
An Axiomatic Framework for Influence Diagram
Computation with Partially Ordered Utilities

Nic Wilson
Cork Constraint Computation Centre

University College Cork, Ireland
n.wilson@4c.ucc.ie

Radu Marinescu
IBM Research
Dublin, Ireland

radu.marinescu@ie.ibm.com

Abstract
This paper presents an axiomatic framework for influence di-
agram computation, which allows reasoning with partially or-
dered values of utility. We show how an algorithm based on
sequential variable elimination can be used to compute the set
of maximal values of expected utility (up to an equivalence
relation). Formalisms subsumed by the framework include
decision making under uncertainty based on multi-objective
utility, or on interval-valued utilities, as well as a more quali-
tative decision theory based on order-of-magnitude probabil-
ities and utilities.

1 Introduction
Actions can lead to many different kinds of consequences,
for example, financial gain/loss, risk to health, effect on
the environment or gain/loss to reputation. It may not be
possible to map the various potential consequences of a
set of actions to the same scale of utility in a way that
avoids making essentially arbitrary choices. It is thus nat-
ural to consider notions of imprecise utility and multi-
attribute/objective utility, where utility values are only par-
tially ordered.

We consider decision making under uncertainty using in-
fluence diagrams, but where we allow more general notions
of uncertainty than probability, and more general notions of
utility functions, which, in particular, allow utility values to
be only partially ordered. We construct an axiomatic frame-
work, listing properties of a formalism that allow maximal
(generalised) expected utility to be computed by sequential
elimination of all the variables.

In general terms, variable elimination algorithms can be
viewed as follows. We have a collection Θ of functions,
where each function in Θ only involves a small number of
variables. In the case of influence diagram computation, Θ
contains both probability functions and utility functions. Θ
is used as a compact representation (or decomposition) of
a function

⊗
Θ on all the variables, equalling a combina-

tion of all the functions in Θ. For example, in a Bayesian
network, Θ consists of a collection of conditional probabil-
ity functions and

⊗
Θ is the joint probability distribution.

Since
⊗

Θ involves all the variables, it will be a huge ob-
ject to represent explicitly.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

For a standard influence diagram we have both chance and
decision variables, and we eliminate chance variables with a
sum operator, and decision variables with a max operator.
We can compute the maximum expected utility by applying
a sequence of sum and max eliminations to

⊗
Θ, eliminat-

ing all the variables. Performing combinations leads to func-
tions involving larger sets of variables, which is expensive
in terms of both computational cost and time. One therefore
would like to delay performing computations where possi-
ble. Thus, when eliminating a variable X , with, for exam-
ple, the

∑
operator, one transforms Θ to a collection Θ′,

which includes only functions that don’t involve X , and is
such that

∑
X(
⊗

Θ) =
⊗

Θ′. Crucially, the functions in
Θ that don’t involve X are left unchanged, so still appear in
Θ′.

We first define (Section 2) our axioms for uncertainty and
utility functions, which are the properties that we will use for
the variable elimination algorithms. We describe some for-
malisms that satisfy the axioms, including interval-valued
utility, multi-objective utility and order of magnitude prob-
ability and utility (Section 3). Section 4 shows how both
chance variables and decision variables are eliminated. To
eliminate a variable involves replacing the current collec-
tion of generalised probability and utility functions with a
new set whose combination is equivalent to the marginal of
the initial set. Section 5 defines influence diagram systems,
which involve the form of uncertainty and utility functions
that are generated by an influence diagram. Section 6 shows
that one can iteratively eliminate all the variables to obtain
the maximum value of expected utility for the case where
utility values are totally ordered.

We go on to consider the case where values of utility are
only partially ordered (Section 7); then there will often not
be a unique maximal value of (expected) utility, but a set of
them. To compute this set we need to perform operations on
sets of utility values. In Section 8 we give the main result
of the paper, which shows how to compute, by sequential
variable elimination, a set of utility values that is equivalent,
in a particular sense, to the set of maximal values of ex-
pected utility. Section 9 discusses related work, and Section
10 concludes. The Appendix includes some of the proofs,
with more complete proofs being in a supplementary docu-
ment (Wilson and Marinescu 2012).

210

Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning



2 Uncertainty And Utility Functions
In standard influence diagrams, probability potentials take
non-negative real values, and utility functions take real val-
ues. In Section 2.1 we give properties of generalised proba-
bility and utility values which will still allow correct variable
elimination algorithms.

Most of the properties of positive reals are still assumed
for generalised probability values, the most important ex-
ception being that we do not assume a cancellation property
for addition. The properties assumed for generalised utility
values are much weaker than those satisfied by the real num-
bers; in particular, we allow partially ordered utility values,
which will be useful for expressing imprecise information
about utilities, or multi-objective utilities.

Section 2.2 defines the generalised probability and utility
functions, along with combination and marginalisation op-
erators, generalising definitions for standard probability and
utility.

2.1 Uncertainty-Utility Values Structures
An uncertainty values structure is defined to be a tuple
〈Q,+,×, 0, 1〉 that is a positive commutative semiring with
multiplicative inverses. In other words: + and × are both
commutative and associative binary operations on set Q,
with additive identity element 0 (so q+0 = q for all q ∈ Q),
multiplicative identity element 1 (so q×1 = q for all q ∈ Q)
which also satisfies q × 0 = 0 for all q ∈ Q, and, for all
p, q ∈ Q, p + q = 0 if and only if p = q = 0; also, ×
distributes over +, i.e., (p+ q)× r = (p× r) + (q× r). Fur-
thermore, it is assumed that multiplicative inverses exist for
all non-zero elements of Q, so that for all q ∈ Q−{0} there
exists some (unique) element q−1 ∈ Q with q × q−1 = 1.

A utility values structure is defined to be a tuple 〈U,+, 0〉
such that + is a commutative and associative binary opera-
tion U with identity element 0.

A weak uncertainty-utility values structure (abbrevi-
ated to weak u.u.v. structure) is defined to be a tu-
ple U = 〈Q,+Q,×Q, 0Q, 1, U,+U , 0U ,×QU 〉, where
〈Q,+Q,×Q, 0Q, 1〉 is an uncertainty values structure,
〈U,+U , 0U 〉 is a utility values structure, and ×QU is a func-
tion from Q × U → U satisfying the properties (∗1), (∗2)
and (∗3) below, for arbitrary u, u1, u2 ∈ U and q, q1, q2 ∈ Q
(dropping the (·)Q and (·)U subscripts since there is no am-
biguity):

(∗1) 1× u = u and 0× u = 0U ;
(∗2) q1 × (q2 × u) = (q1 × q2)× u;
(∗3) q × (u1 + u2) = (q × u1) + (q × u2).

We further define U to be an uncertainty-utility values struc-
ture (u.u.v. structure) if it is a weak uncertainty-utility values
structure and satisfies also:

(∗4) (q1 + q2)× u = (q1 × u) + (q2 × u).
Q will contain the probability-like values, and U will con-
tain the utility-like values.

Disjunctive Operations: When we are eliminating deci-
sion variables in an influence diagram computation, we use
a max operator. We generalise this to a disjunctive opera-
tion, as defined below. For the totally ordered case (see the

end of Section 6), we use max as the disjunctive operator;
for the partially ordered case in Section 7, we use max over
subsets of utility values.

Let U = 〈Q,+Q,×Q, 0Q, 1, U,+U , 0U ,×QU 〉 be a weak
u.u.v. structure. Let ∨ be a binary operation on U . We say
that ∨ is a disjunctive operation for U if ∨ is a commutative
and associative operation on U such that both +U and ×QU
distribute over ∨, so that for any q ∈ Q and all u1, u2, u3 ∈
U , u1+(u2∨u3) = (u1+u2)∨(u1+u3), and q×(u1∨u2) =
(q × u1) ∨ (q × u2).

Operation respecting ordering: Let T be some set and
let � be some function from T × U to U . We say that �
respects binary relation � on U if for all t ∈ T and all ele-
ments u1, u2 of U , u1 � u2 ⇒ t � u1 � t � u2. (This can
be also be viewed as � being monotonic with respect to �.)

We say that U respects � if both +U and ×QU respect �.
Suppose that U respects total order �. If we define ∨

to be maximum with respect to �, then ∨ is a disjunctive
operation.

2.2 Combining And Marginalising Uncertainty
And Utility

We consider a set of variables that is partitioned into X and
D, where the elements of X are known as chance variables,
and the elements of D are known as decision variables.
Each element Y ∈ X ∪ D has an associated set of possi-
ble values ΩY . We also write, for S ⊆ X ∪D, ΩS for the
Cartesian product of ΩY over Y ∈ S.

Let U = 〈Q,+Q,×Q, 0Q, 1, U,+U , 0U ,×QU 〉 be a weak
u.u.v. structure. A U-uncertainty function over X ∪D is a
function P from ΩS to Q, for some S ⊆ X ∪D, known as
the scope of P, and denoted by sc(P).

A U-utility function over variables X ∪D is a function
U from ΩS to U , for some S ⊆ X∪D, where S is the scope
sc(U) of U.

We say that P involves Y if sc(P) 3 Y . If T ⊇ S =
sc(P) and x ∈ ΩT then we also write P(x) as an abbrevi-
ation for P(x↓S), where x↓S is the projection of x to vari-
ables S. Similarly, for U-utility function U.

Let Φ be a collection (i.e., a multiset) of U-uncertainty
functions over X ∪ D. We define their combination∏

Φ =
∏

P∈Φ P to be the U-uncertainty function with
scope S =

⋃
P∈Φ sc(P), given by, for x ∈ ΩS , (

∏
Φ)(x) =∏

P∈Φ(P(x)), where the last use of
∏

refers to repeated
application of the (associative and commutative) operation
×Q.

Analogously, we define, for collection Ψ of U-utility func-
tions over X ∪ D, their combination

∑
Ψ =

∑
U∈Ψ U

to have scope S =
⋃

U∈Ψ sc(U), and to be given by
(
∑

Ψ)(x) =
∑

U∈Ψ U(x), where the last
∑

refers to it-
erative use of +U .

If P is a U-uncertainty function and U is a U-utility func-
tion then P × U is a U-utility function with scope S =
sc(P) ∪ sc(U) given by (P ×U)(x) = P(x) ×QU U(x),
for any x ∈ ΩS . (Thus U-utility functions can represent
expected utility as well as input utility functions.)

211



Generating a marginalisation operator from an opera-
tion on utility values: Suppose that � is some commuta-
tive and associative operation on U . Let U be a U-utility
function and let Y ∈ X ∪ D be a variable in the scope of
U. We define

⊙
Y U to be the U-utility function with scope

S = sc(U)−{Y } given by (
⊙

Y U)(x) =
⊙

y∈ΩY
U(xy),

for x ∈ ΩS , where xy is assignment x extended with Y = y.
This defines operation

∑
Y , based on operation � = +, and∨

Y , based on disjunctive operation ∨.

3 Example Formalisms
We give some examples of formalisms that satisfy the ax-
ioms defined above. The results given later in this paper
imply that, for any of these formalisms, the maximal values
of expected utility can be computed (up to equivalence) by a
variable elimination algorithm.

3.1 Upper And Lower Utility
It can sometimes be hard to determine precisely a utility
value. To allow a representation of imprecise utility, we can
let utility functions assign pairs of utility values instead of
single values, representing a lower and an upper value of
utility. For an influence diagram computation (see Section
5), each policy π, dynamically assigning the decision vari-
ables, has an associated lower expected utility LEU(π) and
an upper expected utility UEU(π).

A natural ordering on these (expected) utility pairs is the
pointwise one given by 〈u, v〉 � 〈u′, v′〉 if and only if
u ≥ u′ and v ≥ v′. That is, π is at least as good as π′ if
LEU(π) ≥ LEU(π′) and UEU(π) ≥ UEU(π′). We then
define U to consist of the set of all pairs 〈u, v〉 of real num-
bers with u ≤ v. The sum of two pairs 〈u1, v1〉 and 〈u2, v2〉
is performed pointwise, i.e., to be 〈u1 + u2, v1 + v2〉. The
additive identity utility element is the pair 〈0, 0〉. For proba-
bility value p and utility pair 〈u, v〉, p × 〈u, v〉 is defined to
be 〈p × u, p × v〉. This gives rise to an u.u.v. structure
〈R+,+,×, 0, 1, U,+U , 〈0, 0〉,×QU 〉 that respects the par-
tial order �. Since utility values are only partially ordered,
we may well have more than one maximal value of expected
utility; we are interested in being able to compute the set of
maximal (i.e., undominated) values of

〈
LEU(π),UEU(π)

〉
over all policies π.

Multi-Objective Utility A related system (which is math-
ematically a generalisation) is based on multi-objective util-
ity. One may have more than one independent scale of util-
ity, for example, one based on monetary gain, and one based
on risk to health. Again, scalar multiplication and addition
are performed pointwise, and we can use the same idea for
the ordering. Alternatively, since the product (Pareto) order-
ing is a rather weak one, instead one may want to consider
imprecise trade-offs between the scales of utility. The order-
ing can be strengthened to take such trade-offs into account,
whilst still maintaining the monotonicity properties.

A further related system is multi-agent probability and
utilities. Each of a number m of agents makes a judgement
of the probability and utility values, which are each repre-
sented as vectors of m real values.

3.2 Order Of Magnitude Calculus
We consider the order of magnitude probability and utility
system from (Wilson 1995), which can be viewed as a deci-
sion theory for kappa (ranking) functions (Goldszmidt and
Pearl 1996). (A very different linear utility theory for kappa
functions is given in (Giang and Shenoy 2000).) Let O =
{〈σ, n〉 : n ∈ Z, σ ∈ {+,−,±}} ∪ {〈0,∞〉}, where Z is
the set of integers. The element 〈±,∞〉 will sometimes be
written as 0, and element 〈+, 0〉 as 1. We also define O± =
{〈±, n〉 : n ∈ Z ∪ {∞}}, and O+ = {〈+, n〉 : n ∈ Z}.

Elements ofO are interpreted in terms of polynomials (or
rational functions) in a parameter ε. ε can be considered
as an infinitesimal, or, alternatively, a very small unknown
number. 〈+, n〉 represents a function which is positive and
of order εn, and 〈−, n〉 is negative and of order εn. When
we add a positive and a negative value, both of order εn, the
answer can be positive or negative, and of order εm for any
m ≥ n. We write this imprecise value as 〈±, n〉.

Multiplication: For 〈σ,m〉, 〈σ′, n〉 ∈ O, let 〈σ,m〉 ×
〈σ′, n〉 = 〈σ ⊗ σ′,m+ n〉, where∞+m = m+∞ =∞
for m ∈ Z ∪ {∞}, and ⊗ is the natural multiplication of
signs: it is the commutative operation on {+,−,±} such
that + ⊗ − = −, + ⊗ + = − ⊗ − = +, and for any
σ ∈ {+,−,±}, σ ⊗± = ±.

Addition: Commutative operation + is given by 〈σ,m〉+
〈σ′, n〉 = 〈σ,m〉 ifm < n, and equals 〈σ⊕σ′,m〉 ifm = n,
where +⊕+ = +,−⊕− = −, and otherwise, σ⊕σ′ = ±.

Ordering: We use a slightly stronger ordering than that
defined in (Wilson 1995). Transitive relation � on O is
given by: 〈+, l〉 � 〈σ,m〉 � 〈−, n〉, for any l,m, n such
that l, n ≤ m, and any σ ∈ {+,−,±}.

We will define an u.u.v. structure U for the order of mag-
nitude case. We define U to be O and Q to be O+ ∪ {0}.
The previously stated properties including (∗1), (∗2), (∗3),
and (∗4) all hold, and the operations respect the ordering.

Proposition 1. Define UO to be the tuple 〈O+ ∪
{0},+,×, 0, 1,O,+, 0,×〉. Then UO is an uncertainty-
utility values structure that respects partial order �, i.e., �
is respected by + and the operation× : O+∪{0}×O → O.

4 Elimination Of Variables
In this section we will consider an u.u.v. structure U, and a
pair (Φ,Ψ), where Φ (respectively, Ψ) is a collection of U-
uncertainty (respectively, U-utility) functions over X ∪ D.
We assume that each variable in X ∪D is involved in some
element of Φ ∪Ψ.

A pair (Φ,Ψ) will be considered as a compact represen-
tation of the (overall) utility function

∏
P∈Φ P×

∑
U∈Ψ U.

We write
⊗

(Φ,Ψ) =
∏

P∈Φ P×
∑

U∈Ψ U.
We will be interested in computing a generalised expected

utility corresponding to the result of eliminating all variables
from

⊗
(Φ,Ψ). In Sections 4.1 and 4.2 we will show how

to eliminate chance variables and decision variables.

212



In eliminating a chance variableX we generate a new pair
(Φ′,Ψ′) that doesn’t involve X such that

∑
X

⊗
(Φ,Ψ) =⊗

(Φ′,Ψ′). This involves combining functions that involve
X; importantly, functions that don’t involve X are left as
they are. Similar remarks apply for the elimination of a de-
cision variable.

4.1 Elimination Of A Chance Variable
Let Φ63X be the multiset containing the elements of Φ not
involving variable X , i.e., with sc(P) 63 X , and let Φ3X
be the other elements in Φ. Let P+ =

∏
P∈Φ3X

P be the
combination of elements of Φ involving variable X , and let
PXΦ be

∑
X P+. Let Φ′ = Φ63X ∪ {PXΦ }.

Similarly, let Ψ63X be the multiset containing the elements
of Ψ not involving X , and let Ψ3X be the other elements in
Ψ. For U ∈ Ψ3X , define U−X to be 1

PXΦ
×
∑
X(P+ ×U)

(where, in this equation, we define 1
0 to be 0). Let Ψ′ =

Ψ63X ∪ {U−X : U ∈ Ψ3X}.
We define

∑
X(Φ,Ψ) to be (Φ′,Ψ′). Note that no ele-

ment of Φ′ or of Ψ′ involves X . Also, in contrast with e.g.,
(Jensen, Jensen, and Dittmer 1994), we don’t combine to-
gether the utility functions involving X when eliminating a
chance variable X , since it’s not necessary.

Theorem 1. Let U be an uncertainty-utility values struc-
ture, with associated summation operation

∑
, let Φ be a

collection of U-uncertainty functions over X ∪D, let Ψ be
a collection of U-utility functions over X ∪D. Then for any
X ∈ X which is involved in some element of Φ,∑

X

⊗
(Φ,Ψ) =

⊗(∑
X

(Φ,Ψ)
)
.

In other words, using the definitions of Φ′ and Ψ′ given
above,∑

X

(∏
P∈Φ

P×
∑
U∈Ψ

U
)

=
∏

P∈Φ′

P×
∑
U∈Ψ′

U.

4.2 Elimination Of A Decision Variable
We say that P does not depend on variable Y if for all
y, y′ ∈ ΩY and x ∈ ΩS where S = sc(P) − {Y },
P(xy) = P(xy′). If so, we define P−Y to have scope S
and be given by P−Y (x) = P(xy) (for any y ∈ ΩY ).

Theorem 2. Let ∨ be a disjunctive operation for weak
uncertainty-utility values structure U. Let D be a deci-
sion variable in D, let Φ be a collection of U-uncertainty
functions over X ∪ D, none of which depend on variable
D, and let Ψ be a collection of U-utility functions over
X ∪ D. Define

∨
D(Φ,Ψ) = (Φ−D,Ψ′′), where Φ−D =

{P−D : P ∈ Φ}, and Ψ′′ = Ψ63D ∪ {
∨
D

∑
U∈Ψ3D

U}.
Then, ∨

D

⊗
(Φ,Ψ) =

⊗
(
∨
D

(Φ,Ψ)),

i.e., ∨
D

(∏
P∈Φ

P×
∑
U∈Ψ

U
)

=
∏

P∈Φ−D

P×
∑

U∈Ψ′′

U,

5 Influence Diagram Systems
Theorems 1 and 2 show how to eliminate chance variables
and decision variables, respectively, using marginalisation
operators

∑
X and

∨
D on a pair (Φ,Ψ). We would like

to iteratively apply these to eliminate all variables, leading
to the maximum expected utility. However, Theorem 2 re-
quires that, before eliminating decision variable D, the cur-
rent set of uncertainty functions does not depend on D. To
ensure that this condition holds for the iterative computation,
we require restrictions on the elimination ordering, as well
as additional structure on the input collection of uncertainty
functions Φ.

Let U be a weak u.u.v. structure, and let P be an U-
uncertainty function with scope S ⊆ X ∪ D. We say that
P is a constant function if it does not depend on any vari-
able, i.e., there exists some value q ∈ Q such that for all
x ∈ Ωsc(P), P(x) = q. We say that P is a conditional U-
uncertainty function on X if X ∈ sc(P) and

∑
X P is a

constant function.
An Influence Diagram system (ID-system) over U is a pair
〈G, (Φ,Ψ)〉, such that:

• G is a directed acyclic graph on X ∪D.

• Φ = {PX : X ∈ X}, where PX is a condi-
tional U-uncertainty function on X with scope {X} ∪
paG(X); (paG(X) means the set of parents of X , i.e.,
{Y : (Y,X) ∈ G});

• each element of Ψ is a U-utility function (whose scope is
a subset of X ∪D).

• G restricted to D is a total order, which we write as
D1, . . . , Dm.

• If (X,Di) ∈ G then (X,Dj) ∈ G for any j > i (this is
the no forgetting condition).

Collection Φ is a Bayesian network-style decomposition
of a global uncertainty distribution, namely

∏
Φ. Also,

∑
Ψ

represents the overall utility function. Hence the function⊗
(Φ,Ψ) represents the (generalised) probability times util-

ity function.
(Y,Di) ∈ G means that the value of Y is known when

choosing the value of decision variable Di. Let Si be
paG(Di) for i = 1, . . . ,m. The choice of value of Di can
therefore depend on the values of variables in Si but no oth-
ers.

A policy for this ID-system is a sequence (π1, . . . , πm)
where πi is a function from ΩSi to ΩDi ; this represents what
value of Di is chosen given the available information: the
already observed chance variables, and previous choices of
decision variables.

A policy π determines a value for each decision variable
Di (which depends on the parents set Si). Given a utility
function U involving all the chance variables X, a policy π
determines a utility function [U]π that involves no decision
variables, by assigning their values using π. The expected
utility given policy π is given by EUπ =

∑
X[
⊗

(Φ,Ψ)]π .
If the utility values set U is totally ordered with relation �
then maximum expected utility is maxπ EUπ , where max is
taken with respect to �.

213



Oil contents

Seismic results

Test?

Drill?

Drill payoff

Test payoff

Oil contents P(O)

dry wet soak

0 5 0.3 0.2

Test payoff U
1
(T)

Test?

yes -10

no 0

Drill payoff U
2
(O,D)

Oil cnt. Drill?

dry yes -70

dry no 0

wet yes 50

wet no 0

soak yes 200

soak no 0

Seismic results P(S | O,T)

Oil cnt. Test? closed open diffuse notest

dry yes 0.1 0.3 0 6 0

dry no 0 0 0 1

wet yes 0.3 0.4 0 3 0

wet no 0 0 0 1

soak yes 0.5 0.4 0.1 0

soak no 0 0 0 1

Figure 1: The oil wildcatter influence diagram.

For k = 0, . . . ,m − 1, let Ik be the set of chance node
parents of Dk+1 that are not parents of any Di, for i ≤ k.
Hence Ik is the set of chance nodes that Dk+1 depends on,
but no earlier Di depends on. We also let Im be the other
chance nodes, that are not parents of any decision node.

A legal elimination sequence for an ID-system is a per-
mutation Y1, . . . , Yn of the variables in X ∪D that extends
the relation < given by: I0 < D1 < I1 < · · · < Dm < Im,
so that, for i = 0, . . . ,m, each element X of Ii comes after
Di (if i ≥ 1) and before Di+1 (if i < m). For example,
if Yj ∈ D1 and Yk ∈ I1 then we must have j < k. (Note
that the sequence is not necessarily compatible with G, so
we could have i < j and (Yj , Yi) ∈ G, when Yi and Yj are
both chance variables.)

Let τ be a sequence Y1, . . . , Yn of different elements in
X ∪ D, and let ∨ be a disjunctive operation for U. We
define M+,∨

τ (U) to mean the result of iterative application
of the marginalisations corresponding to sequence τ , i.e.,
MY1

(MY2
(· · · (MYnU) · · · ) where MY is

∑
Y if Y is a

chance variable, and MY is
∨
Y if Y is a decision variable.

Note that the marginalisation operations are applied from
right to left, so that the Yn-marginalisation is performed first.

Suppose that U respects total order� on U . As mentioned
in Section 2.1, if we define ∨ to be maximum with respect to
�, then ∨ is a disjunctive operation. Then, for legal elimina-
tion sequence τ , M+,∨

τ

(⊗
(Φ,Ψ)

)
can be shown (e.g., using

Proposition 5 below) to be the maximum value of expected
utility over all possible policies, i.e., maxπ EUπ .
Example 1. Figure 1 shows the influence diagram of the
oil wildcatter problem (adapted from (Raiffa 1968)). An oil
wildcatter must decide either to drill or not to drill for oil
at a specific site. Before drilling, they could perform a seis-
mic test that will help determine the geological structure of
the site. The test results can show a closed reflection pattern
(indication of significant oil), an open pattern (indication of
some oil), or a diffuse pattern (almost no hope of oil). The
special value notest indicates that the test results will not be
available if the seismic test is not done. There are there-
fore two decision variables, T (Test) and D (Drill), and two

chance variables S (Seismic results) and O (Oil contents).
The probabilistic knowledge consists of the conditional

probability distributions P (O) and P (S|O, T ), while the
utility function is the sum of U1(T ) and U2(D,O); thus we
set Φ = {P (O), P (S|O, T )} and Ψ = {U1(T ), U2(D,O)}.
There is a unique legal elimination sequence: τ =
T, S,D,O (so that O is eliminated first). The maximum ex-
pected utility, which equals M+,∨

τ

(⊗
(Φ,Ψ)

)
, is thus equal

to
∨
T

∑
S

∨
D

∑
O

(⊗
(Φ,Ψ)

)
, where ∨ here means max.

The optimal policy is to perform the seismic test and to drill
only if the test results show an open or a closed pattern. The
expected utility of this policy is 22.5.

πT = yes ; πD =

{
yes if S = open
yes if S = closed
no if S = diffuse

6 Elimination Of All Variables
We show (Theorem 3 below) how all variables can be itera-
tively eliminated for an ID-system. The proof uses iterative
application of Theorems 1 and 2, where the main difficulty
is in showing that, when eliminating a decision variable D,
none of the uncertainty functions P depend on D (see the
conditions of Theorem 2). The conditions assumed on Φ in
an ID-system imply this.

Theorem 3. Let U be an uncertainty-utility values structure
with operation + on utility values, and let ∨ be a disjunctive
operation for U. Let I = 〈G, (Φ,Ψ)〉 be an ID-system over
U, and let τ be a legal elimination sequence for I. Then

M+,∨
τ

(⊗
(Φ,Ψ)

)
=
⊗(

M+,∨
τ

(
Φ,Ψ

))
.

The right-hand-side
⊗(

M+,∨
τ

(
Φ,Ψ

))
involves iterative

local computations, based on sequential elimination of vari-
ables. When eliminating (marginalising out) a variable Y
we only deal with functions involving Y : the ones not in-
volving Y are just left as they are. (The operator

⊗
on the

right-hand-side will be easy and often be redundant, since
we’ll typically just have a single utility value, representing
expected utility, when we’ve eliminated all the variables.)

Application for Totally Ordered Case: Suppose that �
is a total order on U such that +U and ×QU both respect
�, and again define ∨ to be maximum with respect to �,
which is a disjunctive operation. As observed above in Sec-
tion 5, the left-hand-side M+,∨

τ

(⊗
(Φ,Ψ)

)
in Theorem 3 is

equal to maximum value of expected utility over all possi-
ble policies, i.e., maxπ EUπ . Hence Theorem 3 implies the
correctness of an iterative variable elimination algorithm to
compute maximum expected utility. This applies to standard
probability and utility functions, and also to the simplified
order of magnitude systems defined in Section 8.5 of (Wil-
son and Marinescu 2012).

The complexity is exponential in the largest scope of a
function generated by the algorithm, which is no more than
the induced width of G′ (ordered according to the elimina-
tion sequence), where G′ is G with an additional clique S
for each input utility function with scope S.

214



7 Sets Of Utility Values For Partially
Ordered Case

Let U be an uncertainty-utility values structure and let I =
〈G, (Φ,Ψ)〉 be an ID-system over U. Suppose that the set
of utility values U is only partially ordered, by relation
�. For finite set A of utility values we can consider the
set of maximal ones max�(A) consisting of all u ∈ A
such that there does not exist a different element v ∈ A
with v � u. We are interested in policies that generate a
maximal value of expected utility, i.e., values of utility in
max� {EUπ : policies π}. Towards this aim, we consider
operations on sets of utility values (in an analogous way to
the approach taken in Section 4.3 of (Fargier, Rollon, and
Wilson 2010) for the much simpler case where there are just
utility functions, and in Section 3 of (Perny, Spanjaard, and
Weng 2005)).

7.1 Operations On Sets Of Utility Values
Consider an uncertainty-utility values structure U =
〈Q,+Q,×Q, 0Q, 1, U,+U , 0U ,×〉. We extend addition and
scalar multiplication of utilities to 2U , the set of subsets of
U , in the obvious way. For any A,B ⊆ U and q ∈ Q,
define:

A+B = {a+ b : a ∈ A, b ∈ B};
q ×A = {q × u : u ∈ A}.

Given the uncertainty-utility values structure U =
〈Q,+Q,×Q, 0Q, 1, U,+U , 0U ,×QU 〉, we define U∗ to be
the tuple U∗ = 〈Q,+Q,×Q, 0Q, 1, 2U ,+, {0U},×〉 (using
the operations on sets as just defined). We have the follow-
ing result:

Proposition 2. For any u.u.v. structure U, the associated
tuple U∗ is a weak uncertainty-utility values structure.

Unfortunately, property (∗4) (see Section 2.1) does
not hold in general for sets, so U∗ is not neces-
sarily an uncertainty-utility values structure. (q1 +
q2) × A is equal, using the property (∗4) for U, to
{(q1 × a) + (q2 × a) : a ∈ A}. On the other hand, (q1 ×
A)+(q2×A) equals {(q1 × a1) + (q2 × a2) : a1, a2 ∈ A}.
This implies that (q1 + q2) × A is a subset of (q1 ×
A) + (q2 × A). However, they will very often not be
equal. To give a simple example with bi-objective util-
ity, let q1 = q2 = 0.5, and let A = {(1, 0), (0, 1)},
using the pointwise operations on pairs of real numbers.
(q1 + q2) × A = 1 × {(1, 0), (0, 1)} = {(1, 0), (0, 1)},
whereas (q1 × A) + (q2 × A) = {(0.5, 0), (0, 0.5)} +
{(0.5, 0), (0, 0.5)} = {(1, 0), (0.5, 0.5), (0, 1)}.

However, in Section 7.3 we will define an equivalence
relation that ensures that property (∗4) holds up to equiva-
lence.

7.2 Ordering On Sets Of Utilities
We assume a partial ordering� that is respected by U, i.e.,�
is a partial order on U and operations +U and ×QU respect
�. If a � b then we say that a dominates b. We write � for
the strict part of �, so that a � b if and only if a � b and
a 6= b.

ForA ⊆ U , define max�(A), the maximal elements ofA,
to consist of all a ∈ A such that there does not exist b ∈ A
with b � a. Hence, max�(A) is the set of undominated
elements of A.

For A,B ⊆ U we say that A < B if every element of
B is dominated by some element of A (so that A contains
as least as large elements as B), i.e., if for all b ∈ B there
exists a ∈ A with a � b. Relation < on 2U is a reflexive
and transitive relation. We define equivalence relation ≈ by
A ≈ B if and only if A < B and B < A.

7.3 The Equivalence Relation ≡ Between Utility
Sets

The convex closure C(A) of a (finite or infinite) subset A
of U is defined to consist of every element of the form∑k
i=1(qi×ai), where k is an arbitrary natural number, each

ai is in A, each qi is in Q, where
∑k
i=1 qi = 1.

We will argue that certain different sets of (expected) util-
ity values can reasonably be considered as equivalent. First
of all, if A contains elements u and v with u � v, then
we can consider that A and A − {v} are equivalent. The
second consideration is based on convex closure. For clar-
ity, let’s consider the case where the uncertainty values are
probability values (but that the utility values may be partially
ordered, such as for multi-objective utility or interval-valued
utilities). If an agent can generate an expected utility value
u with policy π, and utility value u′ with policy π′ then they
may choose an independent auxiliary event E (e.g. based
on a random number generator such as rolling a die) with
chance p, and choose π if E holds and π′ otherwise. (From
the outside it may not even be possible to tell that they are
doing this, since we only see the choices they make.) The
expected utility is then pu + (1 − p)u′. More generally, if
one can achieve any of a setA of expected utility values, one
can generate any element of C(A) by using the same kind of
procedure. Thus, A and C(A) are equivalent in a natural
sense.

We define equivalence relation ≡ on subsets of U by:

A ≡ B if and only if C(A) ≈ C(B).

Two sets of utility values are therefore considered equivalent
if, for every convex combination of elements of one, there is
a convex combination of elements of the other which is at
least as good (with respect to the partial order � on U ). We
have A ≡ C(A), and, if A is finite then A ≡ max�(A).
Moreover, if A ≡ B then max�(C(A)) = max�(C(B))
(and the converse often holds). The equivalence relation
is respected by scalar multiplication, addition and union of
subsets of utility values:

Proposition 3. Let A, B and C be subsets of U , and let q
be an element of Q. Suppose that A ≡ B. Then (i) q ×A ≡
q ×B; (ii) A+ C ≡ B + C; (iii) A ∪ C ≡ B ∪ C.

As observed above, Property (∗4) does not necessarily
hold for sets of utility values. However, it does hold for
convex sets, and a corresponding property based on ≡ holds
generally:

215



Proposition 4. Consider u.u.v. structure U, written as
〈Q,+Q,×Q, 0Q, 1, U,+U , 0U ,×〉, which respects the par-
tial order �. Then the associated weak u.u.v. structure
U∗ satisfies the following variant of Property (∗4): for all
q1, q2 ∈ Q and for all A ∈ 2U , (q1 + q2)×A ≡ (q1×A) +
(q2 ×A).

8 Variable Elimination Based On Sets Of
Utilities

Let U be an u.u.v. structure that respects partial order � on
U , and let U∗ = 〈Q,+Q,×Q, 0Q, 1, 2U ,+, {0U},×〉 be the
induced weak u.u.v. structure. As well as the operation +
on sets of utility, we also define operation +′ on finite sets of
utility values byA+′B = max�(A+B). Define operation
∨ on finite subsets of U by A ∨ B = max�(A ∪ B). ∨ is
commutative and associative.

A U-utility function U can be mapped in the obvious way
to a U∗-utility function U∗ with the same scope, defined by
U∗(x) = {U(x)}. For collection Ψ of U-utility functions,
define collection Ψ∗ = {U∗ : U ∈ Ψ} of U∗-utility func-
tions.

The following result shows that u ∈ M+,∪
τ

(⊗(
Φ,Ψ∗

))
if and only if there exists some policy whose expected utility
is u. (The no forgetting condition, that the choice of value
of a decision variable can depend on all the earlier chance
variables, is crucial here.)

Proposition 5. Let I = 〈G, (Φ,Ψ)〉 be an U-ID-system,
and let τ be a legal elimination sequence for I. Then
M+,∪
τ

(⊗(
Φ,Ψ∗

))
is equal to the set of all possible

values of expected utility over all policies for I, i.e.,
{
∑

X[
⊗

(Φ,Ψ)]π : policies π}.
We now give the main result of the paper which shows

how to use an iterative variable elimination algorithm to
compute a set of utility values that is equivalent to the set
of maximal values of expected utility. The idea of the proof
is that, because of Propositions 2 and 4, U∗ is an u.u.v. struc-
ture modulo the equivalence relation. Scalar multiplication,
addition and union respect equivalence (Proposition 3). The-
orem 3 then can be applied for U∗ modulo equivalence; also
union is ≡-equivalent to ∨, and addition is ≡-equivalent to
+′.

Theorem 4. Let U be be an uncertainty-utility values struc-
ture (with operation + on utility values) that respects partial
order �. As above, let ∨ be the operation induced from �
on finite sets of utility values. Let I = 〈G, (Φ,Ψ)〉 be an
U-ID-system, and let τ be a legal elimination sequence for
I. Then,

Max<
(
M+,∪
τ

(⊗(
Φ,Ψ∗

)))
≡
⊗(

M+′,∨
τ

(
Φ,Ψ∗

))
.

By Proposition 5, the left-hand-side is the set of all opti-
mal (i.e., undominated) values of expected utility. The right-
hand-side gives an iterative variable elimination algorithm
for computing an equivalent set of utility values. This there-
fore applies for influence diagrams based on the systems de-
scribed in Section 3, involving multi-objective utility theory,
interval-valued utilities, or the order of magnitude system.

Oil contents

Seismic results

Test?

Drill?

Drill payoff

Test payoff

Oil contents P(O)

dry wet soak

0.5 0 3 0 2

Test payoff U
1
(T)

Test?

yes {(-10,10)}

no {(0,0)}

Drill payoff U
2
(O,D)

Oil cnt. Drill?

dry yes {(-70,18)}

dry no {(0,0)}

wet yes {(50,12)}

wet no {(0,0)}

soak yes {(200,8)}

soak no {(0,0)}

Seismic results P(S | O,T)

Oil cnt. Test? closed open diffuse notest

dry yes 0.1 0 3 0.6 0

dry no 0 0 0 1

wet yes 0.3 0.4 0.3 0

wet no 0 0 0 1

soak yes 0.5 0.4 0.1 0

soak no 0 0 0 1

Figure 2: A bi-objective influence diagram.

Example 2. Figure 2 displays a bi-objective influence di-
agram corresponding to the oil wildcatter decision prob-
lem from Example 1. For our purpose, we add a sec-
ond utility scale representing the damage to environment
in addition to the one that represents the decision maker’s
profit. Therefore, our aim is to find optimal policies that
simultaneously maximize profit and minimize the environ-
mental impact. Given two utility vectors ~u = (u1, u2)
and ~v = (v1, v2), the dominance relation in this case is
defined by ~u < ~v ⇔ u1 ≥ v1 and u2 ≤ v2. For
example (10, 2) < (8, 4) but (10, 2) does not dominate
(8, 1). We compute

∨
T

∑′
S

∨
D

∑′
O

(⊗
(Φ,Ψ∗)

)
, where

Φ∗ = {U∗1 (T ), U∗2 (D,O)}, and, e.g., U∗1 (T = yes) =
{(−10, 10)}. The structure of the computation is just the
same as for Example 1, but instead of standard utility func-
tions (which assign a real value to each appropriate tuple)
we have functions that assign a set of real pairs to each tu-
ple. The Pareto set max<{EUπ | policies π} contains four
elements, namely {(22.5, 17.56), (20, 14.2), (11, 12.78),
(0, 0)}, corresponding to the four optimal policies shown
below.

π π π π

Test? yes no yes no
Drill? yes (S = closed) yes (S = notest) yes (S = closed) no (S = notest)

yes (S = open) no (S = open)
no (S = diffuse) no (S = diffuse)

EUπ {(22.5, 17.56)} {(20, 14.2)} {(11, 12.78)} {(0, 0)}

Computation time and size of utility values sets: As for
the totally ordered case (see Section 6), the complexity is ex-
ponential in the largest scope of a function generated by the
algorithm. However, the main difference between the com-
putation for the partially ordered case and that for standard
influence diagrams is that, instead of a single utility values
being stored (for each assignment to the scope of a utility
function), we have a set of utility values. For the order of
magnitude calculus case, this isn’t a serious problem: for
each finite set A of utility values, there exists set B contain-

216



ing at most two utility values with B ≡ A (see Section 8.3
of (Wilson and Marinescu 2012)).

The order of magnitude influence diagrams have been im-
plemented and experimentally tested, as described in (Mari-
nescu and Wilson 2011). Problems with, for example, 50
bi-valued chance variables, 5 bi-valued decision variables
and a single utility function defined over 5 variables, were
solved in less than 1 minute by a dedicated variable elimi-
nation based algorithm. Additional experiments on selected
classes of influence diagrams also showed that as the prob-
abilistic and utility information becomes more precise, the
qualitative decision process via order of magnitude influence
diagrams becomes closer to the standard one.

For the multi-objective (or interval-valued) utility case,
the cardinality of the utility sets can get very large. We ex-
perimented with random multi-objective influence diagrams
with 5 decisions, n chance variables and involving 3, 5 and
10 objectives, respectively. The variable elimination based
algorithm was able to solve only relatively small problem
instances with n up to 25 and ran out of memory on larger
instances. For example, problems with 25 chance variables,
5 decisions and 3 objectives were solved in about 15 minutes
and had a Pareto set containing on average around 25,000 el-
ements. Our experiments showed clearly that producing the
entire Pareto set in this case is intractable even for relatively
small problems. To overcome this difficulty, we also imple-
mented an approximation algorithm that relies on the con-
cept of ε-dominance between utility values as a relaxation
of the Pareto dominance relation (Papadimitriou and Yan-
nakakis 2000). Subsequent experiments on similar problem
classes showed that the approximation algorithm scaled to
much larger problem instances (with up to 60 chance vari-
ables) compared with the exact version, while producing sig-
nificantly smaller sets of undominated utility values.

9 Related Work
The variable elimination approach we use in this paper is
based on that for standard influence diagrams, in particular,
in (Jensen, Jensen, and Dittmer 1994), which builds on pre-
vious work such as (Shachter and Peot 1992; Shenoy 1992).
The work that is closest in spirit to the current work is that
by Pralet, Schiex and Verfaillie (2009), who also consider
an axiomatic framework for generalised influence diagrams
(and other sequential decision making problems), involv-
ing a form of generalised expected utility (Chu and Halpern
2003). In contrast with our framework, Pralet et al.’s work
does not assume division (multiplicative inverses) for the
uncertainty values, which allows some more qualitative un-
certainty formalisms to be reasoned with. (The existence
of multiplicative inverses is used to generate properties we
need for convex sets of utility values.) However, Pralet et
al. focus on the case of totally ordered utility values, with
the major contribution of our paper being for the partially
ordered case.

Another general computation framework is Valuation Al-
gebra/Networks (Kohlas 2003), building on work by Shenoy
and Shafer (1990). Since it involves only one marginali-
sation operator it doesn’t apply directly for solving influ-
ence diagrams, which require a marginalisation for elimi-

nating chance nodes, and a different one for eliminating de-
cision nodes. Prakash Shenoy (1992; 2000) has developed
this kind of computational structure for solving influence di-
agrams based on standard probability and utility. A gen-
eral axiomatic framework for solving Markov Decision Pro-
cesses (which have a different and somewhat simpler struc-
ture than influence diagrams) is described in (Perny, Span-
jaard, and Weng 2005); this framework also allows utilities
to be only partially ordered. (Kikuti and Cozman 2007;
Kikuti, Cozman, and Filho 2011) allow interval probabili-
ties (which are not covered by our framework), and focus on
precise utility; similarly, (de Campos and Ji 2008).

(Diehl and Haimes 2004) consider influence diagrams
with multiple objectives (with just a single multi-objective
value node), with the solution methods involving propa-
gation of sets of utility vectors, as in the current paper,
but based on influence diagram transformations (Shachter
1986). (López-Dı́az and Rodrı́guez-Muñiz 2007) consider
generalised influence diagrams based on fuzzy random vari-
ables.

10 Discussion
The major contribution of the paper is to show how a vari-
able elimination method can be used to compute the set of
optimal values of expected utility (up to equivalence) for in-
fluence diagrams based on formalisms which involve par-
tially ordered utilities. The formalisms covered include all
those discussed in Section 3: decision making under uncer-
tainty based on multi-objective utility, a system of interval-
valued utilities, and of multi-agent expected utility, as well
as the Order of Magnitude system. Our implementations
of these show that the approach is practical for problems
of substantial size. More generally, Theorem 4 shows that
variable elimination is sound for any formalism that satis-
fies the axioms given in Section 2, i.e., that the formalism
forms an uncertainty-utility values (u.-u.v.) structure which
respects the partial order on utility values. Thus to show that
the variable elimination method applies for a formalism, one
just has to verify these axioms (which are simple to check
for a given formalism). Proposition 1 shows that the OOM
system verifies the axioms (see also (Marinescu and Wilson
2011)). Propositions 18 and 19 in Sections 9.1 and 9.2 at
the end of the (Wilson and Marinescu 2012) prove that the
systems of multi-agent expected utility, multi-objective util-
ity and of interval-valued utilities, satisfy the axioms. Hence
the variable elimination algorithm is correct for all of these
formalisms.

Our axiomatic framework complements that of (Pralet,
Schiex, and Verfaillie 2009), in that, although it requires
stronger conditions on the uncertainty functions, it allows
utility values to be only partially ordered. As mentioned
above, we have already implemented and tested our algo-
rithm approach for the order of magnitude probability and
utility case; and also for the the case of interval-valued util-
ity and multi-objective utility without trade-offs. We are
currently working on implementing the approach for multi-
objective utility with trade-offs.

We consider in this paper a straight-forward variable elim-
ination algorithm. One might improve this to efficiently

217



make use of constraints (zero values of the uncertainty and
utility functions), building, for instance, on the work of
(Pralet, Schiex, and Verfaillie 2009).

Acknowledgements
This material is based upon works supported by the Science
Foundation Ireland under Grant No. 08/PI/I1912.

Appendix
The appendix includes proofs of the four theorems, based
on some auxiliary results. The proofs of the latter, and other
results in the paper, can be found in the supplementary doc-
ument (Wilson and Marinescu 2012). In particular, the full
proofs of Theorems 1, 2, 3 and 4 are in Sections 3, 4, 6 and
7, respectively, of (Wilson and Marinescu 2012).

Proving the Chance Variable Elimination Result
(Theorem 1)
We will consider an uncertainty-utility values structure U,
and a pair (Φ,Ψ), where Φ (respectively, Ψ) is a collection
of U-uncertainty (respectively, U-utility) functions over X∪
D. We assume that each variable in X ∪ D is involved in
some element of Φ ∪Ψ.

We use two lemmas.
Lemma 1. Let P, P1 and P2 be U-uncertainty functions
over X ∪ D and let U, U1 and U2 be U-utility functions
over X ∪ D. Let Φ be a finite (multi-)set of U-uncertainty
functions, and let Ψ be a finite (multi-)set of U-utility func-
tions. Let X be a variable.
(i) (P1 ×P2)×U = P1 × (P2 ×U);
(ii) P× (U1 + U2) = (P×U1) + (P×U2); and, more

generally, P×
∑

U∈Ψ U =
∑

U∈Ψ(P×U);
(iii)

∑
X(U1 +U2) =

∑
X U1 +

∑
X U2; more generally,∑

X

∑
U∈Ψ U =

∑
U∈Ψ

∑
X U;

(iv)
∑
X(P×U) =

(∑
X P)×U if sc(U) 63 X , i.e., if U

doesn’t involve variable X;
(v)

∑
X(P×U) = P×

∑
X U if sc(P) 63 X .

As well as the notation from Section 4.1, we use the fol-
lowing notation. Let U− =

∑
U∈Ψ63X

U, and let U+ =∑
U∈Ψ3X

U. We further define

U′ =
1

PXΦ
×
∑
X

(P+ ×U+).

Lemma 2. With the notation defined above, we have:
(i) U′ =

∑
U∈Ψ3X

1
PXΦ
×
∑
X(P+ ×U);

(ii) U− + U′ =
∑

U∈Ψ′ U.
(iii)

∑
X(P+ ×U−) = PXΦ ×U−.

(iv)
∑
X(P+ ×U+) = PXΦ ×U′.

Proof: (i): By definition of U+, U′ equals 1
PXΦ
×
∑
X(P+×∑

U∈Ψ3X
U). Using Lemma 1(ii) and then (iii), this equals

1
PXΦ
×
∑

U∈Ψ3X

∑
X(P+ × U). Applying Lemma 1(ii)

again gives the result.

(ii): By part (i), U′ equals
∑

U∈Ψ3X
U−X . Hence,∑

U∈Ψ′ U =
∑

U∈Ψ63X
U +

∑
U∈Ψ3X

U−X = U− + U′.
(iii) follows from Lemma 1(iv). (iv) follows immediately

from the definition of U′. 2

Proof of Theorem 1 Let P− =
∏

P∈Φ63X
P. Using Lem-

mas 1 and 2 we have:∑
X

(∏
P∈Φ

P×
∑
U∈Ψ

U

)
=a
∑
X

(
P−×

(
P+×(U−+U+)

))
=b P− ×

∑
X

(
P+ × (U− + U+)

)
.

∑
X

(
P+×(U−+U+)

)
=c
∑
X

(
P+×U−

)
+
∑
X

(
P+×U+

)
=d PXΦ × (U− + U′).

Putting things together:

∑
X

(∏
P∈Φ

P×
∑
U∈Ψ

U

)
= P− ×PXΦ × (U− + U′)

=e
∏

P∈Φ′

P×
∑
U∈Ψ′

U.

Equality =a uses Lemma 1 (i). Equality =b uses Lemma 1
(v). Equality =c uses Lemma 1 (ii) and (iii). Equality =d

uses Lemma 2(iii) and (iv), and Lemma 1 (ii). Equality =e

uses Lemma 2(ii).

Proving the Decision Variable Elimination Result
(Theorem 2)
We’ll use the following lemma. Part (i) follows easily. The
proofs of parts (ii) and (iii) are very similar to the proofs of
(v) and (iv), respectively, of Lemma 1, using the two dis-
tributivity properties of disjunctive operation ∨.

Lemma 3. Let D be a decision variable in D, let Φ be a
collection of U-uncertainty functions over X∪D, and let P
be an U-uncertainty function over X ∪D. Let U1 and U2

be U-utility functions over X ∪D.

(i) If for all P ∈ Φ, P does not depend on D then (
∏

Φ)
does not depend on D and (

∏
Φ)−D =

∏
P∈Φ−D P.

(ii) If P does not depend on D then
∨
D(P×U) = P−D×∨

DU.
(iii) If U1 does not involve D then

∨
D(U1 +U2) = U1 +∨

DU2.

Proof of Theorem 2 Applying Lemma 3 (i) and (ii) gives∨
D

(∏
P∈Φ

P×
∑
U∈Ψ

U
)

=
∏

P∈Φ−D

P×
∨
D

∑
Ψ.

Applying Lemma 3 (iii) to U1 =
∑

Ψ63D and U2 =∑
Ψ3D gives

∨
D

∑
Ψ =

∑
Ψ63D +

∨
D

∑
Ψ3D, which

equals
∑

Ψ′′, completing the proof.

218



Proving Elimination of all Variables Result
(Theorem 3)
We use the following result.
Proposition 6. Let I = 〈G, (Φ,Ψ)〉 be an ID-system over
U, and let τ be a legal elimination sequence for I. Let τk
be the part of τ starting just after Dk, i.e., if τ is Y1, . . . , Yn
and Yj = Dk then τk is the sequence Yj+1, . . . , Yn. Let
(Φk,Ψk) be M+,∨

τk

(
Φ,Ψ

)
(where if τk is empty, Φk = Φ).

Then, M+,∨
τ

(
Φ,Ψ

)
is well defined, that is, for each k =

m, . . . , 1 and each P ∈ Φk, P does not depend on Dk.

Proof of Theorem 3: Let us write M+,∨
τ (·) as

MY1(MY2(· · · (MYn(·)) · · · ). The left-hand-side of the
theorem involves a sequence of n + 1 operators, with⊗

being the rightmost (i.e., the one applied first). The
right-hand-side involves the same operators, but with

⊗
being applied at the end, i.e., leftmost. The idea of the proof
is to use Theorems 1 and 2 to move the

⊗
incrementally

from right to left.
For i, j with 1 ≤ i ≤ j ≤ let M+,∨

τ [i:j] be an abbreviation
for the operator: MYi(MYi+1

(· · · (MYj (·)) · · · )). We also
define M+,∨

τ [1:0] to be the identity operator (i.e., that makes no
change to its operand).

For i = 0, . . . , n−1, let (Φi,Ψi) be M+,∨
τ [i+1:n](Φ,Ψ), and

so (Φ0,Ψ0) = M+,∨
τ [1:n](Φ,Ψ), which equals M+,∨

τ (Φ,Ψ).
We also define (Φn,Ψn) = (Φ,Ψ).

We’ll show, for any i = 1, . . . , n, MYi(
⊗

(Φi,Ψi)) =⊗
(MYi(Φ

i,Ψi)).
If Yi is a chance variable, so that MYi is

∑
Yi

, then this
follows by Theorem 1. Otherwise, Yi is a decision vari-
able, and MYi is

∨
Yi

. By Proposition 6, Φi doesn’t de-
pend on variable Yi, so we can apply Theorem 2 to give
MYi(

⊗
(Φi,Ψi)) =

⊗
(MYi(Φ

i,Ψi)) in this case also.
Applying operator M+,∨

τ [1:i−1] to both sides of this equa-
tion, and using the fact that MYi(Φ

i,Ψi) = (Φi−1,Ψi−1),
we have, for all i = 1, . . . , n,

M+,∨
τ [1:i](

⊗
(Φi,Ψi)) = M+,∨

τ [1:i−1](
⊗

(Φi−1,Ψi−1)).

Chaining the equalities for i = n, . . . , 1, we ob-
tain M+,∨

τ [1:n](
⊗

(Φn,Ψn)) = M+,∨
τ [1:0](

⊗
(Φ0,Ψ0)) =⊗

(Φ0,Ψ0), i.e., M+,∨
τ (

⊗
(Φ,Ψ)) =

⊗
(M+,∨

τ (Φ,Ψ)),
proving the result.

Proving Theorem 4
We first need to extend operations +′ and ∨, to enable
Lemma 4 below.

Extending operations +′ and ∨ to infinite sets: For A ⊆
U we define subset R�(A) of A to consist of all elements
of A which are not strictly dominated by some maximal el-
ement of A, that is:
R�(A) = {a ∈ A : @b ∈ max�(A) such that b � a}.

Clearly, we always have max�(A) ⊆ R�(A). If A is such
that every element of A is dominated by some maximal ele-
ment of A (in particular, this is the case if A is finite), then
R�(A) = max�(A).

Proposition 7. For any subset A of U , A ≡ R�(A) and
A ≡ C(A). If A is finite then A ≡ max�(A).

We define operation ∨ on subsets of U by A ∨ B =
R�(A∪B). Analogously, we define operation +′ on subsets
of U by A+′ B = R�(A+B).

If A and B are finite, R�(A ∪ B) = max�(A ∪ B) and
R�(A+B) = max�(A+B), so this agrees with the defi-
nitions of ∨ and +′ given in Section 8 for finite sets.

The following lemma is an immediate consequence of the
fact that for any A ⊆ U ,R�(A) ≡ A (see Proposition 7).

Lemma 4. For any subsets A,B of U , A +′ B ≡ A + B,
and A ∨B ≡ A ∪B.

Factoring U∗ by equivalence ≡: Let us write U∗ as
〈Q,+Q,×Q, 0Q, 1, 2U ,+, {0U},×〉. We define 2U≡ to be
the set of all ≡-equivalence classes of 2U . For A ∈ 2U ,
we can write [A] to mean the equivalence class contain-
ing A. The operations + and ∪ on 2U , and the scalar
multiplication × all respect the equivalence relation ≡, by
Proposition 3. Hence they give rise to well-defined opera-
tions on 2U≡ (which we use the same symbols for), and we
have, for A,B ⊆ U , and q ∈ Q, [A] + [B] = [A + B];
[A] ∪ [B] = [A ∪B]; and q × [A] = [q ×A].

Let us define the quotient U∗/≡ to be the tuple
〈Q,+Q,×Q, 0Q, 1Q, 2U≡,+U , [{0U}],×〉.

The key result below follows using Propositions 2, 4 and
the fact that the union operation ∪ is a disjunctive operation
for U∗.

Proposition 8. U∗/≡ is an uncertainty-utility values struc-
ture, and ∪ is a disjunctive operation for U∗/≡.

The result below follows immediately from Lemma 4.

Lemma 5. For any subsets A,B of U , [A] +′ [B] = [A] +
[B], and [A] ∨ [B] = [A] ∪ [B]. Hence +′ and + are the
same operation on 2U≡, and ∨ and ∪ are the same operation
on 2U≡.

Proof of Theorem 4: Probability-utility functions collec-
tion (Φ,Ψ∗) over U∗ maps to a probability utility functions
collection over U∗/≡, which we write as ([Φ], [Ψ∗]).

Proposition 8 and Theorem 3 imply that

M+,∪
τ

(⊗(
[Φ], [Ψ∗]

))
=
⊗(

M+,∪
τ

(
[Φ], [Ψ∗]

))
.

Now, by Lemma 5, +′ over U∗/≡ is exactly the same
operation as + over U∗/≡, and, similarly, ∪ and ∨ are the
same operation over U∗/≡. So we have:

M+,∪
τ

(⊗(
[Φ], [Ψ∗]

))
=
⊗(

M+′,∨
τ

(
[Φ], [Ψ∗]

))
.

This implies that

M+,∪
τ

(⊗(
Φ,Ψ∗

))
≡
⊗(

M+′,∨
τ

(
Φ,Ψ∗

))
.

The left-hand-side L of this is a finite subset of U , and so
Max�(L) ≡ L, completing the proof. (Note that the use of
∨ in the right-hand-side is always on finite sets so, for these,
A ∨B = max�(A ∪B).)

219



References
Chu, F. C., and Halpern, J. Y. 2003. Great expectations. Part
I: On the customizability of Generalized Expected Utility. In
Proc. IJCAI’03, 291–296.
de Campos, C. P., and Ji, Q. 2008. Strategy selection in
influence diagrams using imprecise probabilities. In UAI-
08, 121–128.
Diehl, M., and Haimes, Y. Y. 2004. Influence diagrams with
multiple objectives and tradeoff analysis. IEEE Transactions
On Systems, Man, and Cybernetics Part A 34(3):293–304.
Fargier, H.; Rollon, E.; and Wilson, N. 2010. Enabling local
computation for partially ordered preferences. Constraints
15(4):516–539.
Giang, P. H., and Shenoy, P. 2000. A qualitative linear util-
ity theory for spohn’s theory of epistemic beliefs. In Proc.
UAI’00, 220–229.
Goldszmidt, M., and Pearl, J. 1996. Qualitative probabilities
for default reasoning, belief revision, and causal modeling.
Artif. Intell. 84(1-2):57–112.
Jensen, F.; Jensen, F.; and Dittmer, S. 1994. From influence
diagrams to junction trees. In UAI-94, 367–363.
Kikuti, D., and Cozman, F. G. 2007. Influence dia-
grams with partially ordered preferences. In Proceedings of
3rd Multidisciplinary Workshop on Advances in Preference
Handling.
Kikuti, D.; Cozman, F. G.; and Filho, R. S. 2011. Sequential
decision making with partially ordered preferences. Artifi-
cial Intelligence, in press, doi:10.1016/j.artint.2010.11.017.
Kohlas, J. 2003. Information Algebras: Generic Structures
for Inference. Springer-Verlag.
López-Dı́az, M., and Rodrı́guez-Muñiz, L. J. 2007. Influ-
ence diagrams with super value nodes involving imprecise
information. European Journal of Operational Research
179(1):203–219.
Marinescu, R., and Wilson, N. 2011. Order-of-magnitude
influence diagrams. In UAI-11, 489–496.
Papadimitriou, C., and Yannakakis, M. 2000. On the
approximability of trade-offs and optimal access to web
sources. In IEEE Symp. on FOCS, 86–92.
Perny, P.; Spanjaard, O.; and Weng, P. 2005. Algebraic
Markov Decision Processes. In Proc. IJCAI’05, 1372–1377.
Pralet, C.; Schiex, T.; and Verfaillie, G. 2009. Sequential
Decision-Making Problems—Representation and Solution.
Wiley.
Raiffa, H. 1968. Decision analysis. Addison-Wesley.
Shachter, R., and Peot, M. 1992. Decision making using
probabilistic inference methods. In UAI-92, 276–283.
Shachter, R. 1986. Evaluating influence diagrams. Opera-
tions Research 34(6):871–882.
Shenoy, P. P., and Shafer, G. 1990. Axioms for probability
and belief function propagation. In Uncertainty in Artificial
Intelligence 4, 575–610.
Shenoy, P. 1992. Valuation-based systems for Bayesian de-
cision analysis. Operations Research 40(1):463–484.

Shenoy, P. P. 2000. Valuation network representation and so-
lution of asymmetric decision problems. European Journal
of Operational Research 121(3):579–608.
Wilson, N., and Marinescu, R. 2012. An axiomatic frame-
work for Influence Diagram computation for partially or-
dered utilities: proofs and auxiliary material. Unpublished
report, available at http://www.4c.ucc.ie/∼rmarines/kr2012-
proofs.pdf.
Wilson, N. 1995. An order of magnitude calculus. In UAI-
95, 548–555.

220




