
Rewriting Ontological Queries
into Small Nonrecursive Datalog Programs

Georg Gottlob
Department of Computer Science

University of Oxford
georg.gottlob@cs.ox.ac.uk

Thomas Schwentick
Fakultät für Informatik

TU Dortmund
thomas.schwentick@udo.edu

Abstract

We consider the setting of ontological database access, where
an A-box is given in form of a relational database D and
where a Boolean conjunctive query q has to be evaluated
againstDmodulo a T -box Σ formulated in DL-Lite or Linear
Datalog±. It is well-known that (Σ, q) can be rewritten into
an equivalent nonrecursive Datalog program P that can be di-
rectly evaluated overD. However, for Linear Datalog± or for
DL-Lite versions that allow for role inclusion, the rewriting
methods described so far result in a nonrecursive Datalog pro-
gram P of size exponential in the joint size of Σ and q. This
gives rise to the interesting question of whether such a rewrit-
ing necessarily needs to be of exponential size. In this paper
we show that it is actually possible to translate (Σ, q) into a
polynomially sized equivalent nonrecursive Datalog program
P .

1 Introduction
1.1 Motivation
This paper is about query rewriting in the context of on-
tological database access. Query rewriting is an important
new optimization technique specific to ontological queries.
The essence of query rewriting, as will be explained in more
detail below, is to compile a query and an ontological the-
ory (usually formulated in some description logic or rule-
based language) into a target query language that can be di-
rectly executed over a relational database management sys-
tem (DBMS). The advantage of such an approach is obvi-
ous. Query rewriting can be used as a preprocessing step
for enabling the exploitation of mature and efficient exist-
ing database technology to answer ontological queries. In
particular, after translating an ontological query into SQL,
sophisticated query-optimization strategies can be used to
efficiently answer it. However, there is a pitfall here. If the
translation inflates the query excessively and creates from a
reasonably sized ontological query an enormous exponen-
tially sized SQL query (or SQL DDL program), then even
the best DBMS may be of little use.

The above problem has motivated a flourishing research
activity at the cutting edge between the fields of description
logic (DL) and database theory. Specific query languages

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with tractable query-answering have been designed, includ-
ing OWL 2 QL (Grau et al. 2008; Pérez-Urbina, Horrocks,
and Motik 2009), which is an OWL-based equivalent of the
description logic DL-LiteR (Calvanese et al. 2007). While
experimental and commercial ontological database manage-
ment systems have existed and have been used for a num-
ber of years (e.g. (Chong et al. 2005; Acciarri et al. 2005;
Virgilio et al. 2011)), they have been problematic with re-
spect to performance, and there is an agreement that onto-
logical query optimization methods have not yet been devel-
oped to their full potential. In fact, there is a general feeling
that many issues of ontology querying are still not well un-
derstood, and that deep theoretical research is necessary to
better understand some fundamental issues of query rewrit-
ing. In this spirit, the present paper tries to shed light on a rel-
evant problem in this context: Is it at all possible to translate
an ontological conjunctive query into a polynomially sized
SQL (or SQL-DDL) query?

1.2 Main Result
We show that polynomially sized query rewritings into non-
recursive Datalog exist in specific settings. Note that nonre-
cursive Datalog can be efficiently translated into SQL with
view definitions (SQL DDL), which, in turn, can be directly
executed over any standard DBMS. Our results are — for
the time being — of theoretical nature and we do not claim
as of now that they will lead to better practical algorithms.
A smart implementation of our new query translation, mak-
ing use of various Datalog optimization techniques, shall be
the subject of interesting future research. Our main result
applies to the setting where ontological constraints are for-
mulated in terms of tuple-generating dependencies (tgds),
and we make heavy use of the well-known chase proce-
dure (Maier, Mendelzon, and Sagiv 1979; Johnson and Klug
1984). For definitions, see Section 2. The result after chasing
a tgd set Σ over a database D is denoted by chase(D,Σ).

Consider a set Σ of tgds and a database D over a joint
signature R. Let q be a Boolean conjunctive query (BCQ)
issued against (D,Σ). We would like to transform q into
a nonrecursive Datalog query P such that (D,Σ) |= q iff
D |= P . We assume here that P has a special propositional
goal goal, and D |= P means that goal is derivable from P
when evaluated over D. Let us define an important property
of classes of tgds.

254

Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning

Definition 1.1. Polynomial witness property (PWP). The
PWP holds for a class C of tgds if there exists a polynomial
γ such that, for every finite set Σ ⊆ C of tgds and each
BCQ q, the following holds: for each database D, whenever
(D,Σ) |= q, then there is a sequence of at most γ(|Σ|, |q|)
chase steps whose atoms already entail q.

Our main technical result, which is more formally stated
and proven in Section 3, is as follows.
Main Theorem. Let Σ be a set of tgds from a class C en-
joying the PWP and let a denote the maximum arity of any
predicate symbol occurring in Σ. Then each BCQ q can be
rewritten in polynomial time into a nonrecursive Datalog
program P of size polynomial in the joint size of q and Σ,
such that for every database D, (D,Σ) |= q if and only if
D |= P . Moreover, the arity of P is bounded by max(a +
1, 3), in case a sufficiently large linear order can be accessed
in the database, or otherwise by O(max(a + 1, 3) · logm),
where m is the joint size of q and Σ.

1.3 Other Results
From this result, and from already established facts, a good
number of further rewritability results for other formalisms
can be derived. In particular, we can show that conjunctive
queries based on other classes of tgds or description log-
ics can be efficiently translated into nonrecursive Datalog.
Among these formalisms are: linear tgds, originally defined
in (Calı̀, Gottlob, and Lukasiewicz 2009) and equivalent to
inclusion dependencies, various major versions of the well-
known description logic DL-Lite (Calvanese et al. 2007;
Poggi et al. 2008), OWL 2 QL, and sticky tgds (Calı̀, Gott-
lob, and Pieris 2011) as well as sticky-join tgds (Calı̀, Gott-
lob, and Pieris 2010b; 2010c). We will just give an overview
and very short explanations of how each of these rewritabil-
ity results follows from our main theorem. A more detailed
treatment is planned for a future journal version of this pa-
per.

1.4 Structure of the Paper
The rest of the paper is structured as follows. In Section 2
we state a few preliminaries and simplifying assumptions. In
Section 3, we give a rather detailed proof sketch of the main
result. Section 4 contains the other results following from
the main result. A brief overview of related work concludes
the paper in Section 5.

This paper extends a shorter version presented at DL
2011, (Gottlob and Schwentick 2011).

2 Preliminaries and Assumptions
We assume the reader to be familiar with the terminology of
relational databases and the concepts of conjunctive query
(CQ) and Boolean conjunctive query (BCQ). For simplicity,
we restrict our attention to Boolean conjunctive queries q.
However, our results can easily be reformulated for queries
with output, see Remark 3 after the proof of Theorem 3.1.

Given a relational schema R, a tuple-generating de-
pendency (tgd) σ is a first-order formula of the form
∀ ~X∀~Y Φ(~X, ~Y)→∃~Z Ψ(~X, ~Z), where Φ(~X, ~Y) and

Ψ(~X, ~Z) are conjunctions of atoms overR, called the body
and the head of σ, denoted body(σ) and head(σ), respec-
tively. We usually omit the universal quantifiers in tgds.
Such σ is satisfied in a database D forR iff, whenever there
exists a homomorphism h that maps the atoms of Φ(~X, ~Y)
to atoms ofD, there exists an extension h′ of h that maps the
atoms of Ψ(~X, ~Z) to atoms of D. All sets of tgds are finite
here. We assume in the rest of the paper that every tgd has
exactly one atom and at most one existentially quantified
variable in its head. A set of tgds is in normal form if the
head of each tgd consists of a single atom. It was shown in
(Calı̀, Gottlob, and Kifer 2008, Lemma 10) that every set Σ
of TGDs can be transformed into a set Σ′ in normal form of
size at most quadratic in |Σ|, such that Σ and Σ′ are equiva-
lent with respect to query answering. The normal form trans-
formation shown in (Calı̀, Gottlob, and Kifer 2008) can be
achieved in logarithmic space. It is, moreover, easy to see
that this very simple transformation preserves the polyno-
mial witness property.

For a database D for R, and a set of tgds Σ on R, the set
of models of D and Σ, denoted mods(D,Σ), is the set of
all (possibly infinite) databases B such that (i) D⊆B and
(ii) every σ ∈Σ is satisfied in B. The set of answers for a
CQ q to D and Σ, denoted ans(q,D,Σ), is the set of all
tuples a such that a ∈ q(B) for all B ∈mods(D,Σ). The
answer for a BCQ q to D and Σ is yes iff the empty tuple is
in ans(q,D,Σ), also denoted as D ∪ Σ |= q.

Note that, in general, query answering under tgds is un-
decidable (Beeri and Vardi 1981), even when the schema
and tgds are fixed (Calı̀, Gottlob, and Kifer 2008). Query
answering is, however, decidable for interesting classes of
tgds, among which are those considered in the present pa-
per.

The chase procedure was introduced to enable checking
implication of dependencies (Maier, Mendelzon, and Sagiv
1979), and later also for checking query containment (John-
son and Klug 1984). It is a procedure for repairing a database
relative to a set of dependencies, so that the result of the
chase satisfies the dependencies. By “chase”, we refer both
to the chase procedure and to its output. The chase comes
in two flavors: restricted and oblivious, where the restricted
chase applies tgds only when they are not satisfied (to repair
them), while the oblivious chase always applies tgds (if they
produce a new result). We focus on the oblivious one, since it
makes proofs technically simpler. The (oblivious) tgd chase
rule defined below is the building block of the chase.

TGD CHASE RULE. Consider a database D for a rela-
tional schemaR, and a tgd σ onR of the form Φ(~X, ~Y)→
∃~Z Ψ(~X, ~Z). Then, σ is applicable to D if there exists
a homomorphism h that maps the atoms of Φ(~X, ~Y) to
atoms of D. Let σ be applicable to D, and h1 be a ho-
momorphism that extends h as follows: for each Xi ∈ ~X ,
h1(Xi) = h(Xi); for each Zj ∈ ~Z, h1(Zj) = zj , where zj
is a fresh null value (i.e., a Skolem constant) different from
all nulls already introduced. The application of σ on D adds
to D the atom h1(Ψ(~X, ~Z)) if not already in D (which is
possible when ~Z is empty).

255

The chase algorithm for a database D and a set of tgds
Σ consists of an exhaustive application of the tgd chase
rule in a breadth-first (level-saturating) fashion, which leads
as result to a (possibly infinite) chase for D and Σ. For-
mally, the chase of level up to 0 of D relative to Σ, deno-
ted chase0(D,Σ), is defined as D, assigning to every atom
in D the (derivation) level 0. For every k≥ 1, the chase of
level up to k of D relative to Σ, denoted chasek(D,Σ),
is constructed as follows: let I1, . . . , In be all possible im-
ages of bodies of tgds in Σ relative to some homomorphism
such that (i) I1, . . . , In⊆ chasek−1(D,Σ) and (ii) the high-
est level of an atom in some Ii is k− 1; then, perform every
corresponding tgd application on chasek−1(D,Σ), choos-
ing the applied tgds and homomorphisms in a linear and
lexicographic order, respectively, and assigning to every new
atom the (derivation) level k. The chase of D relative to Σ,
denoted chase(D,Σ), is thus the limit of chasek(D,Σ) for
k →∞.

The (possibly infinite) chase relative to tgds is a universal
model, i.e., there exists a homomorphism from chase(D,Σ)
onto every B ∈mods(D,Σ) (Deutsch, Nash, and Remmel
2008; Calı̀, Gottlob, and Kifer 2008). This result implies that
BCQs q over D and Σ can be evaluated on the chase for D
and Σ, i.e., D∪Σ |= q is equivalent to chase(D,Σ) |= q.

A chase sequence of length n based on D and Σ is a se-
quence of n atoms such that each atom is either from D or
can be derived via a single application of some rule in Σ
from previous atoms in the sequence. If S is such a chase
sequence and q a conjunctive query, we write S |= q if there
is a homomorphism from q to the set of atoms of S.

We assume that every database has two constants, 0 and
1, that are available via the unary predicates Zero and One,
respectively. Moreover, each database has a binary predicate
Neq such that Neq(a, b) is true precisely if a and b are dis-
tinct values.

We finally define N -numerical databases. Let D be a
database whose domain does not contain any natural num-
bers. We define DN as the extension of D by adding the
natural numbers 0, 1, . . . , N to its domain, a unary rela-
tion Num that contains exactly the numbers 1, . . . , N , bi-
nary order relations Succ and < on 0, 1, . . . , N , expressing
the natural successor and “<” orders on N , respectively.1
We refer to DN as the N -numerical extension of D, and, a
so extended database as N -numerical database. We denote
the total domain of a numerical database DN by domN (D)
and the non-numerical domain (still) by dom(D). Standard
databases can always be considered to be N -numerical, for
some large N by the standard type integer, with the < pred-
icate (and even arithmetic operations). A number maxint
corresponding to N can be defined.

3 Main Result
Our main result is more formally stated as follows:

Theorem 3.1. Let C be a class of tgds in normal form, enjoy-
ing the polynomial witness property and let γ be the polyno-

1Of course, if dom(D) already contains some natural numbers
we can add a fresh copy of {0, 1, . . . , N} instead.

mial bounding the number of chase steps (with γ(n1, n2) ≥
max(n1, n2), for all naturals n1, n2). For each set Σ ⊆ C
of tgds and each Boolean CQ q, one can compute in polyno-
mial time a nonrecursive Datalog program P of polynomial
size in |Σ| and |q|, such that, for every database D it holds
D,Σ |= q if and only if D |= P . Furthermore:

(a) For N -numerical databases D, where N ≥ γ(|Σ|, |q|),
the arity of P is max(a + 1, 3), where a is the maximum
arity of any predicate symbol occurring in Σ;

(b) otherwise (for non-numerical databases), the arity of P is
O(max(a+ 1, 3) · log γ(|Σ|, |q|)), where a is as above.

We note that N is polynomially bounded in |Σ| and |q| by
the polynomial γ that only depends on C.

The rest of this section is dedicated to a proof, in form of
a detailed proof sketch, of Theorem 3.1. This proof sketch
should provide substantial insight into how our translation
works and why it is correct. A fully formal proof requires
many more pages and will be given in the journal version of
the present paper.
Proof. Our detailed proof sketch starts with an illustration
of its high-level idea. We then introduce some notation, con-
ventions, and simplifying assumptions (which we can make
without loss of generality). This is followed by the proper
proof sketch which is illustrated by a running example.

High-level idea of the proof. We first describe the high
level idea of the construction of a nonrecursive Datalog pro-
gram P of arity a+ k+ 4, where k is the maximum number
of tuples in any left hand side of a chase rule. We explain
afterwards how the arity can be reduced to max(a + 1, 3).
The program P checks whether there is a chase sequence
S = t1, . . . , tN with respect to D and Σ and a homomor-
phism h from q to (the set of atoms of) S. To this end, P
consists of one large rule rgoal of polynomial size in N and
some shorter rules that define auxiliary relations and will be
explained below.

The aim of rgoal is to guess the chase sequence S and the
homomorphism h at the same time. We recall that N does
not depend on the size of D but only on |Σ| and |q| and
thus rgoal can well be as long as the chase sequence and q
together. One of the advantages of this approach is that we
only have to deal with those null values that are actually rel-
evant for answering the query. Thus, at most N null values
need to be represented.2

One might try to obtain rgoal by just taking one atom Ai

for each tuple ti of S and one atom for each atom of q
and somehow test that they are consistent. However, it is
not clear how consistency could possibly be checked in a
purely conjunctive fashion.3 There are two ways in which
disjunctive reasoning is needed. First, it is not a priori clear
on which previous tuples, tuple ti will depend. Second, it is
not a priori clear to which tuples of S the atoms of q can be
mapped.

2We recall that we assume without loss of generality that every
tgd has at most one existentially quantified variable in its head.

3Furthermore, of course, there are no relations to which the
atoms Ai could possible be matched.

256

To overcome these challenges we use the following basic
ideas.

(1) We represent the tuples of S (and the required tuples
of D) in a symbolic fashion, utilizing the numerical do-
main. Thus, for example, an atom R1(a, b) can be iden-
tified by the value triple 〈1, a, b〉; a tuple R4(a, b,⊥2),
where ⊥2 is a null-value, can be represented by the
quadruple 〈4, a, b, 2〉. This shall just give the reader a
first idea of how to encode atoms. Our actual encoding
(given below in the proof) is based on this idea, but is
slightly more involved, as it also contains a bit f that
discriminates between original database atoms (f = 0)
and new atoms derived during the chase (f = 1). More-
over, the actual encoding applies to ”normalized” atoms
that are all of the same arity.

(2) We let P compute auxiliary predicates that allow us to
express disjunctive relationships between the tuples in
S.

Example 3.2. We shall illustrate the proof idea with a very
simple running example, shown in Figure 1.

A possible chase sequence in this example is shown in
Figure 2(a). The mapping X 7→ a and Y 7→ g, maps
R5(X,Y) to t5 and R3(Y,X) to t6, thus satisfying q. Be-
fore we describe the proof idea in more detail, we fix some
notation and convenient conventions.

Notation and conventions. Let C be a class of tgds en-
joying the PWP, let Σ be a set of tgds from C, and let q be a
BCQ. Let R1, . . . Rm be the predicate symbols occurring in
Σ or in q. We denote the number of tgds in Σ by `.

Let N := γ(|Σ|, |q|) where γ is as in Definition 1.1,
thus N is polynomial in |Σ| and |q|. By definition of N ,
if (D,Σ) |= q, then q can be witnessed by a chase se-
quence Γ of length ≤ N . Our assumption that γ(n1, n2) ≥
max(n1, n2), for every n1, n2, guarantees that N is larger
than (i) the number of predicate symbols occurring in Σ, (ii)
the cardinality |q| of the query, and (iii) the number of rules
in Σ.

For the sake of a simpler presentation, we assume that all
relations in Σ have the same arity a and all rules use the
same number k of tuples in their body. The latter can be
easily achieved by repeating tuples, the former by filling up
shorter tuples by repeating the first tuple entry. Furthermore,
we only consider chase sequences of length N . Shorter se-
quences can be extended by adding tuples from D.

Example 3.3. Example 3.2 thus translates as illustrated in
Figure 3. The (extended) chase sequence is shown in Figure
2 (b). The query q is now satisfied by the mapping X 7→ a,
Y 7→ g, U 7→ g, V 7→ a, thus mapping R5(X,Y,X) to t5
and R3(Y,X, Y) to t6.

Proof (continued). On an abstract level, the atoms that
make up the final rule rgoal of P can be divided into three
groups serving three different purposes. That is, rgoal can be
considered as a conjunction rtuples∧rchase∧rquery. Each group
is “supported” by a sub-program of P that defines relations
that are used in rgoal, and we refer to these three subprograms
as Ptuples, Pchase and Pquery, respectively.

• The purpose of rtuples is basically to lay the ground for the
other two. It consists of N atoms that allow to guess the
symbolic encoding of a sequence S = t1, . . . , tN .

• The atoms of rchase are designed to verify that S is an
actual chase sequence with respect to D.

• Finally, rquery checks that there is a homomorphism from
q to S.

Ptuples and rtuples. We continue with an explanation of the
symbolic representation of tuples underlying rtuples.

The symbolic representation of the tuples ti of the chase
sequence S uses numerical values to encode null values,
predicate symbols Ri (by i), tgds σj ∈ Σ (by j) and the
number of a tuple ti in the sequence (that is: i).

In particular, the symbolic encoding uses the following
numerical parameters.4

• ri to indicate the relation Rri to which the tuple belongs;

• fi to indicate whether ti is fromD (fi = 0) or yielded by
the chase (fi = 1);

• Furthermore, xi1, . . . , xia represent the attribute values of
ti as follows. If the j-th attribute of ti is a value from
dom(D) then xij is intended to be that value, otherwise it
is a null represented by a numeric value.

Since each rule of Σ has at most one existential quantifier in
its head, at each chase step, at most one new null value can
be introduced. Thus, we can unambiguously represent the
null value (possibly) introduced in the j-th step of the chase
by the number j. In particular, all null values introduced in
a chase sequence (of length N) can indeed be represented
by elements of the numerical domain.

The remaining parameters si and ci1, . . . , cik are used to
encode information about the tgd and the tuples (atoms) in
S that are used to generate the current tuple. More precisely,

• si is intended to be the number of the applied tgd σsi and

• ci1, . . . , cik are the tuple numbers of the k tuples that are
used to yield ti.

In the example, e.g., t5 is obtained by applying σ4 to t2 and
t4. The encoding of our running example can be found in
Figure 2 (c).

We use a new relational symbol T of arity a + k + 4 not
present in the schema of D for the representation of the tu-
ples from S. Thus, rtuples is just:

T (1, r1, f1, x11, . . . , x1a, s1, c11, . . . , c1k), . . .,

T (N, rN , fN , xN1, . . . , xNa, sN , cN1, . . . , cNk).

The sub-program Ptuples is intended to “fill” T with
suitable tuples. The intention is that T contains all tuples
that could be used in a chase sequence in principle. At this
point, there are no restrictions regarding the chase rules. To
this end, Ptuples uses two kinds of rules, one for tuples from
D and one for tuples yielded by the chase. For each relation
symbol Rj of D, Ptuples has a rule

4We use the names of the parameters as variable names in rgoal
as well.

257

(a) Σ :

σ1: R1(X,Y)→ ∃Z R4(X,Y, Z)

σ2: R2(Y,Z)→ ∃X R4(X,Y, Z)

σ3: R3(X,Z)→ ∃Y R4(X,Y, Z)

σ4: R4(X1, Y1, Z1), R4(X2, Y2, Z2)→ R5(X1, Z2)

(b) q : R5(X,Y), R3(Y,X)

(c) D :

R1

a b
c d

R2

e g
R3

g a
g h

Figure 1: Simple example with (a) a set Σ of tgds, (b) a query q and (c) a database D.

(a)

• t1: R1(a, b)

• t2: R4(a, b,⊥2)

• t3: R2(e, g)

• t4: R4(⊥4, e, g)

• t5: R5(a, g)

• t6: R3(g, a)

(b)

• t1: R1(a, b, a)

• t2: R4(a, b,⊥2)

• t3: R2(e, g, e)

• t4: R4(⊥4, e, g)

• t5: R5(a, g, a)

• t6: R3(g, a, g)

(c)

i ri fi xi1 xi2 xi3 si ci1 ci2
1 1 0 a b a 0 0 0
2 4 1 a b 2 1 1 1
3 2 0 e g e 0 0 0
4 4 1 4 e g 2 3 3
5 5 1 a g a 4 2 4
6 3 0 g a g 0 0 0

Figure 2: (a) Example chase sequence, (b) its extension and (c) its encoding. t2 is obtained by applying σ1 to t1. Likewise t4
and t5 are obtained by applying σ2 to t3 and σ4 to t2 and t4, respectively.

(a) Σ :

σ1: R1(X,Y,X), R1(X,Y,X)→ ∃Z R4(X,Y, Z)

σ2: R2(Y,Z, Y), R2(Y,Z, Y)→ ∃X R4(X,Y, Z)

σ3: R3(X,Z,X), R3(X,Z,X)→ ∃Y R4(X,Y, Z)

σ4: R4(X1, Y1, Z1), R4(X2, Y2, Z2)→ R5(X1, Z2, X1)

(b)
q : R5(X,Y, U), R3(Y,X, V)

(c) D :

R1

a b a
c d c

R2

e g e
R3

g a g
g h g

Figure 3: Modified example with (a) a set Σ of tgds, (b) a query q and (c) a database D.

T (Z, j, 0, X1, . . . , Xa, 0, 0, . . . , 0) : −
Rj(X1, . . . , Xa),Num(Z).

which adds all tuples from Rj to T and makes them ac-
cessible for every possible position (Z) in S.

The following rule adds tuples that can possibly be ob-
tained by chase steps.

T (Z, Y, 1, X1, . . . , Xa, V, U1, . . . , Uk) : −
Num(Z),Num(Y),DNum(X1), . . . ,DNum(Xa),

Num(V),Num(U1), . . . ,Num(Uk),

1 ≤ Y ≤ m, 1 ≤ V ≤ `, U1 < Z, . . . , Uk < Z (1)

Here, the first two inequalities make sure that only al-
lowed relation and tgd numbers are used, the latter inequali-
ties guarantee that to yield a tuple by a chase rule only tuples
with smaller numbers can be used.5 The rule uses one further
predicate DNum that has not yet been defined. Its purpose is
to contain all possible values, that is: dom(D) ∪ Num. It
is (easily) defined by further rules of Ptuples. Note that this
leaves the values for the Xj unconstrained, hence they can
carry either domain values or numerical values.

5As the latter constraints are independent from the concrete
tgds, we decided to put them here. They could as well be tested
in rchase.

Pchase and rchase. Next, we describe the part of rgoal that
checks that S constitutes an actual chase sequence and the
rules of P that specify the corresponding auxiliary relations.

The following kinds of conditions have to be checked to
ensure that the tuples “guessed” by rtuples constitute a chase
sequence.

(1) For every i, the relation Rri of a tuple ti has to match
the head of its rule σsi .

• In the example, e.g., r4 has to be 4 as the head of σ2
is an R4-atom.

(2) Likewise, for each i and j the relation number of tuple
tcij has to be the relation number of the j-th atom of
σsi .

• In the example, e.g., r2 must be 4, as c5,1 = 2 and the
first atom of σs5 = σ4 is an R4-atom.

(3) If the head of σsi contains an existentially quantified
variable, the new null value is represented by the nu-
merical value i.

• This is illustrated by t4 in the example: the first posi-
tion of the head of rule 2 has an existentially quanti-
fied variable and thus x4,1 = 4.

(4) If a variable occurs at two different positions in σsi then
the corresponding positions in the tuples used to pro-
duce ti carry the same value.

258

(5) If a variable in the body of σsi also occurs in the head
of σsi then the values of the corresponding positions in
the body tuple and in ti are equal.
• Z2 occurs in position 3 of the second atom of the body

of σ4 and in position 2 of its head. Therefore, x4,3 and
x5,2 have to coincide (where the 4 is determined by
c5,2.

Note that all these conditions depend on the given tgds.
Indeed, every tgd from Σ contributes conditions of each of
the five forms. For the sake of simplicity of presentation, we
explain the effect of a tgd through the following example
tgd that contains all relevant features that might arise in a
tgd. The generalization to arbitrary tgds is straightforward
but tedious to spell out in full detail. Let us thus assume that
σ1 is the tgd6

R2(X,Y), R3(Y,Z)→ ∃V R4(X,V).

Condition (1) states that if a tuple ti is obtained by applying
σ1 it should be a tuple from R4. In terms of variables this
means, that for every i it should hold: if si = 1 then ri = 4.

This is the first occasion where we need some way to ex-
press a disjunction in rgoal (namely: si 6= 1∨ri = 4). We can
meet this challenge with the help of an additional predicate
to be specified in Pchase. More precisely, we let Pchase specify
a 4-ary predicate IfThen(X1, X2, U1, U2) that is intended to
contain all tuples fulfilling the condition: if X1 = X2 then
U1 = U2. IfThen can be specified by the following two rules.
IfThen(X,X,U,U) : −DNum(X),DNum(U).

IfThen(X1, X2, U1, U2) : −
DNum(X1),DNum(X2),DNum(X1),

DNum(X2),DNum(U1),DNum(U2),Neq(X1, X2)

Thus, condition (1) can be guaranteed with respect to
tgd σ1 for all tuples ti by adding all atoms of the form
IfThen(si, 1, ri, 4) to rchase.

Condition (2) is slightly more complicated. For our
example tgd σ1 it says that if a tuple ti is obtained using
σ1 then the first tuple used for the chase step should be
an R2-tuple. In terms of variables this can be stated as:
if si = 1 and ci1 = j then rj = 2 (and likewise for the
second atom of σ1. To express this IF-statement we use a
6-ary auxiliary predicate IfThen2(X1, X2, Y1, Y2, U1, U2)
expressing that if X1 = X2 and Y1 = Y2 then U1 = U2. It
can be specified in Pchase by the three rules shown in Figure
4.

For every pair of numbers i, j ≤ N , rgoal then has atoms
IfThen2(si, 1, ci1, j, rj , 2) and IfThen2(si, 1, ci2, j, rj , 2).

In a similar fashion
• condition (3) yields one atom IfThen(si, 1, xi2, i), for ev-

ery i;
• condition (4) yields one atom

IfThen3(si, 1, ci1, j1, ci2, j2, xj12, xj21), for every

6This example tgd is not related to our running example as that
does not have a single tgd with all features.

i, j1, j2 ≤ N , where IfThen3 is the 8-ary predicate
for IfThen-statements with three conjuncts that can be
defined analogously as IfThen2;

• condition (5) yields one atom
IfThen2(si, 1, ci1, j, xj1, xi1) for every i, j ≤ N .

Altogether, rchase has O(N3`k) atoms that together guar-
antee that the variables of rtuples encode an actual chase se-
quence.
Pquery and rquery. Finally, we explain how it can be

checked that there is a homomorphism from q to S. We ex-
plain the issue through the little example query R3(x, y) ∧
R4(y, z). To evaluate this query, rquery makes use of two ad-
ditional variables q1 and q2, one for each atom of q. The
intention is that these variables bind to the numbers of the
tuples that the atoms are mapped to. We have to make sure
two kinds of conditions. First, the tuples need to have the
right relation symbol and second, they have to obey value
equalities induced by the variables of q that occur more than
once.

The first kind of conditions is checked by adding atoms
IfThen(q1, i, ri, 3) and IfThen(q2, i, ri, 4) to rquery, for every
i ≤ N . The second kind of conditions can be checked by
atoms IfThen2(q1, i, q2, j, xi2, xj1), for every i, j ≤ N .

As we do not need any further auxiliary predicates, Pquery
is empty (but we kept it for symmetry reasons).

This completes the description of P . Note that P is non-
recursive, and has polynomial size in the size of q and Σ. In
order to finish the proof of part (a) of Theorem 3.1, we next
explain how to reduce the arity of P .

This final step of the construction is based on two ideas.
First, by using Boolean variables and some new ternary

relations, we can replace the 6-ary relation IfThen2 (and
likewise the 4-ary relation IfThen). More precisely, we re-
place every atom IfThen2(X1, X2, Y1, Y2, U1, U2) by a con-
junction of the form

IfEq(X1, X2, B1), IfEq(Y1, Y2, B2), IfEq(U1, U2, B3),

NotB(B1, B
′
1),NotB(B2, B

′
2),OrB(B1,

′ , B′2, B4),

OrB(B3, B4, B5),TrueB(B5).

Here, NotB,OrB, are predicates that mimic Boolean
gates, e.g., OrB(B3, B4, B5) holds if B5 is the Boolean
Or of B3 and B4, in particular all values have to be from
{0, 1}. TrueB(B5) only holds if B5 = 1. The predicate
IfEq(X1, X2, B1) holds if B1 = 1 and X1 = X2 or if B1 =
0 and X1 6= X2. The relations IfEq,NotB,OrB,TrueB can
easily be defined in Pchase.

The second idea is that T need not be materialized.
We only materialize a relation T ′ of arity a + 1 which is
intended to represent all database tuples. More precisely,
T ′(j,X1, . . . , Xa) shall hold if (X1, . . . , Xa) represents a
tuple from relation Rj or if j = 0. Clearly, T ′ can be de-
fined in Ptuples.

Every tuple T (j, rj , fj , xj1, . . . , xja, sj , cj1, . . . , cjk) in
rtuples is then replaced by a conjunction of atoms with the
same semantics. The conjunct T ′(r′j , xj1, . . . , xja) tests
whether (xj1, . . . , xja) is in Rr′j

. Further atoms ensure that
rj = r′j if fj = 0. Finally, it is ensured that, if fj = 1 the

259

IfThen2(X,X, Y, Y, U, U) : −DNum(X),DNum(Y),DNum(U).

IfThen2(X1, X2, Y1, Y2, U1, U2) : −
DNum(X1),DNum(X2),DNum(Y1),DNum(Y2),DNum(U1),DNum(U2),Neq(X1, X2).

IfThen2(X1, X2, Y1, Y2, U1, U2) : −
DNum(X1),DNum(X2),DNum(Y1),DNum(Y2),DNum(U1),DNum(U2),Neq(Y1, Y2).

Figure 4: Three rules defining IfThen2(X1, X2, Y1, Y2, U1, U2).

values are restricted as by the right-hand side of rule 1.

In order to prove part (b), we must get rid of the nu-
meric domain (except for 0 and 1). This is actually very
easy. We just replace each numeric value by a logarithmic
number of bits (coded by our 0 and 1 domain elements),
and extend the predicate arities accordingly. As a matter
of fact, this requires an increase of arity by a factor of
logN = O(log |q|). It is well-known that a successor pred-
icate and a vectorized < predicate for such bit-vectors can
be expressed by a polynomially-sized nonrecursive Datalog
program, see (Dantsin et al. 2001). The rest is completely
analogous to the above proof. This concludes the proof
sketch for Theorem 3.1.

We would like to conclude this section with some re-
marks:

Remark 1. Note that the evaluation complexity of the
Datalog program obtained for case (b) is not significantly
higher than the evaluation complexity of the program P
constructed for case (a). For example, in the most relevant
case of bounded arities, both programs can be evaluated in
NPTIME combined complexity over a database D. In fact,
it is well-known that the combined complexity of a Data-
log program of bounded arity is in NPTIME (see (Dantsin et
al. 2001)). But it is easy to see that if we expand the signa-
ture of such a program (and of the underlying database) by
a logarithmic number of Boolean-valued argument positions
(attributes), nothing changes, because the possible values for
such vectorized arguments are still of polynomial size. It is
just a matter of coding. In a similar way, the data complexity
in both cases (a) and (b) is the same (PTIME).

Remark 2. It is easy to generalize this result to the setting
where q is actually a union of conjunctive queries (UCQ).

Remark 3. The method easily generalizes to trans-
late non-Boolean queries, i.e., queries with output, to
polynomially-sized nonrecursive Datalog programs with
output. We are here only interested in certain answers con-
sisting of tuples of values from the original domain dom(D)
(see (Fagin et al. 2005)). Assume that the head of q is an
atom R(X1, . . . , Xk) where R is the output relation sym-
bol, and the Xi are variables also occurring in the body of
q. We then obtain a nonrecursive Datalog translation by act-
ing as in the above proof, except for the following modifica-
tions. Make R(X1, . . . , Xk) the head of rule rgoal, and add
for 1 ≤ i ≤ k an atom adom(Xi) to rquery, where adom
is an auxiliary predicate such that adom(u) is iff u is in
the active non-numeric domain of the database, that is, iff

u ∈ dom(D) and u effectively occurs in the database. It
is easy to see that the auxiliary predicate adom itself can
be achieved via a nonrecursive Datalog program from D.
Clearly, by construction of (the so modified) program P , the
output of P are then precisely the certain answers of the
query q.

Remark 4. While nonrecursive Datalog is strictly less
expressive than first-order logic (FO), nonrecursive Data-
log is, in general, a more succinct formalism. This means
that certain FO-properties can be represented by exponen-
tially smaller nonrecursive datalog programs than they can
by classical FO formulas. The reason is that, unlike FO, non-
recursive Datalog allows one to define new relations that can
be shared by various rule bodies (this is often referred to as
predicate sharing). In FO, such shared definitions are not
possible. Thus, it is, in general, not possible to translate a
nonrecursive Datalog program in polynomial time into an
equivalent FO formula over the same database D. However,
it is not hard to see that the specific nonrecursive Datalog
program P of the above proof actually can be transformed
in polynomial time into an equivalent first-order query over
D. In fact, for numerical databases, the generated program
P is of bounded depth. This means that the “tree” of pred-
icate definition dependencies is of bounded depth. We can
thus replace multiple occurrences of the same predicate by
multiple occurrences of a genuine FO-formula defining the
same predicate. This needs to be done Inductively, but due
to the bounded depth,it only yields a polynomial blow up.
For non-numerical databases, in addition, we need to de-
fine a vectorized <-predicate on Boolean vectors of loga-
rithmic length. This can indeed easily be done via a polyno-
mially sized FO formula. In summary, under the premises of
the above theorem, a polynomial translation of (Σ, q) into
a plain FO formula (and thus into a plain SQL query rather
than a SQL DL program with view definitions)of polynomial
size is possible, and can easily be ontained from our nonre-
cursive Datalog program P . We believe, however, that, from
an efficiency point of view, the translation into the nonrecur-
sive program P is actually smarter: Why would one want to
re-compute several times the same shared intensional rela-
tion?

4 Further Results Derived From the Main
Theorem

We wish to mention some interesting consequences of the
Main Theorem that follow easily from the above result after
combining it with various other known results.

260

4.1 Linear TGDs

A linear tgd (Calı̀, Gottlob, and Lukasiewicz 2009) is one
that has a single atom in its rule body. The class of linear
tgds is a fundamental one in the Datalog± family. This class
contains the class of inclusion dependencies. It was already
shown in (Johnson and Klug 1984) for inclusion dependen-
cies that classes of linear tgds of bounded (predicate) arities
enjoy the PWP. That proof carries over to linear tgds, and we
thus can state:

Lemma 4.1. Classes of linear tgds of bounded arity enjoy
the PWP.

By Theorem 3.1, we then conclude:

Theorem 4.2. Conjunctive queries under linear tgds of
bounded arity are polynomially rewritable as nonrecursive
Datalog programs in the same fashion as for the Main Theo-
rem. So are sets of inclusion dependencies of bounded arity.

4.2 DL-Lite and OWL 2 QL

A pioneering and highly significant contribution towards
tractable ontological reasoning was the introduction of the
DL-Lite family of description logics (DLs) by Calvanese et
al. (Calvanese et al. 2007; Poggi et al. 2008). DL-Lite was
further studied and developed in (Artale et al. 2009).

A DL-lite theory (or TBox) Σ = (Σ−,Σ+) consists of
a set of negative constraints Σ− such as key and disjoint-
ness constraints, and of a set Σ+ of positive constraints that
resemble tgds. As shown in (Calvanese et al. 2007), the neg-
ative constraints Σ− can be compiled into a polymomially
sized first-order formula (actually a union of conjunctive
queries) of the same arity as Σ− such that for each database
and BCQ q, (D,Σ) |= q iff D 6|= Σ− and (D,Σ+) |= q.
In the full version of (Calı̀, Gottlob, and Lukasiewicz 2009)
it was shown that for the main DL-Lite variants defined
in (Calvanese et al. 2007), each Σ+ can be immediately
translated into an equivalent set of linear tgds of arity 2. By
virtue of this, and the above we obtain the following theo-
rem.

Theorem 4.3. Let q be a CQ and let Σ = (Σ−,Σ+) be
a DL-Lite theory expressed in one of the following DL-
Lite variants: DL-LiteF,u, DL-LiteR,u, DL-Lite+A,u, DLR-
LiteF,u, DLR-LiteR,u, or DLR-Lite+A,u. Then Σ+ can be
rewritten into a nonrecursive Datalog program P such that
for each database D, (D,Σ+) |= q iff D |= P . Regarding
the arities of P , the same bounds as in the Main Theorem
hold.

The OWL-based query language OWL 2 QL, which we
already mentioned in the introduction, is essentially a syn-
tactic variant of DL-LiteR. Note that the former is used in
a context where the unique name assumption (UNA) is not
made, while the UNA is made by the DL-Lite logics, and, in
particular, DL-LiteR. However, conjunctive query answer-
ing with or without adopting the UNA is equivalent. There-
fore, Theorem 4.3 also extends to the case where Σ is an
OWL 2 QL theory.

4.3 Sticky and Sticky Join TGDs
Sticky tgds (Calı̀, Gottlob, and Pieris 2010b) and sticky-join
tgds (Calı̀, Gottlob, and Pieris 2010b) are special classes
of tgds that generalize linear tgds but allow for a limited
form of join (including as special case the cartesian product).
They allow one to express natural ontological relationships
not expressible in DLs such as OWL. We do not define these
classes here, and refer the reader to (Calı̀, Gottlob, and Pieris
2011). By Theorem 3.24 of (Calı̀, Gottlob, and Pieris 2011),
which will also be discussed in more detail in the upcom-
ing journal version of the present paper, both classes enjoy
the Polynomial Witness Property. By Theorem 3.1, we thus
obtain the following result:

Theorem 4.4. Conjunctive queries under sticky tgds and
sticky-join tgds over a fixed signature R are rewritable into
polynomially sized nonrecursive Datalog programs of arity
bounded as in Theorem 3.1.

5 Related Work on Query Rewriting
Our work fits into the framework of ontology based data
access (OBDA) (Calvanese et al. 2007; Pérez-Urbina, Hor-
rocks, and Motik 2009; Calvanese et al. 2011; Kikot,
Kontchakov, and Zakharyaschev 2011; Gottlob, Orsi, and
Pieris 2011; Orsi and Pieris 2011; Calı̀ et al. 2010). In this
framework, a classical relational database D, often stored in
a relational DBMS, is enhanced by an ontological theory (or
TBox) Σ. The database D is then queried ”modulo Σ”, that
is, queries are evaluated over (the models of) D ∪ Σ rather
than over D alone. The idea is, however, to exploit the un-
derlying DBMS as much as possible, by rewriting both the
given query q and the theory Σ into a query q′ over D. After
such a rewriting, the full power of existing DBMS, including
sophisticated classical query optimization can be exploited
for answering q′.

Several techniques for query-rewriting have been devel-
oped. We will briefly discuss some of these below. Let us
note upfront that these previously existing techniques of
query rewriting do not make any assumption about the ex-
istence of special constants 0 and 1 in the vocabulary of D,
let alone about the availability of a numeric domain Num
with an associated linear order <. However, these assump-
tions are not at all problematic, as all large-scale DBMS we
know of, in particular, SQL-based systems, provide the type
integer with appropriate arithmetic operations and compar-
ison predicates for free. Our assumptions are thus perfectly
fulfilled by existing DBMS.

An early algorithm, introduced in (Calvanese et al. 2007)
and implemented in the QuOnto system7, reformulates the
given query into a union of CQs (UCQs) by means of a
backward-chaining resolution procedure. The size of the
computed rewriting increases exponentially w.r.t. the num-
ber of atoms in the given query. This is mainly due to the
fact that unifications are derived in a “blind” way from ev-
ery unifiable pair of atoms, even if the generated rule is
superfluous. An alternative resolution-based rewriting tech-
nique was proposed by Peréz-Urbina et al. (Pérez-Urbina,

7http://www.dis.uniroma1.it/ quonto/

261

Motik, and Horrocks 2009), implemented in the Requiem
system8, that produces a UCQs as a rewriting which is, in
general, smaller (but still exponential in the number of atoms
of the query) than the one computed by QuOnto. This is
achieved by avoiding many useless unifications, and thus
the generation of redundant rules due to such unifications.
This algorithm works also for more expressive non-first-
order rewritable DLs. In this case, the computed rewriting
is a (recursive) Datalog query. Following a more general ap-
proach, Calı̀ et al. (Calı̀, Gottlob, and Pieris 2010a) proposed
a backward-chaining rewriting algorithm for the first-order
rewritable Datalog± languages mentioned above. However,
this algorithm is inspired by the original QuOnto algorithm,
and inherits all its drawbacks. In (Gottlob, Orsi, and Pieris
2011), a rewriting technique for linear Datalog± into unions
of conjunctive queries is proposed. This algorithm is an im-
proved version of the one already presented in (Calı̀, Got-
tlob, and Pieris 2010a), where further superfluous unifica-
tions are avoided, and where, in addition, redundant atoms
in the body of a rule, that are logically implied (w.r.t. the on-
tological theory) by other atoms in the same rule, are elimi-
nated. This elimination of body-atoms implies the avoidance
of the construction of redundant rules during the rewriting
process. However, the size of the rewriting is still exponen-
tial in the number of query atoms.

Of more interest to the present work are rewritings into
nonrecursive Datalog. In (Kontchakov et al. 2010; 2011) a
polynomial-size rewriting into nonrecursive Datalog is given
for the description logics DL-LiteFhorn and DL-Litehorn. For
DL-LiteNhorn, a DL with counting, a polynomial rewriting
involving aggregate functions is proposed. It is, moreover,
shown in (the full version of) (Kontchakov et al. 2010)
that for the description logic DL-LiteF a polynomial-size
pure first-order query rewriting is possible. Note that nei-
ther of these logics allows for role inclusion, while our
approach covers description logics with role inclusion ax-
ioms. Other results in (Kontchakov et al. 2010; 2011) are
about combined rewritings where both the query and the
database D have to be rewritten. A recent very interest-
ing paper discussing polynomial size rewritings is (Kikot,
Kontchakov, and Zakharyaschev 2011). Among other re-
sults, (Kikot, Kontchakov, and Zakharyaschev 2011) pro-
vides complexity-theoretic arguments indicating that with-
out the use of special constants (e.g, 0 and 1, or the nu-
merical domain), a polynomial rewriting such as ours may
not be possible. Rosati et al. (Rosati and Almatelli 2010)
recently proposed a very sophisticated rewriting technique
into nonrecursive Datalog, implemented in the Presto sys-
tem. This algorithm produces a non-recursive Datalog pro-
gram as a rewriting, instead of a UCQs. This allows the
“hiding” of the exponential blow-up inside the rules instead
of generating explicitly the disjunctive normal form. The
size of the final rewriting is, however, exponential in the
number of non-eliminable existential join variables of the
given query; such variables are a subset of the join vari-
ables of the query, and are typically less than the number
of atoms in the query. Thus, the size of the rewriting is

8http://www.comlab.ox.ac.uk/projects/requiem/home.html

exponential in the query size in the worst case. Relevant
further optimizations of this method are given in (Orsi and
Pieris 2011). A very recent paper on query-rewritings in the
OWL 2 QL context gives interesting and practically relevant
sufficient conditions on queries and ontologies that guaran-
tee small first-order rewritings (Kikot, Kontchakov, and Za-
kharyaschev 2012).

6 Conclusion and Further Research
It was shown in this paper that for highly relevant description
logics, ontological queries over a database extended by an
ontological theory can be translated in polynomial time to
classical queries over the original database.

As stated in the introduction, our results are so far of the-
oretical nature, and we do not claim as of now that they will
lead to better practical algorithms. However, we do hope that
this technique may soon lead to more efficient, and actu-
ally practical algorithms for query evaluation in the given
context. We think that this is possible by applying further
optimization techniques to the resulting non-recursive Dat-
alog program. In fact, we deem it rewarding to identify ap-
propriate further optimization techniques for decomposing
the large rule body of the rgoal rule in the proof of Theo-
rem 3.1, and to process this rule more efficiently. Our hope
is that by applying smart splitting methods and/or decom-
position techniques based on a structural (graph theoretic)
analysis of this rule, and by defining a smart instantiation
strategy based on an analysis of sideways information pass-
ing, as well as on classical join optimization techniques, it
will be possible to come up with a practically efficient query
rewriting.

To test such rewritings, they could be implemented on
top of the existing system Nyaya (Virgilio et al. 2011), the
current reference implementation system for the Datalog±
language family. Nyaya already provides an efficient im-
plementation9 of reasoning procedures for several Datalog±
languages (see e.g. (Gottlob, Orsi, and Pieris 2011)), and
provides scalable persistent storage by exploiting the native
referential partitioning techniques of Oracle 11g R2.
Acknowledgment G. Gottlob’s work was funded by the EP-
SRC Grant EP/H051511/1 ExODA: Integrating Description
Logics and Database Technologies for Expressive Ontology-
Based Data Access. We thank the anonymous referees of
the shorter DL’2011 version of this paper, as well as Roman
Kontchakov, Carsten Lutz, and Michael Zakharyaschev for
useful comments on an earlier version of this paper.

References
Acciarri, A.; Calvanese, D.; Giacomo, G. D.; Lembo, D.;
Lenzerini, M.; Palmieri, M.; and Rosati, R. 2005. QuOnto:
Querying ontologies. In Proc. of AAAI, 1670–1671.
Artale, A.; Calvanese, D.; Kontchakov, R.; and Za-
kharyaschev, M. 2009. The dl-lite family and relations. J.
Artif. Intell. Res. (JAIR) 36:1–69.

9A demo Nyaya is currently available online at
http://www.nyaya.eu.

262

Beeri, C., and Vardi, M. Y. 1981. The implication problem
for data dependencies. In Proc. of ICALP, 73–85.
Calı̀, A.; Gottlob, G.; Lukasiewicz, T.; Marnette, B.; and
Pieris, A. 2010. Datalog+/-: A family of logical knowledge
representation and query languages for new applications. In
LICS, 228–242. IEEE Computer Society.
Calı̀, A.; Gottlob, G.; and Kifer, M. 2008. Taming the infi-
nite chase: Query answering under expressive relational con-
straints. In Proc. of KR, 70–80.
Calı̀, A.; Gottlob, G.; and Lukasiewicz, T. 2009. A general
datalog-based framework for tractable query answering over
ontologies. In Proc. of PODS, 77–86. Full version to appear
in Journal of Web Semantics; currently available at http://dl.
dropbox.com/u/472264/jws.pdf.
Calı̀, A.; Gottlob, G.; and Pieris, A. 2010a. Query rewriting
under non-guarded rules. In Proc. AMW.
Calı̀, A.; Gottlob, G.; and Pieris, A. 2010b. Advanced pro-
cessing for ontological queries. PVLDB 3(1):554–565.
Calı̀, A.; Gottlob, G.; and Pieris, A. 2010c. Query answering
under non-guarded rules in datalog+/-. In Proc. of RR, 175–
190.
Calı̀, A.; Gottlob, G.; and Pieris, A. 2011. Towards more
expressive ontology languages: The query answering prob-
lem. Technical report, University of Oxford, Department
of Computer Science. Submitted for publication - currently
available at http://dl.dropbox.com/u/3185659/CGP.pdf.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-lite family. J. Au-
tom. Reasoning 39(3):385–429.
Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.;
Poggi, A.; Rodriguez-Muro, M.; Rosati, R.; Ruzzi, M.; and
Savo, D. F. 2011. The mastro system for ontology-based
data access. Semantic Web 2(1):43–53.
Chong, E. I.; Das, S.; Eadon, G.; and Srinivasan, J. 2005.
An efficient sql-based rdf querying scheme. In Böhm, K.;
Jensen, C. S.; Haas, L. M.; Kersten, M. L.; Larson, P.-Å.;
and Ooi, B. C., eds., VLDB, 1216–1227. ACM.
Dantsin, E.; Eiter, T.; Georg, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Comput. Surv. 33(3):374–425.
Deutsch, A.; Nash, A.; and Remmel, J. B. 2008. The chase
revisisted. In Proc. of PODS, 149–158.
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: Semantics and query answering. Theor.
Comput. Sci. 336(1):89–124.
Gottlob, G., and Schwentick, T. 2011. Rewriting ontolog-
ical queries into small nonrecursive datalog programs. In
Rosati, R.; Rudolph, S.; and Zakharyaschev, M., eds., De-
scription Logics, volume 745 of CEUR Workshop Proceed-
ings. CEUR-WS.org.
Gottlob, G.; Orsi, G.; and Pieris, A. 2011. Ontological
queries: Rewriting and optimization. In Proc. of ICDE.
Grau, B. C.; Horrocks, I.; Motik, B.; Parsia, B.; Patel-
Schneider, P.; and Sattler, U. 2008. Owl 2: The next step

for owl. Web Semantics: Science, Services and Agents on
the World Wide Web 6(4):309 – 322. ¡ce:title¿Semantic Web
Challenge 2006/2007¡/ce:title¿.
Johnson, D. S., and Klug, A. C. 1984. Testing containment
of conjunctive queries under functional and inclusion depen-
dencies. J. Comput. Syst. Sci. 28(1):167–189.
Kikot, S.; Kontchakov, R.; and Zakharyaschev, M. 2011.
On (In)Tractability of OBDA with OWL2QL. In Proc. DL
2011.
Kikot, S.; Kontchakov, R.; and Zakharyaschev, M. 2012.
Conjunctive Query Answering with OWL 2 QL. In Proc.
KR 2012, to appear.
Kontchakov, R.; Lutz, C.; Toman, D.; Wolter, F.; and Za-
kharyaschev, M. 2010. The combined approach to query
answering in dl-lite. In Lin, F.; Sattler, U.; and Truszczyn-
ski, M., eds., KR. AAAI Press.
Kontchakov, R.; Lutz, C.; Toman, D.; Wolter, F.; and Za-
kharyaschev, M. 2011. The combined approach to ontology-
based data access. In IJCAI.
Maier, D.; Mendelzon, A. O.; and Sagiv, Y. 1979. Testing
implications of data dependencies. ACM Trans. Database
Syst. 4(4):455–469.
Orsi, G., and Pieris, A. 2011. Optimizing query answering
under ontological constraints. PVLDB 4(11):1004–1015.
Pérez-Urbina, H.; Horrocks, I.; and Motik, B. 2009. Effi-
cient query answering for owl 2. In Bernstein, A.; Karger,
D. R.; Heath, T.; Feigenbaum, L.; Maynard, D.; Motta,
E.; and Thirunarayan, K., eds., International Semantic Web
Conference, volume 5823 of Lecture Notes in Computer Sci-
ence, 489–504. Springer.
Pérez-Urbina, H.; Motik, B.; and Horrocks, I. 2009.
Tractable query answering and rewriting under description
logic constraints. Journal of Applied Logic 8(2):151–232.
Poggi, A.; Lembo, D.; Calvanese, D.; De Giacomo, G.;
Lenzerini, M.; and Rosati, R. 2008. Linking data to on-
tologies. J. Data Semantics 10:133–173.
Rosati, R., and Almatelli, A. 2010. Improving query an-
swering over DL-Lite ontologies. In Proc. KR.
Virgilio, R. D.; Orsi, G.; Tanca, L.; and Torlone, R. 2011. Se-
mantic data markets: a flexible environment for knowledge
management. In Macdonald, C.; Ounis, I.; and Ruthven, I.,
eds., CIKM, 1559–1564. ACM.

263

