1(θ) = 1 and
hence (P1, N1) ∈ λ(¬θ)c and by theorem 5 this implies that
(P1∩P2, N1∩N2) ∈ λ(¬θ)c. Consequently v1 ⊗ v2(θ) = 1
Case 2: v1(θ) 6= v2(θ)
w.l.o.g suppose v1(θ) = 1 and v2(θ) = 0. Now v1(θ) = 1
implies that (P1, N1) ∈ λ(¬θ)c and hence by theorem 5
(P1 ∩ P2, N1 ∩ N2) ∈ λ(¬θ)c and hence v1 ⊗ v2(θ) = 1.
Also since v2(θ) = 0 it follows by definition 1 that v2(θ) =
0 and hence (P2, N2) 6∈ λ(θ). This implies by theorem 5 that
(P1 ∩ P2, N1 ∩N2) 6∈ λ(θ) and hence v1 ⊗ v2(θ) = 0.

In the case of two consistent valuation pairs it is possible
to define an optimistic combination operator. This operator
results in a semantically more precise valuation pair than
either ~v1 or ~v2 i.e. a sharpening of ~v1 and ~v2
Definition 14. Optimistic Combination Operator
Given consistent Kleene valuation pairs ~v1 and ~v2 with asso-
ciated orthopairs (P1, N1) and (P2, N2) then the optimistic
combination of ~v1 and ~v2 is the valuation pair

~v1 ⊕ ~v2 = ~v(P1∪P2,N1∪N2)

In the case that ~v1 and ~v2 are inconsistent ⊕ is undefined.
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For consistent valuation pairs ~v1 and ~v2, clearly ~v1 � ~v1⊕
~v2 and ~v2 � ~v1 ⊕ ~v2 so that by theorem 9 ∀θ ∈ SL;

v1 ⊕ v2(θ) ≥ max(v1(θ), v2(θ)) and

v1 ⊕ v2(θ) ≤ min(v1(θ), v2(θ))

Consequently,⊕ increases semantic precision. Furthermore,
if we restrict attention to literals then the inequalities in the
above formula can be replaced with equalities.

Theorem 15. If ~v1 and ~v2 are consistent then ∀l ∈ LL;

v1 ⊕ v2(l) = max(v1(l), v2(l)) and

v1 ⊕ v2(l) = min(v1(l), v2(l))

Proof. v1 ⊕ v2(pi) = 1 iff pi ∈ P1 ∪ P2 iff pi ∈ P1 or
pi ∈ P2 iff v1(pi) = 1 or v2(pi) = 1 as required. Also,
v1 ⊕ v2(pi) = 1 iff pi 6∈ N1 ∪N2 iff pi 6∈ N1 and pi 6∈ N2

iff v1(pi) = 1 and v2(pi) = 1 as required. The results for
negated proposition variables then follow by duality.

We can also see that ~v1 ⊕ ~v2 is the least upper bound of
~v1 and ~v2 with respect to �.

Theorem 16. If ~v1 � ~v3 and ~v2 � ~v3 then ~v1 ⊕ ~v2 � ~v3

Proof. Since P1 ⊆ P3, P2 ⊆ P3, N1 ⊆ N3 and N2 ⊆ N3 it
follows immediately that P1 ∪ P2 ⊆ P3 and N1 ∪N2 ⊆ N3

as required.

The following asymmetric operator is motivated by the
idea that in some circumstances an agent may need to mini-
mally adapt their beliefs so that they become consistent with
another agent’s viewpoint.

Definition 17. The Difference Operator
For Kleene valuation pairs ~v1 and ~v2 we define:

~v1 	 ~v2 = ~v(P1\N2,N1\P2)

Notice immediately that ~v1 	 ~v2 � ~v1 and that ~v1 	 ~v2
is consistent with ~v2. Indeed, as the following result shows,
it is also the most semantically precise valuation pair with
both of these properties.

Theorem 18. For Kleene valuation pairs ~v1, ~v2 and ~v3, if
~v3 � ~v1 and ~v3 is consistent with ~v2 then ~v3 � ~v1 	 ~v2.

Proof. We have that P3 ⊆ P1, N3 ⊆ N1 and P3 ∩ N2 =
P2 ∩ N3 = ∅. Hence, P3 ⊆ N c

2 and N3 ⊆ P c
2 so that

P3 ⊆ P1 ∩N c
2 and N3 ⊆ N1 ∩ P c

2 as required.

Hence, we may think of ~v1	~v2 is the minimal softening 1

of the viewpoint represented by ~v1 so as to make it consistent
with ~v2.

Theorem 19. Let l ∈ LL then

v1 	 v2(l) = min(v1(l), v2(l)) and

v1 	 v2(l) = max(v1(l), v2(l))

1Here we are using the term softening as an opposite to
Shapiro’s term sharpening (Shapiro 2006) i.e. if ~v1 � ~v2 then ~v1
is a softening of ~v2.

Proof. Let l = pi ∈ P: Then v1 	 v2(pi) = 1 iff pi ∈ P1 −
N2 iff pi ∈ P1 and pi 6∈ N2 iff v1(pi) = 1 and v2(pi) = 1 as
required. Also, v1 	 v2(pi) = 1 iff pi 6∈ N1 \P2 iff p1 6∈ N1

or pi ∈ P2 iff v1(pi) = 1 or v2(pi) = 1 as required.
Let l = ¬pi where pi ∈ P: Then v1 	 v2(¬pi) = 1 iff
pi ∈ N1 \ P2 iff pi ∈ N1 and pi 6∈ P2 iff v1(¬pi) = 1
and v2(¬pi) = 1 as required. Also v1 	 v2(¬pi) = 1 iff
pi 6∈ P1 \ N2 iff pi 6∈ P1 or pi ∈ N2 iff v1(¬pi) = 1 or
v2(¬pi) = 1 as required.

However, the following example shows that the rule:

v1 	 v2(θ) = min(v1(θ), v2(θ)) and

v1 	 v2(θ) = max(v1(θ), v2(θ))

does not hold for all θ ∈ SL.

Example 20. Let ~v1 and ~v2 have orthopairs ({pi}, {pj})
and ({pj}, {pi}) respectively. In this case ~v1 	 ~v2 has
orthopair (∅, ∅). Hence, v1 	 v2(pi ∧ pj) = 1 while
max(v1(pi∧pj), v2(pi∧pj)) = 0. Also, v1 	 v2(pi∨pj) =
0 while min(v1(pi ∨ pj), v2(pi ∨ pj)) = 1.

Instead we have the following bounds on ~v1 	 ~v2.

Theorem 21.

∀θ ∈ SL, v1 	 v2(θ) ≤ min(v1(θ), v2(θ)) and

v1 	 v2(θ) ≥ max(v1(θ), v2(θ)).

Proof. Suppose, v1 	 v2(θ) = 1 then v1(θ) = 1 since
~v1	~v2 � ~v1. Now also suppose v2(θ) = 0 then (P2, N2) ∈
λ(¬θ) which implies that (N c

2 , P
c
2 ) 6∈ λ(θ) by definition 2.

Hence, by theorem 5 it follows that (P1 ∩ N c
2 , N1 ∩ P c

2 ) 6∈
λ(θ), which implies that v1 	 v2(θ) = 0. This is a contra-
diction and therefore min(v1(θ), v2(θ)) = 1 as required.

Suppose, v1 	 v2(θ) = 0 then v1(θ) = 0 since ~v1 	 ~v2 �
~v1. Now also suppose that v2(θ) = 1 then (P2, N2) ∈
λ(θ), which implies that (N c

2 , P
c
2 ) 6∈ λ(¬θ) by definition

2. Hence, by theorem 5 it follows that (P1 ∩ N c
2 , N1 ∩

P c
2 ) 6∈ λ(¬θ), which implies that v1 	 v2(θ) = 1. This is

a contradiction and therefore max(v1(θ), v2(θ)) = 0 as re-
quired.

We now use the difference operator in order to define a
consensus operator which combines two valuations to ob-
tain a new consensus viewpoint even when the original valu-
ations are inconsistent, and which is more semantically pre-
cise than that obtained from the conservative operator. For
example, when applied to literals this new operator only re-
sults in a borderline if the two original valuations are in di-
rect conflict (i.e. t and f or f and t), or if only borderline
valuations are involved (i.e. b and b). This is in contrast
with the conservative operator which results in a border-
line whenever the two original valuations differ (see theorem
13).

Definition 22. Consensus Operator
For Kleene valuation pairs ~v1 and ~v2 we define:

~v1 � ~v2 = (~v1 	 ~v2)⊕ (~v2 	 ~v1)
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The underlying motivation for the � operator can be seen
as analogous to the idea in belief revision theory that revi-
sion operations can be decomposed into two sub-operations:
contraction according to which two inconsistent sets of in-
formation are both weakened so that they become consistent,
followed by expansion whereby the sets of information are
then simply added together (Gardenförs 1988). In our con-
text, the consensus operator consists of a form of contrac-
tion whereby the two agents minimally soften their view-
points until they become consistent, followed by a form of
expansion where the two viewpoints are added together us-
ing the optimistic combination operator. The following the-
orem now shows how � can be defined directly in terms of
Boolean operations on the orthopairs.

Theorem 23.

~v1 � ~v2 = ~v((P1∪P2)\(N1∪N2),(N1∪N2)\(P1∪P2))

Proof. Trivial since P1 ⊆ N c
1 and P2 ⊆ N c

2

Theorem 24. For l ∈ LL

v1 � v2(l) = max(min(v1(l), v2(l)),min(v2(l), v1(l)))

v1 � v2(l) = min(max(v1(l), v2(l)),max(v2(l), v1(l)))

Proof. Follows immediately from theorem 15 and theorem
19.

Table 1 shows the operators ⊗, ⊕, 	 and � when ap-
plied to literals. Also, figure 1 is a hasse diagram showing
the relative semantic precision of different combined valua-
tions in comparison with the original valuation pairs ~v1 and
~v2. ~v1 ⊕ ~v2 is not shown on the diagram since if ~v1 and
~v2 are consistent then ~v1 	 ~v2 = ~v1, ~v2 	 ~v1 = ~v2 and
~v1 � ~v2 = ~v1 ⊕ ~v2.

⊗ t b f
t t b b
b b b b
f b b f

⊕ t b f
t t t −
b t b f
f − f f

	 t b f
t t b b
b t b f
f b b f

� t b f
t t t b
b t b f
f b f f

Table 1: Truth tables for the operators ⊗, ⊕, 	, and � when
applied to literals.

Note that these combination operations do not coincide
with any Boolean connective when the tables are restricted
to t, f. Instead, ⊗ is the median med(x, y,b) of the two in-
puts and b, ⊕ is a partially defined uninorm (Grabisch et
al. 2009). Both are associative. On the other hand, � is a
type of commutative non-associative average ((f � f)� t 6=
f � (f � t)).

~v1 	 ~v2 ~v2 	 ~v1

~v1 ~v2~v1 � ~v2

~v1 ⊗ ~v2

Figure 1: Hasse diagram showing the ordering (relative to
�) of the different valuation pairs resulting from applying
the operators ⊗, 	 and � to ~v1 and ~v2.

Kleene Belief Pairs
Within the proposed bipolar framework, uncertainty con-
cerning the sentences of L effectively corresponds to uncer-
tainty as to which is the correct Kleene valuation pair for L.
As outlined earlier we view uncertainty as being epistemic
in nature, resulting from a lack of knowledge concerning ei-
ther, the state of the world to which propositions refer, or the
underlying definitions of concepts used in propositions. In
the following we assume that this uncertainty is quantified
by a probability measure w on the set of Kleene valuation
pairs V.

Definition 25. Kleene Belief Pairs
Let V be the set of all Kleene valuation pairs on L and let
w be a probability distribution defined on V so that w(~v)
is the agent’s subjective belief that ~v is the true valuation
pair for L. Then ~µw = (µ

w
, µw) is a Kleene belief pair

where ∀θ ∈ SL, µ
w

(θ) = w({~v ∈ V : v(θ) = 1}) and
µw(θ) = w({~v ∈ V : v(θ) = 1}).

Notice, trivially, that ∀θ ∈ SL, µ
w

(θ) ≤ µw(θ) and also
that we have the following duality relationship between the
lower and upper measures:

There is a clear rationality argument for defining belief
measures in this manner when Kleene valuation pairs are
the underlying truth model for L. From a general result due
to Paris (Paris 2001), it follows that an agent can only avoid
Dutch books where the outcomes of bets are dependent on
lower (upper) Kleene valuations if their belief measures on
SL correspond to lower (upper) belief measures as given in
definition 25.

Theorem 26. ∀θ ∈ SL, µ
w

(¬θ) = 1 − µw(θ) and
µw(¬θ) = 1− µ

w
(θ)

It is also interesting to note that a special case of Kleene
belief pairs has the same calculus as the interval (or type
2) fuzzy membership functions proposed by Zadeh (Zadeh
1975). This is the case of Kleene belief pairs in which there
is only uncertainty about the level of semantic precision of
the valuation pair. More formally we have the following re-
sult:

Theorem 27. (Lawry and González-Rodrı́guez 2011) Let
w be a probability distribution on V for which {~v ∈ V :
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w(~v) > 0} = {~v1, . . . , ~vk} can be ordered such that
~v1 � ~v2 . . . � ~vk. In this case ~µw satisfies the following
properties; ∀θ, ϕ ∈ SL,

µ
w

(θ ∧ ϕ) = min(µ
w

(θ), µ
w

(ϕ))

µw(θ ∧ ϕ) = min(µw(θ), µw(ϕ))

µ
w

(θ ∨ ϕ) = max(µ
w

(θ), µ
w

(ϕ))

µw(θ ∨ ϕ) = max(µw(θ), µw(ϕ))

Combination of Belief Pairs
In this section we consider the combination of Kleene belief
pairs by extending the operators introduced above in order to
allow for epistemic uncertainty. Suppose we have two agents
with beliefs about SL quantified by Kleene belief pairs ~µw1

and ~µw2 respectively. Then the following definition proposes
how the conservative operator can be extended to this case,
as well as providing an exemplar of a general scheme which
can then be employed to extend other combination operators
for valuation pairs to belief pairs.
Definition 28. Conservative Combination of Belief Pairs
A conservative combination of Kleene belief pairs ~µw1

and
~µw2 is a belief pair ~µw1⊗qw2 wherew1⊗qw2 is a probability
distribution on V for which

w1 ⊗q w2(~v) = q({(~v1, ~v2) : ~v1 ⊗ ~v2 = ~v})
where q is any 2-dimensional probability distribution on V×
V with marginals w1 and w2.

Alternatively, according to definition 28:

µ
w1⊗qw2

(θ) = q({(~v1, ~v2) : v1 ⊗ v2(θ) = 1}) and

µw1⊗qw2
(θ) = q({(~v1, ~v2) : v1 ⊗ v2(θ) = 1})

The joint distribution q in definition 28 should be viewed
as an integral part of the belief combination, potentially
agreed as a result of negotiation between the two agents in-
volved. Specifically, q(~v1, ~v2) is the probability weighting
in the overall belief merging, which is allocated by the two
agents specifically to the combination of ~v1 and ~v2 where
~v1 is drawn from w1 and ~v2 from w2. The fact that q has
marginals w1 and w2 means that the total weight of im-
portance in the belief combination which is allocated by
an agent to a particular valuation ~v, corresponds to that
agent’s overall belief that ~v is the true valuation. For ex-
ample, q = w1 × w2 corresponds to the case of minimal
interaction between the two agents when allocating weight-
ings to particular combinations of valuation pairs. Indeed,
we might think of each agent as independently identifying
valuation pairs to combine, by selecting them at random ac-
cording to their respective distributions on V.

The following theorem shows that conservative combina-
tion results in a new bipolar belief pair which is less precise
than either ~µw1

or ~µw2
.

Theorem 29. If ~µw1⊗qw2 is a conservative combination of
~µw1

and ~µw2
then ∀θ ∈ SL;

µ
w1⊗qw2

(θ) ≤ min(µ
w1

(θ), µ
w2

(θ)) and

µw1⊗qw2
(θ) ≥ max(µw1

(θ), µw2
(θ))

Proof. ∀θ ∈ SL, µ
w1⊗qw2

(θ) =

q({(~v1, ~v2) : v1 ⊗ v2(θ) = 1}) ≤
q({(~v1, ~v2) : min(v1(θ), v2(θ)) = 1}) ≤
q({(~v1, ~v2) : v1(θ) = 1}) = w1({~v1 : v1(θ) = 1})
= µ

w1
(θ). Similarly, µ

w1⊗qw2
(θ) ≤ µ

w2
(θ).

Also, by duality µw1⊗qw2
(θ) = 1 − µ

w1⊗qw2
(¬θ) and by

the above argument,
1− µ

w1⊗qw2
(¬θ) ≥ 1−min(µ

w1
(¬θ), µ

w2
(¬θ))

= max(1− µ
w1

(¬θ), 1− µ
w2

(¬θ))
= max(µw1

(θ), µw2
(θ)).

Notice that for conservative combinations of belief pairs
the lower and upper bounds given in theorem 29 cannot
always be reached. For example, let ~v1 and ~v2 be Kleene
valuation pairs with associated orthopairs ({p1}, ∅) and
(∅, {p1}) respectively. Also, let w1 and w2 be probability
distributions on V such that w1(~v1) = 1 and w2(~v2) = 1
so that q(~v1, ~v2) = 1. Hence, µ

w1
(p1 ∧ ¬p1) = 1 and

µ
w1

(p1 ∧ ¬p1) = 1 while µ
w1⊗qw2

(p1 ∧ ¬p1) = 0.
In the specific case that q = w1 × w2 then we obtain

tighter bounds on conservative combination as is shown in
the following result.

Theorem 30. If ~µw1⊗qw2
is a conservative combination of

~µw1
and ~µw2

where q = w1 × w2 then ∀θ ∈ SL;

µ
w1⊗qw2

(θ) ≤ µ
w1

(θ)× µ
w2

(θ) and

µw1⊗qw2
(θ) ≥ µw1

(θ) + µw2
(θ)− µw1

(θ)× µw2
(θ)

Proof. µw1⊗qw2
(θ) ≤

q({(~v1, ~v2) : min(v1(θ), v2(θ)) = 1}) =
q({(~v1, ~v2) : v1(θ) = 1, v2(θ) = 1}) =
w1({~v1 : v1(θ) = 1})× w2({~v2 : v2(θ) = 1}) =
µ
w1

(θ) × µ
w2

(θ). Furthermore, by duality and the above
argument, µw1⊗qw2

(θ) = 1− µ
w1⊗qw2

(¬θ) ≥
1−µ

w1
(¬θ)×µ

w2
(¬θ) = 1− (1−µw1

(θ))× (1−µw2
(θ))

= µw1
(θ) + µw2

(θ)− µw1
(θ)× µw2

(θ).

Furthermore, if we restrict ourselves to literals then, as-
suming an independent interaction model, the combined
lower measure is the product of µ

w1
and µ

w2
, while the up-

per measure is the algebraic sum of µw1
and µw2

.

Theorem 31. If ~µw1⊗qw2 is a conservative combination of
~µw1 and ~µw2 where q = w1 × w2 then ∀l ∈ LL;

µ
w1⊗qw2

(l) = µ
w1

(l)× µ
w2

(l) and

µw1⊗qw2
(l) = µw1

(l) + µw2
(l)− µw1

(l)× µw2
(l)

Proof. Follows from theorem 11

In general we can adapt definition 28 so as to extend other
combination operators to belief pairs, simply by replacing
⊗ by the relevant operator. For the case of the optimistic
operator this requires an additional normalisation step so as
to take account of the fact that ⊕ is undefined if the two
valuation pairs are inconsistent.
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Definition 32. Optimistic Combination of Belief Pairs
An optimistic combination of Kleene belief pairs ~µw1 and
~µw2

is a belief pair ~µw1⊕qw2
wherew1⊕qw2 is a probability

distribution on V for which

w1 ⊕q w2(~v) = c× q({(~v1, ~v2) : ~v1 ⊕ ~v2 = ~v})

where q is any 2-dimensional probability distribution on V×
V with marginals w1 and w2, and 1

c = q({(~v1, ~v2) : P1 ∩
N2 = P2 ∩ N1 = ∅}). In the case that q({(~v1, ~v2) : P1 ∩
N2 = P2 ∩N1 = ∅}) = 0 then ~µw1⊕qw2 is undefined.

Theorem 33. If ~µw1⊕qw2 is an optimistic combination of
~µw1 and ~µw2 then ∀θ ∈ SL;

µ
w1⊕qw2

(θ) ≥ 1− c+ cmax(µ
w1

(θ), µ
w2

(θ))

µw1⊕qw2
(θ) ≤ cmin(µw1

(θ), µw2
(θ))

Proof. By theorem 15 µw1⊕qw2
(θ) =

cq({(~v1, ~v2) : v1 ⊕ v2(θ) = 1}) ≤
cq({(~v1, ~v2) : min(v1(θ), v2(θ)) = 1, P1 ∩ N2 = P2 ∩
N1 = ∅}) ≤ cq({(~v1, ~v2) : min(v1(θ), v2(θ)) = 1}) ≤
cq({(~v1, ~v2) : v1(θ) = 1}) = cµw1

(θ). Similarly,
µw1⊕qw2

(θ) ≤ cµw2
(θ). Also, by duality µ

w1⊕qw2
(θ) =

1− µw1⊕qw2
(¬θ) ≥ 1− cmin(µw1

(¬θ), µw2
(¬θ)) =

1− cmin(1− µ
w1

(θ), 1− µ
w2

(θ))

= 1− c(1−max(µw1(θ), µw2(θ))) =
1− c+ cmax(µw1(θ), µw2(θ))

Theorem 34. If ~µw1⊕qw2
is an optimistic combination of

~µw1
and ~µw2

where q = w1 × w2 then ∀l ∈ LL;

µ
w1⊕qw2

(l) ≤ c(µ
w1

(l) + µ
w2

(l)− µ
w1

(l)× µ
w2

(l))

and µw1⊕qw2
(l) ≤ c× µw1

(l)× µw2
(l)

Proof. Follows from theorem 15

Example 35. Let P = {p1, p2, p3, p4} and let
~v1, ~v2, ~v3, ~v4 ∈ V be such that (P1, N1) = ({p1}, {p3}),
(P2, N2) = ({p1, p2}, {p3, p4}), (P3, N3) = ({p2}, {p3})
and (P4, N4) = ({p2, p4}, {p3}). Now suppose two agents
have beliefs characterised by probability distributions w1

and w2 on V respectively, where w1(~v1) = 0.3, w1(~v2) =
0.7 and w2(~v3) = 0.6, w2(~v4) = 0.4. Hence, for this
example q must take the following form: q(~v1, ~v3) = x,
q(~v1, ~v4) = 0.3 − x, q(~v2, ~v3) = 0.6 − x and q(~v2, ~v4) =
0.1 + x where x ∈ [0, 0.3]. In the case that the two agents
interact independently we have that x = 0.18. Furthermore,
the cases where x = 0 or x = 0.3 model strong depen-
dency between the agents. To see this notice that ~v1 � ~v2
and ~v3 � ~v4. Taking x = 0 then minimizes q(~v1, ~v3)
and q(~v2, ~v4) while maximizing q(~v1, ~v4) and q(~v2, ~v3). This
corresponds to the assumption that the two agents tend to
make opposite judgments about semantic precision. In other
words, if the valuation pair identified by agent one is rela-
tively semantically precise then agent two tends to identify
a relatively imprecise valuation pair, and vice versa. This
might perhaps arise from cooperative interaction where the
two agents are aiming to be as consistent as possible with
each other so as to facilitate belief combination. In contrast,

taking x = 0.3 assumes that the two agents tend to make
similar judgments about semantic precision. Table 2 shows
the conservative combination operator applied to pairs of
valuations together with the associated q value. From this
we can see that, for the propositional variables, the result-
ing belief pair values are then given by; ~µw1⊗qw2

(p1) =
(0, 1), ~µw1⊗qw2

(p2) = (0.7, 1), ~µw1⊗qw2
(p3) = (0, 0) and

~µw1⊗qw2
(p4) = (0, 1).

Table 2: Table showing the results of applying the conserva-
tive operator to the two bipolar belief measures in example
35.

~vi ⊗ ~vj
q(~vi, ~vj)

({p2}, {p3})
0.6

({p2, p4}, {p3})
0.4

({p1}, {p3})
0.3

(∅, {p3})
x

(∅, {p3})
0.3− x

({p1, p2}, {p3, p4})
0.7

({p2}, {p3})
0.6− x

({p2}, {p3})
0.1 + x

Table 3 shows the optimistic combination operator ap-
plied to pairs of valuations together with the associ-
ated q value. Notice that for ~v2 and ~v4, ⊕ is not de-
fined. Hence, c = 1

1−q(~v2,~v4) = 1
0.9−x . From this we

can see that, for the propositional variables, the result-
ing belief pair values are then given by; ~µw1⊕qw2(p1) =
(1, 1), ~µw1⊕qw2(p2) = (1, 1), ~µw1⊕qw2(p3) = (0, 0) and
~µw1⊕qw2

(p4) = (0.3−x
0.9−x ,

0.3
0.9−x ).

Table 3: Table showing the results of applying the optimistic
operator to the two bipolar belief measures in example 35.

~vi ⊕ ~vj
q(~vi, ~vj)

({p2}, {p3})
0.6

({p2, p4}, {p3})
0.4

({p1}, {p3})
0.3

({p1, p2}, {p3})
x

0.9−x

({p1, p2, p4}, {p3})
0.3−x
0.9−x

({p1, p2}, {p3, p4})
0.7

({p1, p2}, {p3, p4})
0.6−x
0.9−x

undefined
0

We now apply the approach introduced in definition 28 to
extend 	 and � to belief pairs.
Definition 36. Difference and Consensus Combination of
Belief Pairs
A difference combination of belief pairs ~µw1

and ~µw2
is a

belief pair ~µw1	qw2
where w1 	q w2 is a probability distri-

bution on V given by:

w1 	q w2(~v) = q({(~v1, ~v2) : ~v1 	 ~v2 = ~v})

Similarly, a consensus combination of ~µw1 and ~µw2 is a be-
lief pair ~µw1�qw2 where w1 �q w2 is a probability distribu-
tion on V given by:

w1 �q w2(~v) = q({(~v1, ~v2) : ~v1 � ~v2 = ~v})

As above q is any 2-dimensional probability distribution on
V× V with marginals w1 and w2
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The next result shows that, as expected, ~µw1	qw2 is less
precise than ~µw1 but more precise than ~µw1⊗qw2 .
Theorem 37. ∀θ ∈ SL,

µ
w1	qw2

(θ) ≤ min(µ
w1

(θ), µw2
(θ))

µw1	qw2
(θ) ≥ max(µw1

(θ), µ
w2

(θ))

Proof. By theorem 21 we have that:

µ
w1	qw2

(θ) = q({(~v1, ~v2) : v1 	 v2(θ) = 1})

≤ q({(~v1, ~v2) : min(v1(θ), v2(θ)) = 1})
≤ q({(~v1, ~v2) : v1(θ) = 1}) = µ

w1
(θ)

Similarly µ
w1	qw2

(θ) ≤ µw2
(θ) as required. Also, by theo-

rem 21 we have that:

µw1	qw2
(θ) = q({(~v1, ~v2) : v1 	 v2(θ) = 1})

≥ q({(~v1, ~v2) : max(v1(θ), v2(θ)) = 1})
≥ q({(~v1, ~v2) : v1(θ) = 1}) = µw1

(θ)

Similarly µw1	qw2
(θ) ≥ µ

w2
(θ) as required.

If we assume an independent interaction model then we
can obtain tighter bounds for ~µw1	qw2

as follows:
Theorem 38. If q = w1 × w2 then ∀θ ∈ SL,

µ
w1	qw2

(θ) ≤ µ
w1

(θ)× µw2
(θ)

µw1	qw2
(θ) ≥ µw1

(θ) + µ
w2

(θ)− µw1
(θ)× µ

w2
(θ)

Proof. By theorem 21 we have that:

µ
w1	qw2

(θ) ≤ q({(~v1, ~v2) : min(v1(θ), v2(θ)) = 1})

= q({(~v1, ~v2) : v1(θ) = 1, v2(θ) = 1}) =

w1({~v1 : v1(θ) = 1})× w2({~v2 : v2(θ) = 1})
= µ

1
(θ)× µ2(θ)

Furthermore, by duality and the above result we have that:

µw1	qw2
(θ) = 1− µ

w1	qw2
(θ)

≥ 1− µ
w1

(¬θ)× µw2
(¬θ) =

1− (1− µw1
(θ))× (1− µ

w2
(θ)) =

µw1
(θ) + µ

w2
(θ)− µw1

(θ)× µ
w2

(θ)

Furthermore, by restricting ourselves to literals we can re-
place the inequalities in theorem 38 with equalities.
Theorem 39. If q = w1 × w2 then ∀l ∈ LL it holds that:

µ
w1	qw2

(l) = µ
w1

(l)× µw2
(l)

µw1	qw2
(l) = µw1

(l) + µ
w2

(l)− µw1
(l)× µ

w2
(l)

Proof. Follows from theorem 19.

Finally, we consider the case of the consensus operator
applied to belief pairs. The following theorem shows that the
application of �q to distributions w1 and w2 can be broken
down into the subtraction operations w1 	q w2 and w2 	
w1 followed by the addition operation ⊕q′ . The latter then
involves a different interaction probability q′ derived from q.

Theorem 40.
w1 �q w2 = (w1 	q w2)⊕q′ (w2 	q w1) where

q′(~v′1, ~v
′
2) = q({(~v1, ~v2) : ~v1 	 ~v2 = ~v′1, ~v2 	 ~v1 = ~v′2})

Proof. Initially we show that the marginals of q′ are w1 	q

w2 and w2 	q w1. ∑
~v′
2

q′(~v′1, ~v
′
2) =

∑
~v′
2

q({(~v1, ~v2) : ~v1 	 ~v2 = ~v′1, ~v2 	 ~v1 = ~v′2})

= q({(~v1, ~v2) : ~v1 	 ~v2 = ~v′1}) = w1 	q w2

Similarly we can show that the second marginal isw2	qw1.
Now,

w1 �q w2(~v) = q({(~v1, ~v2) : ~v1 � ~v2 = ~v})
= q({(~v1, ~v2) : (~v1 	 ~v2)⊕ (~v2 	 ~v1) = ~v}) =∑

(~v′
1,~v

′
2):~v

′
1⊕~v′

2=~v

q({(~v1, ~v2) : ~v1 	 ~v2 = ~v′1, ~v2 	 ~v1 = ~v′2})

=
∑

(~v′
1,~v

′
2):~v

′
1⊕~v′

2=~v

q′(~v′1, ~v
′
2) = (w1 	q w2)⊕q′ (w2 	q w1)

as required.

This immediately leads to the following bounds on
~µw1�qw2

.
Corollary 41. ∀θ ∈ SL,

µ
w1�qw2

(θ) ≥ max(µ
w1	qw2

(θ), µ
w2	qw1

(θ))

µw1�qw2
(θ) ≤ min(µw1	qw2

(θ), µw2	qw1
(θ))

Proof. Follows immediately from theorems 33 and 40.

A more precise result can then be obtained for literals in
the case when q = w1 × w2.
Theorem 42. If q = w1 × w2 then ∀l ∈ LL,

µ
w1�qw2

(l) = µ
w1

(l)× µw2
(l) + µw1

(l)× µ
w2

(l)

−µ
w1

(l)× µ
w2

(l)

µw1�qw2
(l) = µ

w1
(l) + µ

w2
(l) + µw1

(l)× µw2
(l)

−µw1
(l)× µ

w2
(l)− µ

w1
(l)× µw2

(l)

Proof. From theorem 24 we have that,
µ
w1�qw2

(l) = q({(~v1, ~v2) : v1 � v2(l) = 1}) =

q({(~v1, ~v2) : max(min(v1(l), v2(l)),min(v2(l), v1(l)) = 1})
= q({(~v1, ~v2) : min(v1(l), v2(l)) = 1 or min(v2(l), v1(l)) = 1})

= q({(~v1, ~v2) : min(v1(l), v2(l)) = 1)})
+q({(~v1, ~v2) : min(v2(l), v1(l)) = 1})

−q({(~v1, ~v2) : min(v1(l), v2(l)) = 1,min(v2(l), v1(l)) = 1})
= w1({~v1 : v1(l) = 1})× w2({~v2 : v2(l) = 1})
+w1({~v1 : v1(l) = 1})× w2({~v2 : v2(l) = 1})
−w1({~v1 : v1(l) = 1})× w2({~v2 : v2(l) = 1})

= µ
w1

(l)× µw2
(l) + µw2

(l)× µ
w1

(l)− µ
w1

(l)× µ
w2

(l)

The result for µw1�qw2
(θ) follows similarly.
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Example 43. Recall the scenario described in example
35. Table 4 shows the consensus combination operator
applied to pairs of valuations together with the associ-
ated q value. From this we can see that, for the proposi-
tional variables, the resulting belief pair values are then
given by; ~µw1⊗qw2

(p1) = (1, 1), ~µw1⊗qw2
(p2) = (1, 1),

~µw1⊗qw2
(p3) = (0, 0) and ~µw1⊗qw2

(p4) = (0.3 − x, 0.4 +
x).

Table 4: Table showing the results of applying the consensus
operator to the two bipolar belief measures in example 35.

~vi � ~vj
q(~vi, ~vj)

({p2}, {p3})
0.6

({p2, p4}, {p3})
0.4

({p1}, {p3})
0.3

({p1, p2}, {p3})
x

({p1, p2, p4}, {p3})
0.3− x

({p1, p2},
{p3, p4})

0.7
({p1, p2}, {p3, p4})

0.6− x
({p1, p2}, {p3})

0.1 + x

Vagueness vs. Incomplete Information
The above approach to vagueness based on Kleene logic and
orthopairs may be puzzling for scholars who are following
the original intuitions of (Kleene 1952) according to which
the third truth-value b is interpreted as unknown instead of
borderline. Indeed, in this paper we are interested in classi-
fying precisely described objects with respect to vague cat-
egories represented by propositional variables pi ∈ P , and
where the underlying truth model is three-valued. However,
there is a one-to-one correspondence between Kleene valua-
tions on a set P of propositions and incomplete Boolean val-
uations (also called partial models (Blamey 1998)). Specifi-
cally, an orthopair (P,N) can either represent a completely
specified three-valued Kleene valuation P → {t,b, f}, or
alternatively a partially defined Boolean truth-assignment
τ : P → {t, f} 2 such that τ(p) = t if p ∈ P and
τ(p) = f if p ∈ N . The latter interpretation is very com-
mon in formalisms which aim to handle uncertainty about
Boolean (crisp) propositions due to incomplete information
(e.g. partial logic (Blamey 1998)). In contrast, this paper is
concerned with the handling of vague propositions in the
presence of complete information.

In this section we briefly compare these two distinct in-
terpretations of the Kleene model in order to highlight the
subtle but important differences between them. The similar-
ity between the two settings carries over to valuation pairs,
but differences emerge regarding truth-functionality. Con-
sider the incomplete information setting. The idea is that
while the Boolean truth-values of some propositions pi ∈ P
are known, the remaining propositions have unknown truth-
values, not because such propositions are vague, but simply
because there is no information about them. In this case, the

2Here we are using t, f to denote true and false in the classical
Boolean sense, in contrast to t, f which denote absolutely true and
absolutely false (alternatively certainly true and certainly false in
an incomplete information setting).

corresponding orthopair (P,N) represents a state of infor-
mation (or epistemic state) that can be described by means
of a consistent conjunction of literals:

φ(P,N) =
∧

pi∈P
pi ∧

∧
pj∈N

¬pj ,

Given φ(P,N) we can naturally define a pair (N,Π) of func-
tions SL → {0, 1} as follows (Dubois and Prade 1988):
∀θ ∈ SL,

• N(θ) = 1 if φ(P,N) |= θ and 0 otherwise.

• Π(θ) = 1 if φ(P,N) 6|= ¬θ and 0 otherwise.

N is called a necessity measure and Π a possibility measure.
N(θ) = 1 means that θ is certainly true, and Π(θ) = 1
that θ is possibly true, if the epistemic state is described by
(P,N). In particular, if N(θ) = 0 and Π(θ) = 1 it means
that the truth of θ is unknown in epistemic state (P,N).

There is a striking similarity between Kleene valuation
pairs (v, v) and necessity-possibility pairs (N,Π). In partic-
ular, the following properties can be compared to those for
valuation pairs given in definition 1:

• N(¬θ) = 1−Π(θ) and Π(¬θ) = 1−N(θ)
• N(θ ∧ ϕ) = min(N(θ), N(ϕ))
• Π(θ ∨ ϕ) = max(Π(θ),Π(ϕ))

However there is also an important difference between them:
while v(θ ∧ ϕ) = min(v(θ), v(ϕ)) and v(θ ∨ ϕ) =
max(v(θ), v(ϕ)), in general we only have that Π(θ ∧ ϕ) ≤
min(Π(θ),Π(ϕ)) and N(θ ∨ ϕ) ≥ max(N(θ), N(ϕ)). In
particular, Π(θ ∧ ¬θ) = 0 (non-contradiction law) and
N(θ ∨ ¬θ) = 1 (excluded middle law). In fact, (N,Π) is
a pair of KD modalities in epistemic logic, which explains
why they are not compositional. A Kleene valuation pair
(v, v) would be trivial in a Boolean context, and this pa-
per emphasizes that in the three-valued propositional setting
accommodating borderline cases, such deviant modalities
(where the lower valuation distributes over disjunctions) are
not trivial. Such deviant modalities for more general Kleene
algebras are also studied in (Cattaneo et al. 2011).

Conclusions
In this paper we have outlined a bipolar framework for com-
bining potentially inconsistent beliefs which exploits the in-
herent vagueness of concepts in natural language. Four oper-
ators have been proposed for combining different viewpoints
expressed in a language of propositional logic, where the un-
derlying truth model is Kleene valuation pairs. These exploit
the possibility of truth-gaps in which certain sentences are
inherently borderline cases, to allow for different levels of
compromise between the viewpoints resulting in new valua-
tion pairs with differing levels of semantic precision.

Kleene belief pairs have been introduced as quantitative
lower and upper measures of belief which incorporate both
semantic indeterminacy and epistemic uncertainty. We have
then proposed a schema for extending combination opera-
tors from valuation pairs to belief pairs and investigated the
properties of the four operators within this extended frame-
work.
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