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Abstract

Many examples of epistemic reasoning in the literature ex-
hibit a stratified structure: defaults are formulated on top of
an incomplete knowledge base. These defaults derive extra
information in case information is missing in the knowledge
base. In autoepistemic logic, default logic and ASP this in-
herent stratification is not preserved as they may refer to their
own knowledge or logical consequences. Defining the seman-
tics of such logics requires a complex mathematical construc-
tion. As an alternative, this paper further develops ordered
epistemic logic. This logic extends first order logic with a
modal operator and stratification is maintained. This allows
us to define an easy to understand semantics. Moreover, in-
ference tasks have a lower complexity than in autoepistemic
logic and the logic integrates seamlessly into classical logic
and its extensions. In this paper we also propose a generaliza-
tion of ordered epistemic logic, which we call distributed or-
dered epistemic logic. We argue that it can provide a semantic
foundation for a number of distributed knowledge represen-
tation formalisms found in the literature.

Introduction
Ordered Epistemic Logic (OEL) was first defined by Kono-
lige (1988a) under the name Hierarchic Autoepistemic The-
ories. He observed that in non-monotonic reasoning the no-
tion of inference from a specific body of knowledge often
plays an important role. Recently, OEL was independently
reintroduced by (Denecker et al. 2010) in order to merge
the contributions of ASP (Brewka, Eiter, and Truszczyński
2011; Baral 2003) on the level of Knowledge Representation
into classical first order logic (FO). As many of the original
motivating examples of ASP involve defaults and autoepis-
temic propositions (Gelfond and Lifschitz 1991), this was
done by adding an epistemic operator to FO.

We observed that these motivating examples for ASP, as
well as many examples of Default Logic (DL) (Reiter 1980),
often have a simple stratified structure: the goal is to reason
on an existing incomplete knowledge base, e.g. by adding
default assumptions.More complex examples can have sev-
eral levels of stratification. However, neither autoepistemic
logic (AEL) (Moore 1984), default logic, nor ASP preserve
this inherent stratification. As a result, a theory in each of
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these logics is a theory that refers to its own information con-
tent through a reflexive epistemic operator (see (Denecker,
Marek, and Truszczynski 2011) for a recent account). This
is a source of complexity that complicates both their seman-
tics and their reasoning procedures.

By contrast, OEL maintains a stratified representation
where each level extends the knowledge of the lower lev-
els. This simplifies the logic considerably, while still being
able to handle a lot of useful applications from AEL or DL,
as we will show here. Contrary to AEL, DL or ASP, an OEL
theory always defines a unique belief set, represented as a
set of possible worlds. We will show that OEL solves some
well-known problems of ASP in the context of epistemic
applications. Syntactically, OEL extends FO; the only dif-
ference with FO is that OEL is a closed domain version of
FO: all possible worlds share the same domain and inter-
pretation of terms, like many first order modal logics. With
exception of this feature, OEL is a conservative extension of
FO; its epistemic operator stands orthogonal to many other
extensions of FO (e.g., types, inductive definitions, aggre-
gates,. . . ), and hence seamlessly integrates with them. Our
examples here will include such extensions. By combining
them, a very rich KR language is obtained in which many
of the motivating examples in DL, AEL and ASP, as well as
other extensions of FO such as FO(ID) (Denecker and Ter-
novska 2008), have a natural expression.

We here extend the initial work in (Konolige 1988a;
Denecker et al. 2010), in several ways. First, we prove
that, in a given finite domain, the data complexity of model
checking, satisfiability checking and query answering for
OEL theories is in ∆P

2 , which is indeed lower then for
AEL and DL, where some instances of satisfiability check-
ing problems can be proven to be ΣP2 -complete. We also
show how a model generator for OEL can be implemented.

Second, we illustrate the use of OEL and of model gen-
eration in the context of a scheduling problem with an epis-
temic component. Third, we extend OEL to a logic for dis-
tributed epistemic agents, which we call distributed ordered
epistemic logic (d-OEL). Knowledge bases are still hierar-
chically ordered, but now theories at one level no longer au-
tomatically possess all the knowledge of lower levels.

Distributed ordered epistemic logic can cope with dis-
tributed knowledge, which makes it relevant for a number
of new application areas. One example is the specification
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of access control policies. Formal specification languages
used for this purpose (e.g., (Barker 2009)) often include a
construct allowing one policy manager to query the knowl-
edge of another. Another potential application area is the Se-
mantic Web1, which can be seen as a huge network linking
different sources of data and knowledge, often in the form
of ontologies. Several proposals haven been made to com-
bine data from such ontologies, for example, through the
use of bridge rules (Bouquet et al. 2003). Others address the
need for expressing defaults such as “if source x does not
specify the color of the car, we assume its color is black”.
In yet other approaches, the web is seen as an open envi-
ronment consisting of purely positive knowledge bases that
do not contain negative information. This is to avoid po-
tential inconsistencies between different sources (Berners-
Lee, Dan Connolly, and Scharf 2005). Here, a limited form
of “negation-as-failure” called scoped negation (Polleres,
Feier, and Harth 2006; Berners-Lee, Dan Connolly, and
Scharf 2005) has been proposed: this is an epistemic opera-
tor to query whether a specific source (e.g., some ontology)
does not know a proposition. Common to all such applica-
tions is the presence of a number of knowledge sources that
can query each other through some form of epistemic oper-
ator. We will argue that the logic d-OEL provides a simple
formalism with a precise semantics to tackle some of these
applications in a natural way.

This paper is organized as follows. First we recall some
preliminaries; next we define syntax and semantics of both
OEL and d-OEL, and prove a number of properties about
both languages. After that, we have a closer look at model
generation for OEL and d-OEL and prove our complexity
results. Finally, we go into more detail about the relation-
ship between OEL and other knowledge representation lan-
guages and we conclude.

Preliminaries on FO and AEL
We briefly recall the basic concepts of first order logic (FO)
and its extensions. A vocabulary Σ consists of a set ΣF of
constant and function symbols and a set ΣP of predicate
symbols. Formulas ϕ over vocabulary Σ are constructed us-
ing standard inductive rules for ∧,¬,∨,⇒,⇔,∃,∀. A Σ-
interpretation I (or Σ-structure) consists of a domain UI , for
each function symbol F/n an n-ary function F I : UnI →
UI , and, for each predicate symbol P/n an n-ary relation
P I ⊆ UnI . The interpretation tIθ of a term t under an in-
terpretation I and variable assignment θ is defined in the
standard way, as is the satisfaction relation Iθ |= ϕ of a for-
mula ϕ. The interpretation of variable-free ground terms t
and sentences ϕ does not depend on the variable assignment
θ, in which case we simply write tI and I |= ϕ. We call an
interpretation of a vocabulary σ such that σ ⊆ ΣF a pre-
interpretation (i.e., a pre-interpretation consists of a domain
and an interpretation of a subset of the function symbols of
the vocabulary).

The family of languages FO(·) extends standard FO with
a number of useful features. In this paper, we will use the

1http://www.w3.org/standards/semantic web/

logic FO(sort, ar, agg) which extends FO with sorts, arith-
metic, and aggregates such as cardinality, sum, or average.
In the rest of this paper, we will abuse notation and refer to
this logic as FO(·). For a formal definition of its syntax and
semantics, we refer to (Denecker and Ternovska 2008).

A Herbrand interpretation for a vocabulary Σ is an in-
terpretation I such that UI is the Herbrand universe (i.e.,
the set of all ground terms that can be constructed using the
constants and function symbols of Σ) and I interprets each
ground term t by itself.

Next, we recall the basics of autoepistemic logic (Moore
1984). Let L be the language of propositional logic based on
a set of atoms Σ. Extending this language with a modal op-
erator K gives a language LK of modal propositional logic.
An autoepistemic theory is a set of formulas in this language
LK . An interpretation or world is a subset of the vocabulary
Σ. The set of all interpretations of Σ is denoted by IΣ, i.e.,
IΣ = 2Σ. A possible world structure is a set of interpre-
tations, i.e., the set of all possible world structures WΣ is
defined as 2IΣ . A possible-world structure can be viewed as
a universal Kripke model with a total accessibility relation
(Chellas 1980; Hughes and Cresswell 1996). Possible-world
structures were used by Moore (Moore 1984) and later by
Levesque (Levesque 1990) in the investigations of autoepis-
temic logic. For a formula ϕ ∈ LK , the truth functionHQ,I ,
where Q is a possible-world structure, and I an interpreta-
tion, is defined as follows.
• For an atom p,HQ,I(p) = t iff p ∈ I
• HQ,I(ϕ1∧ϕ2) = t iffHQ,I(ϕ1) = t andHQ,I(ϕ2) = t.
• HQ,I(ϕ1 ∨ ϕ2) = t iffHQ,I(ϕ1) = t orHQ,I(ϕ2) = t.
• HQ,I(¬ϕ) = t iffHQ,I(ϕ) = f .
• HQ,I(Kϕ) = t, iff for every interpretation J ∈ Q,
HQ,J(ϕ) = t.

For every modal theory T , Moore defined an operatorDT on
WΣ: DT (Q) = {I|HQ,I(ϕ) = t, for every ϕ ∈ T}. The
intuition behind this definition is as follows. The possible-
world structure DT (Q) is a revision of a possible-world
structure Q. This revision consists of the worlds that make
all the formulas in T true in the context of the current be-
lief state Q. Fixpoints of the operator DT represent “stable”
belief sets, i.e., they cannot be revised any further. Though
originally, Moore used the term stable expansion to denote
all formulas ϕ such that Kϕ is true in such a fixpoint of the
operator DT , we will use the term stable expansion here to
refer to the fixpoints itself.

Syntax and semantics
The logic OEL was defined first in (Konolige 1988a) and
later independently in (Denecker et al. 2010). This logic has
epistemic operators KT ′ that allow one theory T to query
another theory T ′. While T ′ may in turn query a third the-
ory T ′′, cycles are not allowed. To enforce this hierarchical
structure, the theories must be partially ordered. Moreover,
in those papers, it was assumed that these partially ordered
theories are increasingly expert in the domain; i.e., every T
also knows everything that the theories below it know. In
this section, we first recall the original definition of OEL
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and prove some additional properties of it. Then we gener-
alize OEL to distributed ordered epistemic logic (d-OEL).
In this logic a theory does not have all the knowledge of the
theories below it. This is a useful extension, for example, it
allows us to model agents with contradicting beliefs.

Ordered Epistemic Logic
The syntax of OEL is defined as follows.
Definition 1. An ordered epistemic theory over vocabulary
Σ is a pair 〈T ,≤〉 of a finite set T of theories and a partial
order ≤ on T , such that each T ∈ T is a theory in the lan-
guage LT , which is inductively defined as first order logic
with one extra formula-building rule: If ϕ is a formula in
LT ′ and T ′ < T , then KT ′(ϕ) is in LT .

It is straightforward to extend the syntax (and the seman-
tics we define further down) for OEL over first order logic
with other objective language constructs from FO(·) such
as definitions (where the modal expressions KT ′(ϕ) can be
used in the bodies of the definition rules) and aggregates.

If the partial order ≤ is clear from context, we often iden-
tify an ordered epistemic theory with its set of theories T .
For each T ∈ T , we denote by ΣT the vocabulary that
appears objectively (i.e., not in the scope of some KT ′) in
T . Similarly, we also define Σ≤T as the set of predicate
symbols in T≤T , where T≤T denotes the restriction of T to
{T ′ ∈ T | T ′ ≤ T}.

Self-referential statements such as T = {¬KT (P )⇒ Q}
cannot be expressed in OEL. The benefit is that the seman-
tics can be defined as an extension of FO semantics. The
definition performs induction over the partial order ≤.
Definition 2. Let 〈T ,≤〉 be an OEL theory over Σ and Iσ
a pre-interpretation for a subset σ of ΣF . We call the sym-
bols of σ rigid. For an interpretation I of Σ extending Iσ ,
the relation I satisfies T , denoted I |=OEL T , is defined as
follows:
• For every T ′ < T , it holds that I |=OEL T

′;
• For an atom P (t̄), I |=OEL P (t̄) iff t̄I ∈ P I ;
• For a modal literal KT ′ϕ, I |=OEL KT ′ϕ iff J |=OEL

ϕ for all Σ-interpretations J extending Iσ such that
J |=OEL T

′;
• The inductive cases for ∧,∨,¬,∃,∀ are defined as usual.

The unique belief system Mod(T ) of an OEL theory
〈T ,≤〉 with T = {T1, . . . , Tn} is the set M of all inter-
pretations I extending Iσ for which I |=OEL Ti for every
Ti ∈ T .

For a ≤-minimal theory T , the absence of modal opera-
tors means that |=OEL reduces to classical |=.

For simplicity, the rest of this paper considers only Her-
brand interpretations of the vocabulary Σ. This effectively
means that all function and constant symbols are rigid: they
have the same interpretation in all possible worlds. More-
over, because our complexity results need a finite domain,
we will also assume that there are no function symbols and
only a finite number of constants. However, apart from the
complexity results and transformations to FO, our defini-
tions and results can be generalized to interpretations ex-
tending any given pre-interpretation. Also, in what follows,

we assume without loss of generality that modal operators
are only applied to FO formulas. Indeed, nestings of modal
operators can be removed by a simple generalization of such
transformations for S5

2.
Example 1. Consider the following scenario from (Gel-
fond and Lifschitz 1991). Assume a database with complete
knowledge about the grade point average (GPA) of students
and partial knowledge about whether they belong to a mi-
nority group. It can be represented in FO as:

DB =

{ ∀x(FairGPA (x)⇔ x = Bob ∨ x = Ann ).
∀x(HighGPA (x)⇔ x = John ).
Minority (Ann ).

}
Now suppose the department decides that they want to in-

terview students who may be, but are not necessarily, eligi-
ble for a grant, where eligible students are those with either a
high GPA or a fair GPA and belonging to a minority. We now
build on top of the database DB a second layer TI > DB:

TI =

{ ∀x Interview (x)⇔
FairGPA (x) ∧ ¬KDB(Minority (x))
∧¬KDB(¬Minority (x)).

}
The theories TDB and TI both have several models (in

which Minority (Bob ) and Minority (John ) can both be true
and false). However, in every interpretation of Mod(T ),
Interview (Bob ) is true.

We now illustrate how the closed world assumption (Re-
iter 1977) can be represented in OEL. As an alternative to
the database DB, we can decide to store in the database
DB′ only the positive facts about the relations for which we
have complete information. We can then add an extra layer
of expertise, adding the extra knowledge on top of DB’, that
if the DB’ does not say that a student has a particular GPA,
we conclude that he/she does not have that GPA. This extra
layer Tcwa contains an ASP-style CWA:

DB′ =

{
FairGPA (Ann ) ∧ FairGPA (Bob )
∧HighGPA (John ) ∧Minority (Ann )

}
Tcwa =

{
∀x(¬FairGPA (x)⇔ ¬KDB′FairGPA (x)).
∀x(¬HighGPA (x)⇔ ¬KDB′HighGPA (x)).

}
Now in all M ∈ Mod(T ), where T is the OEL theory

T = DB′ ≤ Tcwa it holds that FairGPA (John ) is false. We
could now add another layer of expertise to the expertise of
DB′ and Tcwa, for example, again the theory TI expressing
when an interview should happen.

As the next lemma states, each OEL theory is equivalent
to an FO theory. However, this FO theory depends crucially
on the given Herbrand domain, because for each formula
KTϕ(x̄) and each tuple of constants c̄, it will explicitly add
either a literal PT,ϕ(c̄) or a literal ¬PT,ϕ(c̄) to the theory
(depending on whether T knows ϕ or not). As a conse-
quence, the transformation leads to a polynomial increase in
the size of the theory and, as we will show below, assuming
a finite domain, computing it is an NP-hard problem.

2To see this, note that KT1((¬)KT2(ϕ)) is equivalent with
(¬)KT2(ϕ), KT1(ϕ1 ∨KT2(ϕ2)) with KT1(ϕ1) ∨KT2(ϕ2) and
KT1(ϕ1 ∧KT2(ϕ2)) with KT1(ϕ1) ∧KT2(ϕ2).
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Lemma 3. For a given vocabulary Σ (and thus also a given
Herbrand universe) and an OEL theory T , there exists an
FO theory FO(T ) over an extended vocabulary Σ′ ⊇ Σ,
such that for every Σ′-Herbrand interpretation M it holds
that M |= FO(T ) iff M |Σ ∈Mod(T ).

Proof. This follows immediately from Proposition 10 and
Lemma 11 further in this paper, where we prove this lemma
in a more general setting.

While a number of auto-epistemic features can be rep-
resented in OEL, OEL is in general less expressive than
AEL, for example, one cannot express self-referential state-
ments. The advantage this gives OEL is that the semantics
are simpler, since we always have exactly one belief system
(In contrast, a theory in AEL might have many or no stable
expansions), and, as we show further on, OEL has a lower
complexity than AEL. However, despite these differences,
in some useful cases we can still view an ordered epistemic
theory as an autoepistemic theory.

For a given OEL theory T , define AEL(T ) as the modal
theory obtained by taking the union of all T ∈ T and
turning each occurrence of a modal operator KT into the
same operator K. Intuitively, an operator KT expresses the
knowledge of the source T and all sources lower in the hi-
erarchy, while the operator K can be seen as a distributed
knowledge operator, expressing the combined knowledge of
all sources. This operation does not always preserve equiv-
alence. E.g., let T = {T1, T2} , T1 < T2, and T1 =
{}, T2 = {Q,¬KT1

(Q) ⇒ R}. In this case, {Q,R} is
the only possible world of T , while the unique stable ex-
pansion of AEL(T ) contains a second possible world {Q}.
This difference is caused by the fact that T2 itself possesses
additional knowledge about the atom Q that occurs in its
query to T1. Therefore, while the system as a whole knows
that Q is true, the theory T1 in isolation does not. When all
knowledge about a particular atom is contained within a sin-
gle theory Ti, this cannot be the case and we would there-
fore expect T and AEL(T ) to be equivalent. However, in
the translation to AEL, there is a subtle case where one the-
ory Ti might still influence the interpretation of atoms that
were described in a different theory Tj , and that is when Ti
introduces an inconsistency that eliminates all models of Tj .
To rule out such cases, we use the following concept.

Definition 4. An autoepistemic theory T is permaconsis-
tent if every theory T ′ that can be constructed from T by in-
dependently replacing all non-nested occurrences of modal
literals by t or f is consistent.

Proposition 5. Given an OEL theory T . If (1) each pred-
icate symbol P ∈ Σ has objective occurrences in at most
one sub-theory T ∈ T , (2) P appears only in modal liter-
als KT ′ϕ such that T < T ′ and (3) AEL(T ) is a perma-
consistent theory, thenAEL(T ) has a unique autoepistemic
expansion B equal to the unique belief system Mod(T ) of
T .

Proof. It is straightforward to prove this proposition using
the stratification results for AEL from (Vennekens, Gilis,
and Denecker 2006).

While permaconsistency may seem like a strong criterion,
it is often met in practice. For instance, the entire subset of
AEL that corresponds to ASP satisfies it.

While the theory (DB,TI) from Example 1 also leads to a
permaconsistent AEL theory, it fails to satisfy the other con-
dition of Prop. 5, since both DB and TI contain an objec-
tive occurrence of FairGPA. However, only DB actually
provides information about FairGPA, because TI does not
pose any constraints on the interpretation of this predicate.
Indeed, each model of the database DB can be extended
with an interpretation of Interview that satisfies the theory
TI . As the next proposition shows, this conditions suffices
to ensure that the models of the OEL theory (DB,TI) are
also models of AEL(DB,TI).

Proposition 6. Given an OEL theory T . If for each T ∈ T ,
every Σ≤T model of T≤T can be extended to a model of T
and for every literal KTϕ in T , ϕ contains only symbols of
ΣT , then the belief system Mod(T ) is an expansion of the
theory AEL(T ).

Proof. For simplicity, we assume that T is a propositional
theory, that each Ti ∈ T has at most one occurrence of a
modal operator KTj

, and if so, that j = i − 1. The proof
easily extends to the general case. If T is a theory containing
KT ′ϕ andM a set of interpretations, we denote by T 〈M〉
the theory derived from T by evaluating KT ′ϕ in M, i.e.,
replacing each modal literal KT ′ϕ by t if ϕ holds in all in-
terpretations I ∈ M and by f otherwise. Also, for a FO
theory T , we denote with mod(T ) the set of all models M
of T .

We denote withMi a set of Σ≤Ti
interpretations. It fol-

lows directly from the semantics of OEL that the modal op-
erators KTi−1

that appear in a theory Ti are evaluated in the
belief systemMi−1 of the theory T≤i−1. Therefore it holds
that a setMi is an OEL belief system of T≤Ti

iff

Mi = mod(T0 ∪
⋃

1≤j≤i

(Tj〈Mj−1〉)),

where for every j < i,Mj is the belief system of T≤Tj
. It

now holds for every j such that 1 ≤ j ≤ i that Tj〈Mj−1〉 =
Tj〈Mi〉. Indeed, it holds that Mi|≤Σj−1

⊆ Mj−1, since
each model of Ti is by definition also a model of each Tj ≤
Ti. But alsoMj−1 ⊆Mi|≤Σj−1 , because every modelm ∈
Mj−1 is extendible to a model m′ ∈Mi. Therefore,

Mi = mod(T0 ∪
⋃

1≤j≤i

(Tj〈Mi〉)),

and thus thatMi is a fixpoint of the DAEL(T≤Ti
) operator.

We can conclude that if M is the belief system of a OEL
theory T , thenM is indeed a stable expansion of AEL(T ).

The other direction of the proof does not hold because
AEL theories can have self-supporting expansions, as is il-
lustrated by the following example.

T1 : {KT0(R)⇒ R.}
T0 : {R ∨ ¬R.}
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The OEL theory T = T0, T1 has as its unique belief set
Mod(T ) the set {{}, {R}}. This set is also an expansion.
However, the autoepistemic theory AEL(T ) has a second
expansion, that is, the self-supporting expansion {{R}}. It
has been argued that these self-supporting expansions are in
fact anomalies, and several attempts have been made to de-
fine autoepistemic expansions that have a stronger notion of
‘groundedness’. Konolige defined moderately grounded ex-
pansions (which are in fact maximal expansions) that elimi-
nate some, but not all of these unwanted self-supporting ex-
pansions (Konolige 1988b). In the same paper he also de-
fined strongly grounded expansions3, which are more re-
strictive then moderately grounded expansions, but do have
the undesirable property of depending on the syntactic rep-
resentation of the theory (in the sense that two equivalent
theories can give rise to different expansions). With the sim-
ilar goal of avoiding such unsupported models, (Denecker,
Marek, and Truszczynski 2003) introduced a stable and
well-founded semantics for AEL.

Distributed Ordered Epistemic Logic
In this section we define a generalization of OEL, called dis-
tributed ordered epistemic logic (d-OEL), where higher lev-
els no longer possess the knowledge of lower levels, as is
the case in the autoepistemic setting of OEL. This general-
ization has a number of interesting theoretical applications,
that is, the class of problems where there are distributed epis-
temic agents that can query each other. We again define the
semantics by induction over the partial order ≤.

Definition 7. Let 〈T ,≤〉 be an distributed ordered epistemic
theory. For a ΣT -interpretation I , the relation I |=dist T is
defined as follows:

• For an atom P (t̄), I |=dist P (t̄) iff t̄I ∈ P I ;
• For a modal literal KT ′ϕ, I |=dist KT ′ϕ iff J |= ϕ for

all ΣT ′ -interpretations J such that J |=dist T
′;

• The inductive cases for ∧,∨,¬,∃,∀ are defined as usual.

This semantics differs from that of OEL (Def. 2) by no
longer requiring that a model of a theory T ∈ T has to
satisfy every lower theory T ′ < T . As a consequence, this
changes the way a modal operatorKT is evaluated.KT now
looks at all models of T , instead of only those models of T
that are also models of the subtheories of T .

It follows directly from Def. 7 that, for each theory T ∈
T , we can construct the setMT of all d-OEL models of T
(i.e., the set of interpretations M such that M |=dist T) by
means of a bottum-up construction along the partial order
≤. That is, for the minimal theories Tmin1 , . . . , Tminn ∈ T ,
eachMTmin

i
is just the set of classical models of Tmini ; and

once we have constructed the sets of models MT ′ for all
T ′ < T , we can construct the models of T itself, by in-
terpreting all modal formulas KT ′ϕ according toMT ′ and
then constructing the classical models of the remaining ob-
jective theory. It follows from this construction process that

3The original definition later proved incorrect and a correct ver-
sion was independently given by (Konolige 1989) and (Marek and
Truszczynski 1989).

each T ∈ T has a unique set of models. Note that this con-
struction remains valid in case the formula ϕ in KT ′ϕ con-
tains another modal operator as long as the nested one refers
to a theory lower than T ′ in the partial order.
Definition 8. The unique belief system Mod(T ) of a
d-OEL theory 〈T ,≤〉 with T = {T1, . . . , Tn} is the tuple
(MT1 , . . . ,MTn) such that for each i,MTi is the set of all
ΣTi

-Herbrand interpretations I for which I |=dist Ti.
The next definition defines a syntactic transformation

from an OEL theory to an d-OEL theory.
Definition 9. Given an OEL theory 〈T ,≤〉 over the vocab-
ulary Σ, we define the d-OEL theory 〈T d-OEL,≤〉 as:
• For every T ∈ T , T d-OEL contains a corresponding ele-

ment T d-OEL = T ∪
⋃
T ′<T T

′.
• T d-OEL contains one maximal element T d-OEL

max =
(Tmax1 )d-OEL∪. . .∪(Tmaxn )d-OEL, where Tmax1 , . . . , Tmaxn
are the maximal elements of 〈T ,≤〉.
The following proposition now states that an OEL theory

〈T ,≤〉 is equivalent with the corresponding d-OEL theory
〈T d-OEL,≤〉.
Proposition 10. Given an OEL theory 〈T ,≤〉 over the vo-
cabulary Σ, for any Σ-interpretation I it holds that I |=dist

T d-OEL
max iff I |=OEL T .
The proof of this proposition is straightforward. Indeed, it

is obviously the case that when the higher-up theories syn-
tactically include the lower ones, information is guaranteed
to increase along the partial order ≤, that is, the semantics
of OEL are simulated. As a consequence of this proposition,
we can see OEL as a sublogic of d-OEL.
Example 2. To illustrate how d-OEL can be used to model
the beliefs of different agents, we reconsider Example 1, but
now assume we also have a second database, talking about
which students are minorities:

DB2 =

{
¬Minority (Ann ).
Minority (John )

}
.

Clearly, both databases have contradictory beliefs about
which students are minorities. We can now build another
layer T+ on top of these two databases that expresses how
such contradictory data should be handled; for example, T+

could express that when the two databases do not agree, the
student should be interviewed:

T+ =


∀x Interview(x)⇔

KDB(Minority (x)) ∧KDB2(¬Minority (x))

∨KDB(¬Minority (x)) ∧KDB2
(Minority (x))


The theory of interest here, T+, has exactly one Herbrand
model I , in which InterviewI = {Ann}.

Like OEL theories, a d-OEL theory T is equivalent to an
FO theory as well. In the next lemma we assume without
loss of generality that no predicate symbol occurs in two
different vocabularies ΣTi

4.
4Indeed, all theories in a d-OEL theory T are independent mod-

ules that can only access each others knowledge through the modal
operator. This means we can replace all occurrences of a predicate
symbol P in Ti by a new predicate symbol P ′, as long as we also
replace P by P ′ in every modal atom in T .
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Lemma 11. For a given set of vocabularies ΣT1 , . . .ΣTn

and a d-OEL theory T , there exists an FO theory FO(T )
over Σ′ ⊇ ΣT1

∪ . . .∪ΣTn
such that for every Σ′-Herbrand

interpretation M it holds that M |= FO(T ) iff for every Ti,
M |ΣTi

∈MTi
, where (MT1

, . . . ,MTn
) is Mod(T ).

Proof. For each modal expression KT (ϕ[x̄]) occurring in
T , we introduce a predicate PT,ϕ with arity #(x̄) and for
each P/n that occurs objectively in T , we introduce a pred-
icate PT /n. For each formula ϕ, let FOT (ϕ) denote the
formula obtained from ϕ by substituting atoms PT ′,ϕ(x̄)
for modal literals KT ′(ϕ[x̄]) and PT (t̄) for objective occur-
rences of atoms P (t̄). Our theory FO(T ) consists of:

• all formulas FOT (ϕ) for which T ∈ T and ϕ ∈ T ;
• for each modal literal KTϕ[x̄] in T and each tuple t̄ of

terms (i.e., elements of the Herbrand universe) either the
literal PT,ϕ(t̄) if T |= ϕ[t̄], or ¬PT,ϕ(t̄) otherwise.

Clearly, since a minimal theory Tmini contains no modal
literals, we have that for any Herbrand interpretation M ,
it holds that M ∈ mod(FO(Tmini )) iff M |Σ

Tmin
i

|=dist

Tmini . It is easy to show by induction on the order of theo-
ries that this holds for any T ∈ T . Note that this proof stays
valid if not all ΣTi

are disjunct.

The method we use here to transform a d-OEL theory into
an equivalent FO theory is similar to the RES procedure of
(Levesque and Lakemeyer 2000), which transforms a modal
query w.r.t. a first order knowledge base into a standard first
order query.

Problem Solving
This section studies the inference tasks we can do for OEL
and d-OEL. First, we investigate data complexity of model
checking, satisfiability checking and query answering. To
measure data complexity, we consider inference in a class of
theories of the form T = {DB,T1, . . . , Tn} over finite vo-
cabularies Σ without function symbols in which T1, . . . , Tn
are fixed and only DB and the set of constants in Σ vary.
Moreover, we assume that DB is a database theory, i.e., a
set of ground literals, and that it is minimal in the theory
order ≤. We denote the class of such theories as DB.

Proposition 12. The decision problems of model checking,
satisfiability checking and query answering in the class of
d-OEL theories DB are in ∆P

2 . There are theories for which
these tasks are both NP-hard and co-NP-hard. The same
holds for the class of OEL theories DB.

Proof. Assume T is a d-OEL-theory. Consider FO(T ).
Since DB contains no modal literals, FO(T ) consists of
DB, the set of literals describing the predicates PT,ϕ and
the fixed theory FOT1

(T1) ∪ · · · ∪ FOTn
(Tn).

First, we show that this theory can be constructed using a
polynomial number of calls to an NP-oracle. The construc-
tion proceeds along the order≤ on the theories, starting from
FO(T≤DB) = DB as a base case. The size of FO(T≤DB)
is trivially linear in the size of DB.Assume we have already
constructed FO(T≤Ti

) and that it is polynomial in the size

of DB. We can then construct FO(TTi+1) by first adding
all formulas FOTi+1(ϕ) to FO(T≤Ti), and then adding for
every modal literal KTj

ϕ of Ti and tuple t̄ of terms, either
PTj ,ϕ(t̄) or ¬PTj ,ϕ(t̄). To decide which of these two to add,
we need to know whether Tj |= ϕ(t̄). Lemma 11 states that
this is the case iff the theory FO(T≤Tj

)∧¬FOTj
(ϕ(t̄)) does

not have a Herbrand model. Because the size of FO(T≤Tj
)

is polynomial in DB (and the size of ϕ(t̄) is constant),
checking whether a given Herbrand interpretation is a model
of this theory can be done in polynomial time. Therefore, an
NP oracle will be able to tell us which of the two literals to
add. Because we add one literal for each tuple t̄ of terms, the
size of the result is still polynomial in the size of DB.

Each of the three tasks can be easily implemented using
the theory FO(T ). Because, in Herbrand interpretations,
model checking for FO is polynomial in the size of the do-
main, satisfiability checking is NP and query answering is
co-NP, we obtain that all three tasks are at most ∆P

2 for
d-OEL. It follows from the proof of Prop. 10 that construct-
ing a d-OEL theory equivalent with a given OEL theory T
can be done in linear time (in the size of the Herbrand uni-
verse), therefore the same complexity results hold for OEL
theories.

As for the second statement of the proposition, it suffices
to focus on the least complex of the three problems, i.e.,
model checking. We prove the hardness properties by en-
coding the NP-complete graph kernel problem as a model
checking problem of d-OEL. Consider the parameterized
theory T consisting ofDB < T whereDB encodes a graph
G and consists of, for each pair A,B of domain elements,
either the atom G(A,B) or the negative literal ¬G(A,B).
This is a complete description of the graph G on the Her-
brand universe. ΣP contains G and two other predicates
Kernel/1 and P which do not appear in DB.

Next we define T . T specifies that the new propositional
symbol P is true iff DB knows that the set represented by
Kernel is not a graph kernel ofG. A graph kernel is a set of
vertices such that no kernel elements are directly connected
and each non-kernel element is connected to a kernel ele-
ment. I.e., T is singleton containing the formula

P ⇔ KDB¬ϕ
where ϕ expresses that Kernel is a kernel of G:

∀x∀y(Kernel (x) ∧ Kernel (y)⇒ ¬G (x, y))∧
∀x(¬Kernel (x)⇒ ∃y(Kernel (y) ∧ G (y, x)))

It is easy to see that sinceDB contains no information about
Kernel , the only way in which DB can know that Kernel is
not a kernel of G is if it knows that G has no kernels. Hence,
deciding whetherKDB¬ϕ holds, boils down to solving a co-
NP hard problem. Thus, checking whether an interpretation
in which P is true is a model is a co-NP-complete problem.
Checking whether an interpretation in which P is false is a
model is an NP-hard problem. This concludes the proof.

As shown by Niemelä 1992 and Gottlob 1992, the prob-
lem of deciding whether an autoepistemic theory has a stable
expansion is ΣP2 -complete. The result in Proposition 12 thus
asserts our earlier claim that OEL is of a lower complexity
then AEL (the inclusion ∆P

2 ⊆ ΣP2 is believed to be strict).
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The proof of this proposition also shows that inference
tasks in d-OEL can be implemented using FO tools. For in-
stance, a d-OEL model generator could be implemented on
top of any FO model generator, such as (Wittocx, Mariën,
and Denecker 2008; Answer ; Claessen and Sörensson 2003;
Torlak and Jackson 2007), by using the layered approach de-
scribed in the proof above: first we use a polynomial number
of calls to such a model generator to construct FO(T ) and
then we call the model generator again to find out whether
FO(T ) has a Herbrand model, from which we then can ex-
tract the model of T . Such a model generator could be used
to solve the following practical problem.
Example 3. Imagine that every week a hospital needs to
distribute patients over its available rooms. For this, it uses
a knowledge base that expresses what a valid assignment is.
Possible constraints might be that assigned rooms have to be
available, that the maximum capacity of the rooms cannot be
exceeded, that patients with a specific treatment need rooms
with appropriate facilities, etc. In FO(·), this would become:

Ts =


(Used (r, d)⇔ ∃pRoomOfPat (r, p, d)).
∀p r d (Used (r, d)⇒ Avail (r, d)).
∀d r (#{p : RoomOfPat (r, p, d)} ≤ Capac (r)).
∀d p r (RoomOfPat (r, p, d) ∧ ReqFacil (p, f, d)

⇒ HasFacil (r, f)).


The first sentence of this theory, for example, defines that

a room is used on a particular day, if on that day, the room
is assigned to a certain patient. The other sentences express
constraints on how the rooms are used, e.g., the second sen-
tence says that if a room is used on particular day, it has to
be available. Assume that a room is unavailable if it is be-
ing cleaned, and the cleaning company provides a complete
database Tcl about when which room is available. A model
generator can then be used on Ts∪Tcl, together with another
complete data base DB about the capacity, etc., to generate
a valid schedule.

Now, assume that the hospital is refurbishing its rooms
over an extended period of time, and regularly some rooms
might not be available. The company that executes the re-
furbishments has its own knowledge base Tref expressing
when rooms will be available. However, unlike the clean-
ing company, this company can no longer provide complete
information about the availability. Instead, it might say:

Tref =

{
Avail (R1 ,Mo ) ∧ ¬Avail (R3 ,Tue ).
Avail (R2 ,Fri ) ∧ ∀r¬Avail (r,Thu ).

}
The knowledge base Tref indeed contains no information

about, e.g., the availability of R1 on Tuesday. Again, the
hospital would like to get a valid schedule. However, this
time, we cannot simply give Ts∪Tref ∪DB to a model gen-
erator, since that would try to fill in the missing information
about the availability, leading to many schedules: one where
R1 is available on Tuesday, one where R1 is not available
on Tuesday, and so on. The problem here is that we want
to use Ts and Tref in different ways: we want to do model
generation on Ts, but not on Tref .

We can achieve this by means of OEL’s epistemic opera-
tor KTref

. Let T ′s be Ts together with the sentence:

∀r∀d(Avail (r, d)⇔ KTref
(Avail (r, d))).

The interpretation of predicate RoomOfPat in the models
of the OEL theory T = {T ′s, Tref} now represents a safe
schedule, that is, only rooms of which it is certain that they
are available (according to Tref ) are used in the schedule.
Alternatively, the hospital might decide that it is allowed to
use a maximum of two ‘uncertain’ rooms. Such a schedule is
represented by the interpretation of RoomOfPat in the mod-
els of T ′ = {T ′′s , Tref}, where T ′′s is the theory Ts with
the rule ∀p r d (Used (r, d) ⇒ Avail (r, d)) replaced by the
following rule:

∀d (2 ≥ #{r : Used (r, d) ∧ ¬KTref
¬Avail (r, d)∧

¬KTref
Avail (r, d)}).

Note that for the theories T and T’ the OEL and d-OEL se-
mantics coincide (in the sense of Proposition 10). However,
suppose that the hospital wants to use both the theory Tcl
from the cleaning company and the theory Tref from the
refurbishing company. Since these two theories come from
different companies that know nothing about each other,
they are most likely inconsistent with each other. This means
that any OEL theory that contains both of them will also be
inconsistent. In d-OEL, this is not a problem and the hospital
can just add a formula:

∀r∀d(Avail (r, d)⇔ KTref
(Avail (r, d)))

∧KTcl
(Avail (r, d)).

to Ts (we denote this theory by T ′′′s ). The interpretation of
RoomOfPatient in the models of T ′′′s of the d-OEL theory
T ′′ = {T ′′′s , Tcl, Tref} again represents such a schedule.

In summary, this section showed that model checking,
model generation and query answering for both d-OEL and
OEL are in ∆P

2 . We explained how a prototype model gen-
erator can be implemented on top of an FO model genera-
tor, and illustrated, by means of the above example, that a
class of interesting constraint problems (in particular, model
generation problems that need to query a possibly incom-
plete knowledge base), can be formulated as model genera-
tion problems for d-OEL or OEL.

Related work
Answer Set Programming
This section takes a closer look at the relation between OEL
and Answer Set Programming, more specifically its core lan-
guage called Extended Logic Programming (Gelfond and
Lifschitz 1991). We first briefly recall the basics. An answer
set program P over vocabulary Σ is a collection of rules:

l′0v . . . vl
′
k ← l1, . . . , lm, not lm+1, . . . , not ln.

where each l′j, li is an atom P(t1, . . . , tk) or a strong nega-
tion literal ¬P(t1, . . . , tk). A program with variables rep-
resents the set of all ground rules obtained by substituting
ground terms of Σ for all variables. We call an answer set
program disjunctive if k > 1 for at least one rule.

An answer set A of P is a ⊆-minimal element in the col-
lection of all sets S of ground atoms and strong negation
literals, such that, for each rule

l′1 v . . . v l
′
k ← l1, . . . , lm, not lm+1, . . . , not ln.,
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if l1, . . . , lm ∈ S and lm+1, . . . ln 6∈ S, then at least one
l′i ∈ S. Intuitively, an answer set program represents the
knowledge of an introspective epistemic agent: a rule of the
above form states that the agent must believe one of the l′k
if he also believes l1, . . . , lm and does not know any of the
literals lm+1, . . . , ln. Moreover, the agent does not believe
anything he is not forced to believe. Each answer set repre-
sents a possible state of belief of the agent.

Let us now return to Example 2. The incomplete database
DB′ can be represented in ASP as follows:

DB′ =

{
FairGPA(Ann). Minority(Ann).
HighGPA(John). FairGPA(Bob).

}
The partial completeness of this database can be expressed
by two CWA rules:

CWA =

{
¬FairGPA(x)← not FairGPA(x).
¬HighGPA(x)← not HighGPA(x).

}
The next rule expresses who is to be interviewed:

IV = {Interview(x)←FairGPA(x), not Minority(x),

not ¬Minority(x).}

The program DB′ ∪ CWA ∪ IV has one answer set, in
which only Bob is to be interviewed. Both CWA and IV
exploit the epistemic nature of negation-as-failure: the for-
mer to assert that unknown facts are false, and the latter to
check whether the minority status of x is unknown. This so-
lution is not entirely equivalent to ours in Example 1. Indeed,
this answer set does not contain literals ¬Interview(. . . ).
Hence, whereas in our solution, Bob and John are known
not to be interviewed, in the belief state corresponding to
this answer set, this is unknown. To derive these conclusions,
rules need to be added that correspond to the only-if part of
the interview rule:

¬Interview(x)←¬FairGPA(x).

¬Interview(x)←Minority(x).

¬Interview(x)←¬Minority(x).

Gelfond (1991) pointed to the following problem in the
context of disjunctive answer set programs. He considered a
database with the disjunctive information that either Ann or
Bob belongs to a minority:

DB∨ =

{
FairGPA(Ann). FairGPA(Bob).

Minority(Ann) v Minority(Bob).

}
Again, we would like to infer that both Ann and Bob must
be interviewed, but DB∨ ∪ IV will give two answer sets:
one with Interview(Ann) and one with Interview(Bob).
If we add the only-if rules, the first answer set will con-
tain ¬Interview(Bob) and the second ¬Interview(Ann).
To solve this problem, Gelfond proposed the logic ASPK ,
which adds an epistemic operatorK, called the strong intro-
spection operator, to ASP. This operator queries whether a
literal is present in all answer sets. It can correctly express
the definition of Interview as:

Interview(x)← FairGPA(x),
not K not Minority(x), not K Minority(x).

This rule gives the right result for both DB∨ and DB′.
In OEL, the disjunctive database can be represented by:

DBOEL∨ =

{
FairGPA(Ann). FairGPA(Bob.)
Minority(Ann) ∨Minority(Bob).

}
This DBOEL∨ can be queried by the same theory TI as in
Example 1 and this will result in the correct conclusion that
both Ann and Bob have to be interviewed.

Unlike OEL, theories in ASPK may have more than one
“world view” (∼ belief system), and as recently shown by
Gelfond (2011), some of these world views are unintended.
While that paper also suggests a change to the semantics
of ASPK , it is currently not known whether this solves all
issues.

In comparison to the OEL solution, the ASP solution
without strong introspection is less elaboration tolerant in
the sense that adding a disjunction results in error and the
ASP solution with strong introspection requires a combina-
tion of two epistemic operators which seems to be overly
complex for the situation at hand. Thus, for this sort of epis-
temic applications, OEL seem to offer a good solution.

Default Logic
We already showed that OEL is able to represent a certain
kind of default information, namely the Closed World As-
sumption. Other defaults are of course also possible. For in-
stance, the following theory Tbird < Tdef models one of the
standard examples:

Tbird =


Bird(Tweety) ∧Bird(Clyde).

P enguin(Clyde).

∀x(Penguin(x)⇒ ¬Flies(x)).


Tdef =

{ ∀x(Bird(x) ∧ ¬KTbird
(¬Flies(x))

⇒ Flies(x)).

}
However, the question is what happens in cases with mul-

tiple default extensions. For instance, let us apply the above
method to model Nixon’s diamond:

Tbase =

{
Republican(Nixon) ∧Quaker(Nixon)

∀x(¬Dove(x) ∨ ¬Hawk(x))

}

Tdef =


∀x(Republican(x) ∧ ¬KTbase

(¬Hawk(x))

⇒ Hawk(x))

∀x(Quaker(x) ∧ ¬KTbase
(¬Dove(x))

⇒ Dove(x))


This OEL theory entails that Nixon is dove and hawk and
hence it is inconsistent. In contrast, the solution in default
logic has two extensions. In some cases the latter may be the
desired behaviour. However, as argued in (Denecker, Marek,
and Truszczynski 2011), multiple extensions of a default
theory are caused by conflicting defaults that offer insuffi-
cient guidance how to solve the conflict, e.g., what happens
for republican quakers? Such conflicts may arise inadver-
tently for the programmer in which case it is often better to
resolve these conflicts by refining the condition of one or
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both constraints, e.g., by expressing that in case of repub-
lican quakers, being a dove is the default. In this case the
inconsistency reported by the OEL representation is a useful
sign that user intervention is required.

When multiple extension are really desired, it is here too
the case, as for AEL, that OEL’s hierarchical structure is
unsuitable. For such cases, a solution might be searched in
the direction of a non-hierarchical (or, alternatively, a self-
referential) theory:

Tbase =

{
Republican(Nixon) ∧Quaker(Nixon)

∀x(¬Dove(x) ∨ ¬Hawk(x))

}

Thawk =


∀x(Republican(x)

∧ ¬KTdove
(¬Hawk(x))

⇒ Hawk(x))


Tdove =

{ ∀x(Quaker(x) ∧ ¬KThawk
(¬Dove(x))

⇒ Dove(x))

}

While it would in principle be possible to define an equilib-
rium semantics for OEL that would allow cyclic dependen-
cies of this kind (and produce the same two extensions as
Default Logic does for this example), this would go against
our goal of simplicity.

Other Hierarchical Approaches
Deciding wether an autoepistemic theory has expansions is
ΣP2 -complete in general. However, for certain subclasses,
reasoning can be done more efficiently. A popular family
of such subclasses are stratified theories, i.e., theories that
can be divided into a number of levels, such that the ex-
pansions of the entire theory can be computed by combined
the expansions of each level. This approach was widely
studied in both AEL and Default Logic (Gelfond 1987;
Marek and Truszczyński 1991; Cholewinski 1994; Ven-
nekens, Gilis, and Denecker 2006). In many of these works,
stratified theories are guaranteed to have a unique expan-
sion. Though this might seem similar to our approach here,
there are some important differences. In these stratified ap-
proaches the idea is to give syntactical constraints, such that
theories that satisfy these constraints can be automatically
split up in smaller theories that do not circularly depend on
each other. In OEL on the other hand, the goal is not to auto-
matically split up a theory, but it is the person writing down
the theory himself that is responsible for dividing the the-
ory into suitable sub-theories. Because of this, our theories
do not need to satisfy restrictive syntactic conditions which
allows us to do more than is possible in these stratified ap-
proaches, e.g., theories that contain closed world assump-
tions will typically not be stratified while, as we have illus-
trated with some examples, closed world assumptions can
be expressed in OEL.

Other somewhat related work is that of stratified belief
bases5 (Brewka 1989), which actually is an approach to in-
consistency handling. Information is represented by strati-
fied belief bases, i.e., finite sets of (possibly inconsistent)

5sometimes also referred to as prioritized knowledge/belief
bases.

formulas equipped with a total pre-order which represents
the available preferences over the given beliefs. The idea is
then to select a preferred consistent subbase (where theo-
ries lower in the order have preference over theories higher
in the order) of the given stratified belief base. While this
framework also uses hierarchical knowledge bases, its pur-
pose is clearly very different. First of all, we cannot see
a stratified belief base as an OEL theory as such, since
clearly an inconsistent OEL theory has no models. How-
ever, we can simulate inference for certain stratified belief
bases with OEL (and similarly with d-OEL), that is, for
belief bases where the conflicts arise between sub-theories,
and not within. This would work as follows. Given a strat-
ified belief base {∆1, . . . ,∆n}, we construct a OEL the-
ory T = {T1, . . . , Tn} as follows. Take T1 = ∆1, and
for each formula ϕ ∈ ∆i with i > 1, we add the formula
¬KTi−1

(¬ϕ)⇒ ϕ to Ti. A formula ϕ is now strongly prov-
able (Brewka 1989) in the stratified belief base if it holds
that M |= ϕ for all models M of T and weakly provable if
M |= ϕ for some model M of T .

More Related Work
This section considers some knowledge representation for-
malisms that are related to d-OEL, that is, formalisms for
handling distributed (possibly contradictory) knowledge.

Polleres, Feier, and Harth (2006) attempt to incorporate
contextual queries and non-monotonic reasoning techniques
into current Semantic Web technologies, in particular, ex-
tensions of RDF or OWL with rule languages. Because of
the open-world setting in the Semantic Web, only a limited
form of negation-as-failure is possible, in which negation
has an explicitly defined, finite scope. As the authors claim,
clear definitions and formal semantics for such scoped nega-
tion are missing, and thus they propose a logic programming
based framework for the combination of rule bases on the
web. One of the key features in this work is that every fact
or rule is associated to a context (the URI of the rule base).
Literals can then be tagged with these URIs to form scoped
literals. This allows queries such as “Which movies are rated
“Bad” by http://moviereviews.com?” to be represented as:

Answer(x)← Movie(X),
Rated(X, Bad)@“http : //moviereviews.com′′.

Negation is only allowed to appear in these scoped literals.
Each scoped literal corresponds naturally to a modal lit-

eral K<uri>P (t̄) or K<uri>¬P (t̄) of d-OEL. As shown in
(Denecker et al. 2010), the principle for extending FO to
OEL can be easily applied also to FO(ID), the extension of
FO with a rule-based representation for inductive definitions
(Denecker and Ternovska 2008). Applying this to d-OEL
leads to a logic that generalizes the scoped literal approach
by allowing arbitrary formulas both in the bodies of rules
and in the scope of the modal operators. In this way, d-OEL
can also handle queries for, e.g., disjunctive knowledge.

Scoped negation was also introduced to FLORA-2 (Kifer
2005), which is a query answering system that integrates F-
Logic with a number of other formalisms. In FLORA-2, a
module is a container or a concrete knowledge base. Nega-
tive queries can then be posed to a certain module. Another
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formalism that has a form of scoped negation is N3 (Berners-
Lee, Dan Connolly, and Scharf 2005), which is a language
for representing RDF rules on the Semantic Web.

The need for a semantically well-defined construct to
query other sources of knowledge is not limited to the Se-
mantic Web context, but also exists in other knowledge rep-
resentation domains. For example, Barker (2009) defines a
meta-model for access control policies, using a logic pro-
gramming based rule language. Literals occurring in the
body of rules may be defined in the local program, but also
in a remotely located program identified by v. Such a lit-
eral is then denoted by “L " v”. Typically, this construct
is used for querying the knowledge of another access con-
trol manager. The semantics of the rule language is based
on Clark’s completion (1978), where, for remotely defined
literals L " v, the union of v and the local program is con-
sidered. Again, OEL generalizes this language.

Our work is also related to attempts to combine Logic
Programs with Descriptions Logics. A representative ap-
proach is the hybrid combination proposed by Pührer, Hey-
mans, and Eiter (2010). Here, an ASP program is allowed to
query an OWL knowledge base to find out what it does and
does not know. Like OEL, this is also a layered approach,
with the obvious difference that DL-programs allow only
two components, where the top component must be writ-
ten in ASP and the bottom component in OWL. An inter-
esting feature of DL-programs is that they allow additional
atoms to be temporarily added to the OWL knowledge base
for the evaluation of a query. In OEL, this could be simu-
lated by exploiting the ability to have more than two com-
ponents: a single minimal theory would then consist of the
OWL knowledge base; in the next layer, we would find a
number of theories that each add different additional facts to
the knowledge base; finally, a single maximal theory would
then correspond to the ASP program, posing queries to the
different theories in the middle layer.

In addition to such hybrid integrations, there also exist a
number of formalisms that offer a full integration of Logic
Programming and Description Logics. These typically aban-
don the idea of a layered structure altogether and resort to
languages that are very similar to AEL. In particular, de
Bruijn et al. (2007) present a formalism that is embedded
into first-order AEL, while Motik and Rosati (2010) uses an
embedding into the logic MKNF, which has been shown to
be equivalent to AEL (Rosati 1997). Our approach can be
seen as claiming a middle ground between these approaches
and the hybrid ones: we do retain a layered structure, but use
a single language in the different components.

Conclusions
In this paper we further developed ordered epistemic logic,
recently introduced by Denecker et al. to handle a range of
interesting epistemic examples, without the high complexity
of autoepistemic logic. In this paper we proved this claim by
showing that model generation for OEL is in ∆P

2 , and gave
a number of examples that show that the closed world as-
sumption, defaults, . . . can indeed be naturally represented
in OEL. While OEL does not allow the self-references of
AEL, we proved that in some cases, an OEL theory can be

seen as an AEL theory. Next, we defined a generalization of
OEL, which we called distributed ordered epistemic logic,
in which a higher level theory in the hierarchy no longer
includes the knowledge of lower level theories. This logic
is well-suited to model distributed (and potentially incon-
sistent) knowledge of agents. Applications for such a logic
exists in the Semantic Web, where ontologies are distributed
over the web, and one ontology might need the knowledge of
another. Several approaches have been proposed to do this,
and we argued that d-OEL is a natural generalization of sev-
eral of them.

A limitation of our formalism is that it assumes the same
fixed domain for all theories. Allowing different theories to
have different finite domains is not problematic, since this
can already be simulated in our current logic6. Allowing
each theory to have its own infinite domain on the other
hand, would be a real extension of the logic, and it is not
clear which of the results presented in this paper would carry
over. Another interesting topic for future work would be to
implement a model generator for OEL and d-OEL, along
the lines sketched earlier in this paper. Given the relatively
high complexity of this task, it might, however, also be in-
teresting to investigate how and when approximation tech-
niques for FO (e.g., those developed by Wittocx, Denecker,
and Bruynooghe (2010)) can be used to approximately solve
OEL and d-OEL queries in polynomial time. Again, the lay-
ered structure of OEL and d-OEL seems to make it ideally
suited for such an approach.

Acknowledgements
This work is partially supported by IWT-Vlaanderen.

References
Answer set programming with propositional schemata.
http://www.cs.uky.edu/ai/aspps/.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Barker, S. 2009. The next 700 access control models or a
unifying meta-model? In Proceedings of the 14th ACM sym-
posium on Access control models and technologies, SAC-
MAT ’09, 187–196. ACM.
Berners-Lee, T.; Dan Connolly, E. P.; and Scharf, Y. 2005.
Experience with N3 rules. In W3C Workshop on Rule Lan-
guages for Interoperability.
Bouquet, P.; Giunchiglia, F.; Harmelen, F. V.; Serafini, L.;
and Stuckenschmidt, H. 2003. C-OWL: Contextualizing
ontologies. In Journal Of Web Semantics, 164–179. Springer
Verlag.

6If we want each theory T ∈ T to have its own specific domain
DT , we can simulate this by taking the union ∪T∈T DT as a fixed
domain throughout T and defining in each theory T a predicate
DomainT that explicitly enumerates all the elements of DT :

∀x(DomainT (x)⇔
∨

c∈DT

x = c)

378



Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
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