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Abstract

Natural Language Processing (NLP) tasks, such as Named
Entity Recognition (NER), involve an iterative process of
model optimization to identify different types of words or se-
mantic entities. This optimization to achieve a more precise
model becomes computationally difficult as the number of it-
erations increase. The small datasets available for training
typically limit the models. Adding iterations on such sets
to further optimize the model can often cause over-fitting,
which generally leads to reduced performance. Therefore,
the choice of convergence criteria is a critical step in robust
and accurate model building. We evaluate different conver-
gence criteria in terms of their robustness, stopping thresh-
old selection, and independence from the training data size
and entity. The underlying framework employs a limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) pa-
rameter optimization in the context of Conditional Random
Fields (CRF). This paper presents a convergence criterion for
robust training irrespective of semantic types and data sizes
with two-orders of magnitude reduction in stopping threshold
for improved model accuracy and faster convergence. Addi-
tionally, we examine convergence with active learning to fur-
ther reduce the training data and training time.

Introduction

Convergence criterion is a critical issue for iterative ma-
chine learning tasks (Wallach 2002). The right choice of
convergence criteria can reduce the time it takes to build
the training model, while increasing the model performance.
This paper systematically evaluates convergence criteria for
a specific branch of machine learning, Natural Language
Processing (NLP) of text, which is often unstructured and
ambiguous in its meaning.

Named Entity Recognition (NER) techniques can assign
structure to plain text by associating semantic meaning to
noun phrases (or entities). Repeated exposure to tagged data
and features describing different word types, or entities, aids
in the construction of a computer model. The relationship
of a feature to the given text determines the importance,
or weight, in defining the correct tag. Based on the log-
likelihood that the manually tagged words receive those tags
given the specified weighted features, the process judges the
model to be well-trained.
Copyright c© 2009, Association for the Advancement of Artificial
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Training a model until its log-likelihood reaches zero
(representing a 100% chance that the given words would
be correctly labeled) is not only computationally impracti-
cal but is also likely undesirable. Particularly when dealing
with small sets, a model may become so well fitted to the
training data that its performance on outside data decreases.
(See (Dietterich 1995) for further information on this prob-
lem, known as over-fitting.) Thus, implementing more ex-
pedient convergence criteria is necessary to stop the training
process after a reasonable amount of time.

In this paper we systematically evaluate the log-likelihood
function’s norm, gradient norm, and relative change as con-
vergence criteria for multiple entity types. For each crite-
rion, we use L-BFGS (Liu & Nocedal 1989) for parame-
ter optimization in a CRF model (Lafferty, McCallum, &
Pereira 2001). Examples of evaluation metrics for the tar-
get convergence criteria include: (a) robustness vs. oscilla-
tion; (b) dependence vs. independence of convergence cri-
teria on the training data size and the entity type; and (c)
thresholds for stopping the convergence and their effects on
model accuracy. Our findings, for instance, indicate that un-
like the widely used 10−7 threshold value for stopping the
convergence (Malouf 2002), a 10−5 stopping threshold pro-
duces similar F1-measures of model accuracy while reduc-
ing training time. Likewise, our findings confirm that the
gradient norm oscillates near extrema (Nocedal, Sartenaer,
& Zhu 2002). We further expand this evaluation procedure
to address the issue of reducing the amount of manual labor
involved in tagging data required for model training. We use
our active learning (AL) framework (Symons et al. 2006)
for this purpose.

Background

Optimization Methods and Convergence Criteria
Two early comparative studies showed that CRFs train most
efficiently using numerical optimization procedures. Mal-
ouf’s results (Malouf 2002) suggest the superiority of first-
or second-degree numerical optimization, particularly on se-
quential labeling tasks, such as those in NLP.

Quasi-Newton methods, popular among second-order nu-
merical optimization algorithms, work with the Taylor se-
ries for the target function. The inverse of Hessian ma-
trices is approximated iteratively in order to use curvature
information, and line searches find the minimum or maxi-
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mum of a given function. The most commonly used quasi-
Newton methods is the one attributed to Broyden, Fletcher,
Goldfarb, and Shanno (BFGS) (Liu & Nocedal 1989). The
BFGS method has the added advantages of utilizing two-
part approximate Hessians to better simulate second-order
functions and converging without exact line searches. The
Limited-Memory BFGS (L-BFGS) method is useful not
only for its memory efficiency but also for its superior per-
formance on problems with large numbers of variables (Liu
& Nocedal 1989; Symons et al. 2006). Limited memory
techniques store only a certain number of approximated in-
verse Hessians, which tends to improve performance even in
cases where memory is not a problem.

However, the manner in which the point of convergence is
determined strongly impacts how accurately an approximate
method represents the desired result. Because the CRF is
based on log-likelihood measurements, a logical metric for
convergence is the norm of the gradient of the log-likelihood
function, Lk taken at each iteration, k. The gradient is the
vector of first derivatives in respect to the parameter θ of
the optimization function. Its Euclidean norm is the magni-
tude of the gradient vector. One expects this number to be
small near the optimum. When the gradient norm is smaller
than this limit, the program stops and identifies the point as a
stationary, or optimal, point. However, a recent study makes
clear the unreliability of the gradient norm near convergence
on certain datasets (Nocedal, Sartenaer, & Zhu 2002). In-
stead of steadily decreasing as it approaches the minimum,
they show that the gradient tends to fluctuate back and forth,
taking unnecessarily large amounts of time to reach the de-
sired point. Despite having made a careful study of the con-
vergence, Nocedal makes no recommendation for a supe-
rior criterion. Malouf (Malouf 2002) suggests the relative
change in log-likelihood defined as ΔL = |Lk−Lk−1|

Lk
as an

alternative convergence criterion.
Ideally, the model performance on a set of test data would

determine the convergence directly by the maximum, but the
computational cost of testing the model at each step along
the way is prohibitive for even a reasonably-sized dataset.
Conditional Random Fields
Conditional Random Fields (CRF), a type of Markov Ran-
dom Field, are log-linear graphical models that typically use
a global optimization routine to maximize the conditional
log-likelihood of the model parameters given the available
training data (Lafferty, McCallum, & Pereira 2001). They
restrict the choice of a probability distribution to one that
matches the independence assumptions explicit in the struc-
ture of a graph. In such a graph, the nodes are random vari-
ables, such as the positions in a sequence to which states
(labels) will be assigned, and the edges represent the depen-
dencies between nodes. Thus, the lack of an edge indicates
conditional independence between the concerned nodes.

CRFs have quickly become one of the more popular
supervised-learning models in the field of NLP. They are
well suited for sequential labeling tasks, such as part-of-
speech tagging, shallow parsing, and NER, outperforming
many other popular model types on such problems. CRFs
are known to have problems with over-fitting, a phenomenon

in which attempting to reduce training error beyond a certain
point can actually lead to reduced generalizability.
Active Learning
Active learning experiments seek to improve performance
relative to the size of the training set in order to reduce
global training time, human labor, and computation time.
One way to increase the ratio is to selectively reduce the
size of the training set, leaving only the best examples. Ex-
isting suggestions to this end include measurements of un-
certainty (Tong & Koller 2002), variance in prediction from
query-by-committee (Freund et al. 1997), and risk mini-
mization (Zhu, Lafferty, & Ghahramani 2003). However,
uncertainty measures fail to take into account the data distri-
bution, which can lead to the selection of outliers that neg-
atively impact generalization performance. Alternate meth-
ods such as the ones suggested by Freund et al. (Freund et
al. 1997) or McCallum and Nigam (McCallum & Nigam
1998), which do consider the data, show great improvement
over simple uncertainty.

Because training is a computationally expensive pro-
cess, active learning is often performed in batch by adding
sets of samples simultaneously. Techniques for choosing
representative batches have become popular; for example,
Brinker (Brinker 2003) and Shen et. al (Shen et al. 2004)
suggest a geometric distance method for Support Vector Ma-
chines (SVMs). Shen’s work actually combines uncertainty,
representativeness, and diversity for improved data selec-
tion (Shen et al. 2004). In general, attempts to use repre-
sentative data, particularly with batch selection, have led to
performance improvements relative to dataset size.

Our framework (Symons et al. 2006) uses multi-criterion
active learning in CRFs to identify a small but sufficient
set of text samples to train CRFs. The empirical results
demonstrated that this approach could reduce manual anno-
tation costs beyond using model uncertainty alone, which
is particularly encouraging given the difficulty of obtaining
new training data when applying models to new concepts
and domains in NLP tasks. For the NER task, the frame-
work reduced the training set from 8,646 to 1,150 sentences
while maintaining a comparable F1-measure. Similar stud-
ies have shown Active Learning techniques to reduce the
size of training data as well (Brinker 2003; Shen et al. 2004;
Sassano 2002). Choosing the training dataset selectively im-
proved the generalization performance of trained CRF mod-
els. Thus, active learning is a potential method for deal-
ing with over-fitting in CRFs that can enhance the results of
other known methods.

Methodology
Architecture and Implementation

Any machine learning system that involves humans select-
ing and tagging the data on which to train a model typically
contains two major iterative cycles: the internal, or Training,
cycle to train the model given a set of tagged data, and the
external, or Active Learning, cycle to control which data is
sent to be trained (Figure 1). For the Training cycle, various
choices at multiple levels are made, as depicted in Figure 2.
For our implementation, we used the CRF at the maximum
entropy model level, the L-BFGS method at the parameter
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Figure 1: General process flow of a two-cycle active learn-
ing training system.

optimization level, various measures at the convergence cri-
terion level, and various thresholds for stopping the training
at the threshold selection level. We selected the L-BFGS
method to optimize the parameters for the maximum log-
likelihood function due to its benefits in memory and com-
putation time on large-scale datasets. Our evaluation exper-
iments on convergence criteria aim to find the ‘best’ con-
vergence criterion and the ‘best’ stopping threshold for this
cycle.

We used the open-source CRF package (Sarawagi
2005), which considered convergence according to the log-
likelihood’s gradient norm. By default, L-BFGS considers
convergence according to the ratio of the gradient norm to
the function norm.

Our active learning software (Symons et al. 2006) con-
trolled the external, or Active Learning, cycle, which se-
lects data that our model is most uncertain about. Therefore,
correctly tagging this data by users would most benefit the
model.
Evaluation Methodology
Internal Training Cycle Evaluation. Our experiments aim
to determine robust criteria that terminate the internal train-
ing cycle with the least computation time and the best accu-
racy. One way is to preset the number of iterations, which
may or may not be determined through testing. This is al-
most a guarantee for predictions with lower accuracy due
to either too few iterations or over-fitting. Instead, we use
a numerical value based on the log-likelihood function (i.e.
its norm, gradient norm, relative change) between two con-
secutive iterations. Setting the desired stopping threshold
for this convergence value to 10−7 is widely accepted. To
remain consistent with previous studies, such as those by

Figure 2: Model of experimental decisions for the inter-
nal Training cycle. The lines connect the components
used in the framework.

Malouf (Malouf 2002), we terminated the training when the
convergence criterion attained this stopping value, or after
2000 iterations, if the latter occurred sooner. In our exper-
iments we used three target convergence criteria: the rel-
ative change in log-likelihood, the Euclidean norm of the
log-likelihood function, and the Euclidean norm of its gra-
dient. The model performance, evaluated in terms of the
F1-measure, was checked every 100 iterations and at points
where the other measures dropped below a certain power of
10. We also determined the minimum and maximum val-
ues obtained for each measure per 100 iterations in order to
make observations about convergence trends.
External Active Learning Cycle Evaluation. To train our
system with active learning (AL) we started with 100 ran-
domly selected sentences to annotate. After each CRF train-
ing via L-BFGS, the active learning system selected another
50 sentences to annotate. We varied the convergence cri-
terion (relative change in log-likelihood) in the training be-
tween 10−2 to 10−8. Due to the randomness involved in
picking the initial training sentences to annotate, this ex-
periment was run 10 times and the reported results contain
the average over the last 5 iterations and over all 10 exper-
iments. For example, after 40 iterations of AL, the train-
ing data size reached 2050 sentences and we calculated the
F1-measure average for iterations 36 through 40 over the 10
experiments. We used the last 5 iterations along with 10 sep-
arate experiments to reduce the chance of fluctuations due to
our sampling in AL. After each training run, the experiment
evaluated the model’s performance by using a separate test
dataset from the Computational Natural Language Learning
Conference (CoNLL).
Performance Evaluation Metric. To compare methods, we
use the F1-measure, the harmonic mean of recall and preci-
sion with an equal weight. Our goal is to find a conver-
gence factor that consistently achieves a high percentage of
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Figure 3: Minimum vs. maximum relative rate of change
(y-axis) of the various stopping measures over every 100
training iterations (x-axis).

the maximum observed F1-measure across all datasets and
entities. We do not expect to increase previously observed
F1-measures but to show computation time reduction with
comparable F1-measure.
Data Sets. We use entities for people, organizations, and
locations obtained from CoNLL and evaluated methods us-
ing datasets ranging from 50 to 4,000 sentences to train our
models; the remaining sentences are used as a test set, and
then we vary the convergence criteria.

Results

Training Cycle Convergence
In this section, we report our evaluation results and address

the following questions: (a) which target convergence crite-
ria under study are robust; (b) whether the optimum thresh-
old for stopping at convergence depends on the type of the
named entity, and (c) whether the threshold depends on the
size of the training data. The following three convergence
criteria are evaluated: function norm (or norm(x)) of log-
likelihood, gradient norm (or norm(g)) of log-likelihood,
and relative change (or ΔLogLi) in log-likelihood. The fol-
lowing three entity types are used: Location, Person, and
Organization.

We first trained the model using the default L-BFGS con-
vergence criterion defined as the ratio of the gradient norm
to the function norm. The default stopping threshold for
this ratio is 10−7. The training terminated after 2000 iter-
ations if it had not previously stopped by reaching the stop-
ping threshold for its convergence ratio. The F1- measures
attained at this default convergence for Location, Person,
and Organization were 0.922772, 0.84936, and 0.774273,
respectively.

Each model was then trained for every named entity and
every target convergence criterion until one of the two stop-
ping conditions was satisfied: the 10−7 threshold for the
convergence criterion or 2000 iterations. In terms of the

F1-measure per entity type

ΔLogLi Location Person Organization

10-4 0.922816 0.838222 0.763786
10-5 0.923077 0.847694 0.779285

10-6 0.922772 0.849450 0.774405

10-7 0.922772 0.849609 0.775226

10-8 N/A 0.849029 0.773956

Table 1: Low change in log-likelihood predicts
convergence-quality or higher performance across all
three entities. Bold typeface indicates F1-measures higher
than those at convergence; N/A is reported for criteria not
reached before training stopped.

F1-measure, we noted that our experiments converged to
the default threshold long before training concluded. There-
fore, results obtained from the internal training cycle con-
firmed the usefulness of more expedient convergence crite-
ria to achieve high F1-measures more quickly.
Robustness of Convergence Criteria. Figure 3 depicts the
relative change of the minimum and maximum values over
100 iterations for every target convergence criterion using
Organization as the selected entity type. The log-likelihood
has a relative change of less than 10−5 after iteration 500.
Yet, the gradient norm oscillates by two orders of magnitude
between its maximum and minimum values even after iter-
ation 800. Although the function norm is not as oscillatory
as the gradient norm, its maximum change per iteration is at
least two orders of magnitude worse than the log-likelihood
change after iteration 500, reaching 4 orders of magnitude
difference after iteration 800. For the Location entity, the
iteration to iteration change in function norm dropped be-
low 10−4 around the time of convergence, but for Person
and Organization, the change in this norm remained large
even after convergence (data not shown). The gradient norm
continued to vary greatly from iteration to iteration even up
to convergence for all three entity types. For these reasons,
we eliminated both function and gradient norms from fur-
ther analysis as possible convergence criteria.
Independence of Threshold Selection on Entity Type.
Given relative log-likelihood change as our target conver-
gence criterion, the next question is whether to select an
optimum stopping threshold uniformly defined across dif-
ferent entities, or for each individual entity type. Our exper-
iments for three target entities demonstrated that the relative
log-likelihood change consistently dropped below 10−5 near
convergence in all three entities (see Table 1). F1-measures
from the models that first obtained this low shift in log-
likelihood either very closely approximated the results after
training ended (that is, within 0.1%), or exceeded the perfor-
mance observed at convergence in several cases. This slight
drop in performance near convergence may point to over-
fitting the training data.
Independence of Threshold Selection on Training Data
Size. Having thus established the superiority of relative
change in log-likelihood over the other two criteria, irre-
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Figure 4: Average percentage of final F1-measure (y-axis)
attained by each model for a given dataset size at differ-
ent threshold values (x-axis).

spective of the entity chosen, we next determined whether
varying the amount of training data will affect our conver-
gence criteria. Using randomly selected sets of 100, 250,
500, 750, 1000, 2000, and 4000 sentences from the CoNLL
corpus, models were trained to recognize the Location en-
tity and then tested whenever they reached a certain log-
likelihood value. The results, shown in Figure 4, point to-
ward a log-likelihood of 10−4 or 10−5 being most effective.
Some results in Figure 4 achieve scores above 100% show-
ing that looser convergence criteria can have greater perfor-
mance since these results are relative F1-measures compared
against results using 10−7 as the convergence criteria. The
relative performance of small datasets appears to outperform
larger datasets for 10−2 , however, this is due to the small
datasets’ lower F1-measure at the 10−7 benchmark com-
pared to the larger datasets. For some sizes, 10−4 appears
to produce better results, but given the random nature of the
datasets selected, this result is not definitive. Larger datasets
appear to require a more accurate log-likelihood for high
performance. Therefore, using a 10−5 stopping threshold
seems to be better because almost every model, regardless
of dataset size, reached 99% (or more) of the F1-measure.
Active Learning Cycle Convergence Evaluation
With relative change in log-likelihood shown to be the
proper convergence criterion, and this criterion shown to be
independent of the training data size, we questioned whether
active learning (AL) could further reduce computation time
and human effort.

F1-measures attained at a convergence value of 10−2

were consistently worse than the rest; they were thrown out
early on. For more precise stopping values, we executed
training runs using 20, 40, and 50 AL iterations. However,
they did not yield ideal stopping points. Specifically, even
with less precise convergence, such as 10−3 or 10−4, we
can achieve results similar to, and sometimes better than,
results run using more specific convergence. In fact, the re-
sults for 10−3 and 10−7 on 10 different randomly selected

datasets are statistically very close (see Table 2). The av-
erage F1-measure across all 10 models for iterations 36-40
was within a percentage point of 88% regardless of the stop-
ping value used. Training a system on 10−3 instead of 10−7

should lead to a reduction in both computation and human
effort without any significant loss of precision.

ΔLogLi Average

10-3 0.882605
10-4 0.877256
10-5 0.885260
10-6 0.888748

10-7 0.884872

Table 2: Average F1-measure across 10 different Person
models (per threshold value) for active learning iterations
36-40.

Conclusion and Future Work

This paper systematically addressed an important problem
of selecting fast and robust convergence criteria in param-
eter optimization for maximum log-likelihood values used
in CRF-based NLP tasks such as Named Entity Recogni-
tion. It showed that the relative change in log-likelihood, as
opposed to the function norm and the gradient norm of the
log-likelihood function, is a consistent convergence factor.
The stopping threshold value of 10−5 for this convergence
criterion is independent of both the type of the named entity
and the size of the training data. In contrast to the tradi-
tional 10−7 stopping threshold value, using 10−5 achieves
F1-measures for model accuracy that are as good or better
than using more precise convergence value. Reducing the
threshold by two orders of magnitude significantly lessened
the training time.

Using active learning with a comparable or higher F1-
measure further reduced computation time and human effort.
Our active learning results highlighted the risk of over-fitting
the training data for machine learning. Using a relatively
high convergence value yielded F1-measures that were ap-
proximately the same as lower convergence values that take
much less time to compute. The tightest convergence values
often performed worse than 10−5 due to over-fitting.

Our results showed that more specific convergence cri-
teria do not necessarily produce better F1-measure results.
Further experiments may determine whether gradually tight-
ening the convergence criteria during active learning could
lead to fewer iterations of training and sentence annotation.
Additionally, no studies exist that use CRFs and L-BFGS to
examine convergence criteria that are appropriate for active
learning cycles. Achieving a criterion for this would be an
important step in analyzing over-fitting.
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