
Answer Set Programming via Mixed Integer Programming

Guohua Liu and Tomi Janhunen and Ilkka Niemelä
Aalto University School of Science

Department of Information and Computer Science
{Guohua.Liu, Tomi.Janhunen, Ilkka.Niemela}@aalto.fi

Abstract

Answer set programming is a programming paradigm where
a given problem is formalized as a logic program whose an-
swer sets correspond to the solutions to the problem. In this
paper, we link answer set programming with another widely
applied paradigm, viz. mixed integer programming. As a the-
oretical result, we establish translations from non-disjunctive
logic programs to linear constraints used in mixed integer
programming so that the solutions to the constraints corre-
spond to the answer sets of the programs. These translations
create the basis for an extended answer set programming lan-
guage that includes linear constraints as a primitive and en-
ables more compact encodings of problems. On a practical
level, we have implemented a prototype system that com-
putes answer sets using a state-of-the-art mixed integer pro-
gramming solver. The reported experiments demonstrate the
effectiveness of this approach applied to a number of opti-
mization problems and problems with variables ranging over
large domains.

Introduction
Answer set programming (ASP) is a declarative program-
ming paradigm where a given problem is solved by devising
a logic program such that the answer sets of the program
provide the answers to the problem, i.e., solving the prob-
lem is reduced to the computation of answer sets for the
program. Answer set programming combines a simple yet
intuitive modeling language and efficient solving tools and
has been employed in a wide variety of applications as dis-
cussed by Brewka, Eiter, and Truszczyński (2011).

Although ASP has been very successful in a number of
domains, there are classes of constraints which lack full
treatment in the basic ASP modelling language. A prime
example are linear constraints over integers and reals. These
are challenging for the implementation techniques used in
state-of-the-art ASP solvers which implement a two-phase
computation of answer sets: grounding and model search.
In the grounding phase the input program containing vari-
ables and complex cardinality, aggregate, and other con-
straints is transformed to a basically propositional represen-
tation which is the starting point of the model search phase.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Although efficient grounding techniques have been devel-
oped for a range of constraints, for linear constraints and,
in particular, for variables ranging over large or infinite do-
mains, the grounding phase becomes very challenging. De-
pending on the constraints and the ranges of the variables
involved, the grounding could be infinite or finite but very
large leading to significant performance problems.

In this paper, we study the integration of linear constraints
over integers and reals to ASP so that even infinite variable
domains can be supported. To overcome the limitations of
typical grounding-based implementation techniques we in-
vestigate an alternative translation-based approach. Here we
exploit mixed integer programming (MIP), a widely applied
mathematical programming paradigm, where (optimization)
problems are modeled in terms of linear arithmetic con-
straints and the solutions to the constraints give (optimal)
solutions to the problems.

As regards technical results, we (1) establish translations
from an ASP program to a MIP program such that the an-
swer sets of the ASP program correspond to the solutions of
the MIP program; (2) formalize an extended ASP language
ASP(LC) that integrates ASP and linear constraints so that
problems involving infinite and large variable domains can
be compactly encoded; (3) develop a translation from pro-
grams in the extended language to a set of linear constraints
whose solutions capture answer sets; (4) implement an ap-
proach to answer set computation based on the translation in
a prototype system. Our preliminary experiments show the
effectiveness of this approach to optimization problems and
problems with variables ranging over large domains.

There are pioneering works on integrating ASP and con-
straint processing techniques (Balduccini 2011; Mellarkod,
Gelfond, and Zhang 2008; Gebser, Ostrowski, and Schaub
2009). In these approaches, answer sets are computed using
an ASP solver and a constraint solver together: the former
deals with ASP rules whereas the latter handles constraints
only—implying that the searches of the two solvers have
to be synchronized in a way or another. In particular, an
efficient solver is implemented in (Gebser, Ostrowski, and
Schaub 2009). In contrast, our approach is based on the
translations from ASP to MIP programs, thus, treating ASP
rules and constraints uniformly within a single formalism
and fully exploiting the capabilities of MIP solvers.

The rest of the paper is organized as follows. After defin-

32

Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning

ing some preliminary concepts, translations from pure ASP
programs to MIP programs are presented. Next, an extended
ASP language ASP(LC) supporting linear constraints is in-
troduced, discussed in terms of examples, and translated
back to a set of linear constraints. Then we describe a pro-
totype implementation of ASP(CL) and report experimental
results obtained for a number of benchmark problems. The
paper ends with a summary of related work and conclusions.

Preliminaries
In this section, we recall the main concepts of logic pro-
grams, linear constraints, and mixed integer programming.

Normal Logic Programs
A normal logic program (NLP) (or simply program) is a set
of rules of the form

a← b1, . . . , bm,not c1, . . . ,not cn. (1)

where each a, bi, and cj is a propositional atom. Atoms
and atoms preceded by ’not’ are also called literals (the lat-
ter may be emphasized as negative literals). Given a rule r
of the form (1), we introduce the following abbreviations.
The head and the body of r are defined by H(r) = a and
B(r) = {b1, . . . , bm,not c1, . . . ,not cn}, respectively. We
let B+(r) = {b1, . . . , bm} and B−(r) = {c1, . . . , cn} to
distinguish the positive and the negative parts of B(r), re-
spectively. A rule without body is a fact whose head is true
unconditionally. A rule of the form (1) without the head a
is an integrity constraint enforcing the body of the rule to
be false. We semantically treat such a rule as a shorthand
for a normal rule f ← b1, . . . , bm,not c1, . . . ,not cn,not f
where f is a new atom.

The Herbrand base of a program P , denoted At(P), is
the set of atoms that appear in its rules. A set of atoms M
satisfies an atom a if a ∈ M and a negative literal not a if
a 6∈ M , denoted M |= a and M |= not a, respectively;
M satisfies a set of literals L, denoted M |= L, if it satisfies
each literal in L;M satisfies a rule r of the form (1), denoted
M |= r, if M |= H(r) whenever M |= B(r). A set of
atomsM is a (classical) model of P , denotedM |= P , ifM
satisfies each rule of P .

An answer set of a program is in a sense “justified” model
of the program which is captured by the concept of a reduct.

Definition 1. Let P be a normal program and M a set of
atoms. The reduct of P with respect to M is defined by
PM = {H(r)← B+(r) | r ∈ P and B−(r) ∩M = ∅}.

The reduct PM does not contain any negative literals and,
hence, has a unique ⊆-minimal model. If this model coin-
cides with M , then M is an answer set of P .

Definition 2. (Gelfond and Lifschitz 1988) A set M ⊆
At(P) is an answer set (originally, a stable model) of a nor-
mal logic program P iff M is the minimal model of PM
(under set inclusion).

In general, the number of answer sets can vary, and we we
use AS(P) to denote the set of answer sets of a program P .
Example 1. Consider a logic program P consisting of:

r1: a← b. r2: a← c.
r3: b← a.
r4: c← not d. r5: d← not c.

Then AS(P) = {{a, b, c}, {d}}. To verify the set {d}, note
that P {d} consists of r1, r2, r3, and the fact d←. The result-
ing unique minimal model of P {d} coincides with {d}.

Niemelä (2008) characterizes answer sets using level
rankings. Intuitively, a level ranking of a set of atoms gives
an order in which the atoms in the set are derived and the set
is an answer set only if there is such an order for the atoms
in the set. The characterization is based on the concepts of a
supported model (Apt, Blair, and Walker 1988) and applica-
ble rules. A set of atoms M is a supported model of a pro-
gram P iffM |= P and for every atom a ∈M there is a rule
r ∈ P such thatH(r) = a andM |= B(r). For a programP
and an interpretation M ⊆ At(P) the set of M -applicable
rules PM = {r ∈ P | M |= B(r)}. Any answer set of
a normal logic program is also a supported model of the
program but the converse does not hold in general (Marek
and Subrahmanian 1992). The level ranking characteriza-
tion gives the condition under which a supported model is
an answer set.

Definition 3. Let M be a set of atoms and P a normal pro-
gram. A function lr : M → Z+ is a level ranking of M
for P iff for each a ∈ M , there is a rule r ∈ PM such that
H(r) = a and for every b ∈ B+(r), lr(a) > lr(b).

Theorem 1. (Niemelä 2008) Let M be a supported model
of a normal program P . Then M is an answer set of P iff
there is a level ranking of M for P .

Weight Constraint Programs
A weight constraint program (WCP) is a set of rules1

a←W. (2)

where W is a weight constraint of the form

l[b1 = wb1 , . . . , bm = wbm ,

not c1 = wc1 , . . . ,not cn = wcn] (3)

in which each bi and each not cj is a literal accompanied by
an integer weight. The integer number l is a lower bound.
For a weight constraint W of the form (3), we denote the set
of positive and negative literals inW byW+ = {b1, ..., bm}
andW− = {c1, ..., cn} respectively. For a rule r of the form
(2), we use W (r) to refer the weight constraint in the body
of r and define B(r) = W (r)

+ ∪ {not c | c ∈ W (r)
−},

B+(r) = W (r)
+, and B−(r) = W (r)

−.
A set of atoms M satisfies a weight constraint W of the

form (3), denoted M |= W , iff w(W,M) ≥ l, where
w(W,M) =

∑
bi∈M wbi +

∑
cj 6∈M wcj . The concept of

a model of a program is naturally extended to WCPs.

1Generally, weight constraint programs may contain rules of
more complicated form. It has been shown sufficient to consider
the rules of the given form only (Simons, Niemelä, and Soini-
nen 2002; Marek, Niemelä, and Truszczyński 2008; Janhunen and
Niemelä 2011).

33

Answer sets of weight constraint programs are defined us-
ing the reduct of weight constraints defined as: For a weight
constraint W of the form (3) and a set of atoms M , the
reduct ofW w.r.t. M , denotedWM , is the weight constraint
lM [b1 = wb1 , ..., bm = wbm] where lM = l −

∑
cj 6∈M wcj .

Definition 4. Let P be a weight constraint program and M
a set of atoms. The reduct of P with respect to M , denoted
PM , is defined by PM = {a←WM | a←W ∈ P}.
Definition 5. A set M ⊆ At(P) is an answer set of a WCP
P iff M is the minimal model of PM .

A level ranking characterization of answer sets for WCPs
is given in (Liu and You 2010) generalizing the character-
ization for NLPs. We restate the results as below for our
purposes, with the natural extensions of the concepts of a
supported model and applicable rules to WCPs.
Definition 6. Let M be a set of atoms and P a weight con-
straint program. A function lr : M → Z is a level ranking
of M for P iff for each a ∈M , there is a rule r ∈ PM such
that H(r) = a and there is a set X ⊆ M ∩W (r)+, such
that X |= W (r) and for every b ∈ X , lr(a) > lr(b).
Theorem 2. (Liu and You 2010) Let M be a supported
model of a weight constraint program P . Then M is an
answer set of P iff there is a level ranking of M for P .

Components and Defining Rules
The dependency graph of a program P is a directed graph
G = 〈V,E〉where V = At(P) andE is a set of edges 〈a, b〉
for which there is a rule r ∈ P such that H(r) = a and
b ∈ B+(r). A strongly connected component (SCC) of G is
a maximal subset S of V such that there is a path from each
vertex of S to every other vertex of S in the subgraph of G
induced by S. When referring to the SCCs of a dependency
graph in the sequel, the program will always be clear by the
context. For an atom a, we use SCC(a) to denote the SCC
containing a and |SCC(a)| gives it size.

For a program P and an atom a ∈ At(P), we define the
respective sets of defining rules, externally defining rules,
and internally defining rules by the following:

DefP (a) = {r ∈ P | H(r) = a} (4)

ExtP (a) = {r ∈ DefP (a) | B+(r) ∩ SCC(a) = ∅} (5)

IntP (a) = {r ∈ DefP (a) | B+(r) ∩ SCC(a) 6= ∅} (6)
Intuitively, there is no loop between a and the atoms in the
body of its externally defining rules. In contrast, there is a
loop between a and some atoms in the body of its any inter-
nally defining rule r ∈ IntP (a). Hence, we define the set of
internally supporting atoms IS(a, r) = SCC(a) ∩B+(r).

Linear Constraints and Mixed Integer Programs
In mixed-integer programming (MIP), the goal is to mini-
mize or maximize a linear function subject to a set of linear
constraints. A MIP program is of the form

minimize (or maximize)
n∑
i=1

cixi subject to

n∑
j=1

c1jxj ∼ k1, . . . ,
n∑
j=1

cmjxj ∼ km

where each xi is an integer or real variable and each ci, cij ,
or ki is an integer or real coefficient. The operator ∼ is one
of ≤, ≥, and =. In the program, the function

∑n
i=1 cixi is

the objective function and the linear constraints of the form
n∑
i=1

cixi ∼ k (7)

are called the constraints of the program.
A valuation ν from variables to numbers in the respective

domains is a solution of (or satisfies) a linear constraint C
of the form (7), denoted ν |= C, iff

∑n
i=1 ciν(xi) ∼ k. A

valuation ν is a solution to a set of linear constraints C =
{C1, ..., Cn}, denoted ν |= C, iff ν |= Ci for each Ci in C.
A set of linear constraints is satisfiable if it has a solution.

A valuation ν is a solution to a mixed integer program P ,
denoted ν |= P , iff ν is a solution to the constraints of P
that minimizes (or maximizes) the objective function. Note
that the objective function could be empty which is trivially
minimized (or maximized) by any valuation.

Translating Normal Programs
The goal of this section is to translate a NLP P to a MIP
program, denoted τNmip(P), so that the solutions of τNmip(P)

correspond to the answer sets of P . The translation τNmip(P)
consists of linear constraints developed below.

1. For each atom a ∈ At(P), introduce a synonymous bi-
nary variable a, i.e., an integer variable over the domain
{0, 1}. In the sequel, the symbol a denotes the atom a
when it occurs in a NLP and the binary variable a when it
appears in a linear constraint.

2. For each atom a ∈ At(P), include a = 0 if a does not
appear as the head of any rule in P , or a = 1 if a is a fact.

3. For each atom a ∈ At(P), include the constraint∑
r∈DefP (a)

bdr − |DefP (a)| · a ≤ 0 (8)

where bdr is a binary variable for each r ∈ DefP (a).
Intuitively, bdr represents the body of rule r and the con-
straint encodes that an atom a must be satisfied (valued
to 1 as a binary variable) if the body of one of its defining
rules is satisfied.

4. For each r ∈ P , include the following constraints2:∑
b∈B+(r)

b−
∑

c∈B−(r)

c− |B(r)| · bdr ≥ −|B−(r)| (9)

∑
b∈B+(r)

b−
∑

c∈B−(r)

c− bdr ≤ |B+(r)| − 1 (10)

These constraints express that the body of a rule r is sat-
isfied iff each positive and negative literal in it is satisfied.

2If r is an integrity constraint, the linear constraint bdr = 0 is
included in addition to the constraints developed here. This will
also apply to the translation of WCPs to be presented in the sequel.

34

5. For each atom a ∈ At(P), include the constraint∑
r∈ExtP (a)

bdr +
∑

r∈IntP (a)

sr − a ≥ 0 (11)

where sr is a binary variable for each r ∈ IntP (a). For in-
tuition, the binary variable sr represents the condition that
the body of the rule r is satisfied and the respective level
ranking constraints are satisfied. The constraint specifies
that the atom a must be satisfied if the body of one of its
externally defining rules is satisfied, or the body of one of
its internally defining rules and the related level ranking
constraints are both satisfied.

6. For each atom a ∈ At(P) and each r ∈ IntP (a), include
the constraints

bdr − sr ≥ 0 (12)∑
b∈IS(a,r)

gtab − |IS(a, r)| · sr ≥ 0 (13)

where gtab is a binary variable for each b ∈ IS(a, r). The
variable gtab captures the fact that the rank of a is greater
than the rank of b. The two constraints above enforce that
if sr is satisfied then both bdr and all the related ranking
constraints are satisfied.

7. For each atom a ∈ At(P), each r ∈ IntP (a), and each
b ∈ IS(a, r), include the constraint

xa − xb − |SCC(a)| · gtab ≥ 1− |SCC(a)| (14)

where xa and xb are unique integer (or real) variables in-
troduced for a and b, respectively. The variables xa and
xb hold the level ranks of atoms a and b, respectively. The
constraint guarantees that if gtab is satisfied then xa > xb.

Then, let us illustrate how the translation τNmip(P) cap-
tures the set AS(P) using the program P from Example 1.
Example 2. The constraints resulting from (8) are:

bdr1 + bdr2 − 2a ≤ 0 bdr3 − b ≤ 0
bdr4 − c ≤ 0 bdr5 − d ≤ 0

Constraints (9) and (10) yield the ones listed below

0 ≤ b− bdr1 ≤ 0 (bdr1 = b)
0 ≤ c− bdr2 ≤ 0 (bdr2 = c)
0 ≤ a− bdr3 ≤ 0 (bdr3 = a)
−1 ≤ −d− bdr4 ≤ −1 (bdr4 = 1− d)
−1 ≤ −c− bdr4 ≤ −1 (bdr5 = 1− c)

together with their simplified forms in parentheses. The sub-
stitution of these equalities to the inequalities above give us

b+ c− 2a ≤ 0 a− b ≤ 0
1− d− c ≤ 0 1− c− d ≤ 0

which have four solutions over the binary domain: ν1(a) =
ν1(b) = ν1(c) = ν1(d) = 1; ν2(d) = 0 and ν2(a) =
ν2(b) = ν2(c) = 1; ν3(c) = 0 and ν3(a) = ν3(b) =
ν3(d) = 1; or ν4(a) = ν4(b) = ν4(c) = 0 and ν4(d) = 1.
Actually, these solutions would correspond to the classical
models {a, b, c, d}, {a, b, c}, {a, b, d}, and {d} of P . Then,
adding the constraints resulting from (11)

sr1 + c− a ≥ 0 1− d− c ≥ 0
sr3 − b ≥ 0 1− c− d ≥ 0

simplified by the equations concerning bdri :s effectively ex-
cludes ν1 which falsifies the last two inequalities. Finally,
from (12), (13), and (14) we obtain in a similar way:
b− sr1 ≥ 0 a− sr3 ≥ 0
gtab − sr1 ≥ 0 gtba − sr3 ≥ 0
xa − xb − 2gtab ≥ −1 xb − xa − 2gtba ≥ −1

which together exclude ν3 because it is not extendible to a
solution as ν3(sr1) = ν3(sr3) = ν3(gtab) = ν3(gtba) = 1
would be necessary—making the residual inequalities xa −
xb ≥ 1 and xb − xa ≥ 1 unsatisfiable. Such an extension
is only possible for ν2 and ν4 which correspond to the an-
swer sets of P . For ν2, we use ν2(xa) = 1, ν2(xb) = 2,
ν2(gtab) = ν2(sr1) = 0, and ν2(gtba) = ν2(sr3) = 1 to
illustrate the feasibility of such an extension.

Our next objective is to generalize the observations made
in Example 2 and to prove that the translation τNmip(P) is
generally correct. While doing so, we extract an interpreta-
tion Mν

P from a valuation ν by setting

Mν
P = {a ∈ At(P) | ν(a) = 1}. (15)

Theorem 3. Let P be a normal logic program.
(i) If there is a solution ν to τNmip(P), then Mν

P ∈ AS(P).

(ii) IfM ∈ AS(P), then there is a solution ν to τNmip(P) such
that M = Mν

P .

Proof. We prove (i). The proof of (ii) is similar.
Let ν be a solution to τNmip(P). Let r : a ← B(r) be a

rule in P and Mν
P |= B(r). Then ν(bdr) = 1 due to (9) and

(10). Then ν(a) = 1 due to (8). So, a ∈Mν
P and Mν

P |= P .
For any a ∈ Mν

P , we have ν(a) = 1. Then either ∃r ∈
ExtP (a) s.t. ν(bdr) = 1 or ∃r ∈ IntP (a) s.t. ν(sr) = 1
due to (11). For the latter case, we have ν(bdr) = 1 due to
(12). Note that ν(bdr) = 1 iff Mν

P |= B(r) due to (9) and
(10). Then we have either ∃r ∈ ExtP (a) or ∃r ∈ IntP (a),
s.t. Mν

P |= B(r). So, Mν
P is a supported model of P .

Now we show that there is a level mapping of Mν
P . For

any a ∈ Mν
P , either ∃r ∈ ExtP (a) such that ν(bdr) = 1

or ∃r ∈ IntP (a) such that ν(sr) = 1, due to (11). The first
case is trivial. We consider the second. Since ν(sr) = 1,
then ν(bdr) = 1 due to (12). So Mν

P |= B(r) due to (9) and
(10). Then we have r ∈ PMν

P
. Also, ν(xa) > ν(xb) for each

b ∈ IS(a, r) due to (13) and (14). Then, a mapping lr(·) can
be constructed component by component by setting lr(a) =
m + ν(xa) + n where m is the maximum rank from the
SCCs preceding SCC(a) and n is a constant which makes
ν(xb) +n positive for each b ∈ SCC(a). This is compatible
with Definition 3 turning lr(·) into a level ranking of Mν

P .
Then by Theorem 1, Mν

P is an answer set of P .

Translating Weight Constraint Programs
Recall that we use W (r) to denote the weight constraint in
the body of a rule r in a WCP. The notions of defining rules,
externally and internally defining rules, and the set of in-
ternally supporting atoms are naturally generalized. More-
over, for an atom a and a rule r we define the set of ex-
ternally supporting atoms of a with respect to r by setting

35

ES(a, r) = W (r)
+ \ SCC(a). Below, we may use W+ and

W− to represent W (r)
+ and W (r)

−, respectively, when r
is clear by the context.

The translation of a WCP P , denoted τWmip(P), consists
of linear constraints developed as follows.

1. For each atom a ∈ At(P), introduce a synonymous bi-
nary variable a.

2. For each atom a ∈ At(P), include a = 0 if a does not
appear as the head of any rule in P , or a = 1 if a is a fact.

3. For each atom a ∈ At(P), include the constraint∑
r∈DefP (a)

wr − |DefP (a)| · a ≤ 0 (16)

where wr is a binary variable for each r ∈ DefP (a).
4. For each rule r ∈ P , include the constraints∑

b∈W+

wb · b−
∑
c∈W−

wc · c− l · wr ≥ −
∑
c∈W−

wc

(17)∑
b∈W+

wb · b−
∑
c∈W−

wc · c

− (
∑
b∈W+

wb +
∑
c∈W−

wc + 1− l) · wr ≤ l −
∑
c∈W−

wc − 1

(18)

5. For each atom a ∈ At(P), include the constraint∑
r∈ExtP (a)

wr +
∑

r∈IntP (a)

wrs − a ≥ 0 (19)

where wrs is a binary variable for each r ∈ IntP (a).
6. For each atom a ∈ At(P) and each r ∈ IntP (a), include

the constraints∑
b∈ES(a,r)

wb · b+
∑

b∈IS(a,r)

wb · sb −
∑
c∈W−

wc · c

− l · wrs ≥ −
∑
c∈W−

wc (20)

∑
b∈ES(a,r)

wb · b+
∑

b∈IS(a,r)

wb · sb −
∑
c∈W−

wc · c

− (
∑
b∈W+

wb +
∑
c∈W−

wc + 1− l) · wrs

≤ l −
∑
c∈W−

wc − 1 (21)

where sb is a binary variable for each b ∈ IS(a, r).
7. For each atom a ∈ At(P), each r ∈ IntP (a), and each

atom b ∈ IS(a, r), include the constraints

sb − b ≤ 0 (22)
xa − xb − |SCC(a)| · sb ≥ 1− |SCC(a)| (23)

where xa and xb are unique integer variables introduced
for a and b, respectively.

The idea of τWmip(P) is very similar to that of τNmip(P), where
the binary variables wr, wrs , and sb are counterparts of bdr,
sr, and gtab, respectively and the constraints (16)–(18) are
counterparts of (8)–(10), respectively. The subtleties lie in
the constraints (19)–(23) which encode the constraints (11)–
(14) in the more complex case of WCPs as illustrated below.

For an atom a and its internally defining rule r, the dif-
ficulty in the translation is how to encode the relations be-
tween the rank of a and the ranks of the atoms inW (r)

+: the
rank of a does not have to be greater than the rank of each
atom in W (r)

+, but only the ranks of atoms in some subset
of W (r)

+ that suffices to satisfy W (r). This is captured by
constraints (19)–(23).
Example 3. Consider a program P consisting of the rules:

a← 1[b = 1, c = 1]. b← a. c← a. b.

The essential aspect of the first rule, say r1, is that if a is
derived then b is derived earlier than a, or c is derived earlier
than a. This implication is encoded by the constraint (19) in
the translation τWmip(P) which simplifies in this case to

wr1s − a ≥ 0 (24)

It is easy to check that if a = 1 then wr1s = 1.
The disjunctive aspect is encoded by (20) and (21), i.e.:

sb + sc − wr1s ≥ 0 (25)
sb + sc − 2wr1s ≤ 0 (26)

It can be seen that wr1s = 1 iff either sb = 1 or sc = 1. The
conjunctive aspects are encoded by (22) and (23):

sb − b ≤ 0 xa − xb − 3sb ≥ −2 (27)
sc − c ≤ 0 xa − xc − 3sc ≥ −2 (28)

It can be verified that if sb = 1 then b = 1 and xa > xb and
the constraints for sc act similarly.

The constraints from (24) to (28) together with the other
constraints in τWmip(P) have a solution ν with ν(a) = ν(b) =

ν(c) = 1 corresponding to the answer set {a, b, c}.
Theorem 4. Let P be a weight constraint program.

(i) If there is a solution ν to τWmip(P), then Mν
P defined by

(15) belongs to AS(P).
(ii) IfM ∈ AS(P), then there is a solution ν to τWmip(P) such

that M = Mν
P as defined by (15).

The theorem follows from the translation τWmip(P), Defi-
nition 6, and Theorem 2. The proof of the theorem is similar
to that of Theorem 3.

As a WCP can be translated to a NLP (Janhunen and
Niemelä 2011), a straightforward way to translate a WCP
to a MIP program is first translating it to a NLP and then
translating the NLP to a MIP program using the translation
in the previous section. But transforming a WCP to a NLP
introduces extra atoms and rules that turn the straightforward
transformation inefficient. The native translation of a WCP
provided in this section avoids many extra atoms and rules.

NLPs are a special case of WCPs as formula (1) can be
obtained from (2) by substituting l with m + n and each
weight by 1. We present the translations for NLPs and

36

WCPs respectively, since the integrated language ASP(LC),
as to be introduced later, is based on the syntax of NLPs and
hence we can exploit the translation of NLPs in a modular
way. The translation of WCPs is devised orthogonally to the
translation of ASP(LC) programs.

Translating Optimization Statements
Optimization statements in an ASP program take the form:

minimize (or maximize)
[a1 = wa1 , ..., am = wam ,not b1 = wb1 , ...,not bn = wbn]

where each ai and each not bj is a literal andwai :s andwbj :s
are weights associated with them, respectively.

An answer set is optimal if the sum of weights of literals
that hold is minimal (or maximal) as required by the state-
ment, amongst all answer sets of the given program. Multi-
ple optimization statements can be reduced to a single one
as shown in (Simons, Niemelä, and Soininen 2002). An op-
timization statement can be straightforwardly encoded as a
MIP objective function

minimize (or maximize)
wa1 · a1 + ...+ wam · an − wb1 · b1 − ...− wbn · bn (29)

where each ai and each bj is a binary variable.

The Integrated Language
In this section, we extend normal logic programs to include
linear constraints. Weight constraint programs can be ex-
tended in a similar way. However, for the sake of simplicity,
we present the case of NLPs and linear constraints only.

A logic program with linear constraints, or an ASP(LC)
program, is a set of rules of the form

a← b1, . . . , bm,not c1, . . . ,not cn, t1, . . . , tl (30)

where each a, bi, and cj is a propositional atom. As before,
we use At(P) to denote the propositional atoms in a pro-
gram P . Each tk, called theory atom, is a linear constraint
of the form (7). The variables in theory atoms, i.e., the MIP
variables in linear constraints, such as xi in the formula (7),
are called free constants3. For a rule r of the form (30),
the set of theory atoms {t1, . . . , tl} is called the theory part
of the body of r and denoted by Bt(r). Using our previ-
ous definitions from the section on preliminaries, we obtain
B(r) = B+(r) ∪ {not c | c ∈ B−(r)} ∪ Bt(r). Com-
paring (30) to (1), the integrated language extends the pure
ASP language in terms of theory atoms used as additional
conditions in rule bodies.

For a theory atom t, we use ¬t to denote the linear con-
straint of the form (7) where ∼ is the complementary of the
operator in t. For a ASP(LC) program P , an interpretation
I is a pair 〈M,T 〉 where M ⊆ At(P) and T is a subset of
theory atoms appearing in P such that T ∪ T̄ is satisfiable
in linear arithmetics where T̄ is the set of linear constraints

3The term free constant is to distinguish MIP variables from
ASP variables in the integrated language, borrowed from the SAT
Modulo Theories literature (Nieuwenhuis, Oliveras, and Tinelli
2006). Further details are discussed at the end of this section.

containing ¬t for each theory atom t appearing in P but not
in T . An interpretation I = 〈M,T 〉 satisfies a propositional
atom, a literal, a theory atom, or a rule if and only if the
set M ∪ T satisfies them as defined in the section of normal
logic programs, respectively, and they will be denoted in the
same way as in the previous section.

An interpretation I is a model of P , denoted I |= P , if
and only if I satisfies all rules of P . Now, we generalize
Definitions 1 and 2 as follows.
Definition 7. Let P be a logic program with linear con-
straints and 〈M,T 〉 an interpretation. The reduct of P
with respect to 〈M,T 〉 is defined by P 〈M,T 〉 = {H(r) ←
B+(r) | r ∈ P, B−(r) ∩M = ∅, and Bt(r) ⊆ T}.
Definition 8. An interpretation 〈M,T 〉 of a program P is
an answer set of P , iff 〈M,T 〉 |= P and M is the minimal
model of P 〈M,T 〉.
Example 4. Let P be a program consisting of the rules:

a← x > z. ← not a.
b← x ≤ y. b← c.
c← b, y ≤ z.

Here a, b, and c are propositional atoms whereas the symbols
x, y, and z are free constants. Consider the interpretation
I1 = ({a}, {x > z}). It is an answer set of P , since the
set {(x > z),¬(x ≤ y),¬(y ≤ z)} is satisfiable in linear
arithmetics, I1 |= P , and the set {a} is the minimal model
of the reduct P I1 = {a ←; b ← c}. On the other hand, the
interpretation I2 = ({a, b, c}, {x > z, x ≤ y, y ≤ z}) is
not an answer set, since {(x > z), (x ≤ y), (y ≤ z)} is not
satisfiable. Finally, consider I3 = ({a, b, c}, {x > z, y ≤
z}). It is not an answer set as {a, b, c} is not the minimal
model of the reduct P I3 = {a←; b← c; c← b}.

It can be verified that the semantics given by Definition 8
coincides with Definition 2 if no theory atoms are present.

So far we have discussed only ground (propositional)
logic programs. The treatment can generalized to non-
ground programs by using Herbrand interpretations. We use
the logic program convention to write ASP variables starting
with a capital letter. For example,

r(X)← r(Y), edge(X,Y). (31)

is a rule with two ASP variables X and Y . The idea is to
treat such a rule with variables as a shorthand for its Her-
brand instantiations where the variables in the rule are re-
placed by terms in the Herbrand universe of the program.
The universe contains all ground terms constructible out of
constant and function symbols appearing in the program.
Now answer sets of a non-ground program are defined as
the answer sets of the full grounding of the program, i.e., the
set of all possible Herbrand instantiations of its rules. No-
tice that a function symbol in a program makes its Herbrand
universe infinite and leads to undecidability. Hence, in or-
der to preserve decidability, restrictions on the use of func-
tion symbols are needed. Here we assume for simplicity that
function symbols are not allowed.

Note that the free constants in the theory atoms, e.g., x, y,
and z in Example 4, are treated differently from ASP vari-
ables and ASP constants in the rules as they can vary over

37

a range of values when determining the satisfiability of the
corresponding theory atoms. However, our non-ground in-
tegrated language supports interaction of free constants and
ASP variables to enable uniform encodings where arrays of
related free constants can be easily represented. The idea is
to allow free constants indexed by ASP variables such as the
free constants x (Q1) and x (Q2) in the rule

← queen(Q1), queen(Q2), x (Q1)− x (Q2) = 0.

Once such a rule is grounded, the ASP variables Q1 and
Q2 will be substituted by ground terms from the Herbrand
universe of the program in question. The resulting ground
terms of the form x (t) will be treated as free constants when
the satisfaction of theory atoms is considered.

Encoding Problems in ASP(LC)
Next we illustrate the use and advantages of our integrated
language ASP(LC) by discussing a scheduling problem,
namely the simplified job shop problem, where the goal is
to find a schedule for a number of tasks. In the problem,
the time domain, i.e., the range of values of possible start-
ing and ending points of tasks, can be taken to be discrete
but is usually very large compared to the number of tasks.
Similar characteristics are typical in many real-life applica-
tions such as resource allocation, timetabling, and complex
manufacturing with multiple production lines.
Example 5 (Job shop problem). We are given a number of
tasks and a deadline. Assume that the problem instance is
given as a set of facts of the form tk(i, e, d) denoting that the
task i has the earliest starting time e and duration d that it
takes to complete as well as a constant deadline denoting the
deadline in the problem. The execution of the tasks cannot
overlap. The goal is to find a schedule to finish all the tasks
before the deadline.

We start by analyzing difficulties arising in such appli-
cations when using standard ASP. To encode the problem
in pure ASP, a typical approach is to introduce predicates
time(T), st(I, T), and en(I, T) to denote the domain of time
T , the starting and ending times of task I , respectively. In
addition, choice rules for selecting possible starting and end-
ing times are needed plus a set of integrity constraints elimi-
nating non-valid combinations of starting and ending times.

Although the constraints can be stated very intuitively and
compactly using rules with variables, ASP solvers have dif-
ficulties in handling such constraints. This is because they
are based on a two phase implementation technique where
they first perform the grounding step, i.e., compute a rel-
evant part of the full grounding preserving answer sets and
then use a search algorithm for computing answer sets of the
grounded program. However, even state-of-the-art ground-
ing techniques produce very big grounded programs when
the time domain is large. We illustrate this with an integrity
constraint enforcing enough execution time for each task:

← st(I, T1), en(I, T2), T2 − T1 < D, tk(I, E,D),

time(T1), time(T2). (32)

Here we have two variables T1 and T2 ranging over the time
domain and the number of rules after grounding is quadratic

in the size of the time domain. Hence, if the size is in the
thousands, the number of ground rules is in the millions.

Now we show how to solve the problem using our in-
tegrated language ASP(LC). In ASP(LC), we can treat the
starting and ending times as free constants ranging over in-
tegers and index them by the tasks, i.e., we introduce terms
s(I) and e(I) to denote the starting and ending times of
task I , respectively. Then the problem can be encoded in
ASP(LC) in a very compact way:

← s(I) < E, tk(I, E,D). (33)
← e(I)− s(I) < D, tk(I, E,D). (34)
← s(I1) ≤ s(I2), s(I2) ≤ e(I1),

tk(I1, E,D), tk(I2, E,D). (35)
← e(I) > deadline, tk(I, E,D). (36)

The rule (33) says that no task can begin before its earliest
starting time; (34) enforces enough execution time for each
task; (35) guarantees no overlap in task executions; and (36)
requires tasks to be finished before the deadline.

When comparing with the standard ASP approach, the
main difference is that the encoding does not contain any
ASP variables ranging over the time domain but the starting
and ending times are treated as free constants ranging over
integers. In the next section we show how to implement such
rules so that free constants need not to be grounded over in-
tegers. This is achieved by translating the rules completely
to a set of linear constraints.

Translating ASP(LC) Programs
The translation of an ASP(LC) program consists of two
steps. First, an ASP(LC) program is normalized to a normal
logic program and a naming program. Second, the normal
logic program and the naming program are translated to sets
of linear constraints, respectively. The union of the sets of
linear constraints is the translation of the ASP(LC) program.

Given an ASP(LC) program P , a rule of the form (30) is
normalized as a rule

a← d1, ..., dl, b1, ..., bm,not c1, ...,not cn. (37)

and a set of naming rules

di ← ti. (38)

where i ranges from 1 to l and each di is a newly introduced
propositional atom used as a name for ti.

Given an ASP(LC) program P , the respective normal-
ized program NT(P) consists of two parts: the normal part
NPart(P), a set of normalized rules of the form (37), and
the theory part TPart(P), a set of rules of the form (38).
According to the semantics of ASP(LC) programs, we can
establish the following.

Theorem 5. Let P be a logic program with linear con-
straints and 〈M,T 〉 an interpretation. Then 〈M,T 〉 ∈
AS(P) iff there is a set D ⊆ At(TPart(NT(P))) such
that (M ∪ D) ∈ AS(NPart(NT(P)) ∪ D) and 〈D,T 〉 ∈
AS(TPart(NT(P))).

38

As discussed above, we will use naming programs to for-
malize the translation of the theory part of a normalized pro-
gram. In general, naming rules are of the form

d← t (39)

where d is a propositional atom and t is a theory atom.
Moreover, we assume that rules in a naming program do
not share any propositional atoms. So, the atom d can be
intuitively viewed as a unique name for the theory atom t.

We use indicator constraints for a convenient presentation
of our translation. A indicator constraint is of the form

b = v → C (40)

where b is a boolean variable, v is a value from {0, 1}, and
C is a linear constraint of the form (7). Intuitively, the value
of b indicates whether or not the constraint C is satisfied.
For example, b = 1 → x ≥ 0 says that if the value of b is 1
then xmust be greater than or equal to 0. Note that indicator
constraints can be encoded as linear constraints using the
so-called big-M formulations.4

Let P be a naming program. The translation of P , de-
noted τNa

mip(P), consists of the following constraints for each
rule r of the form (39) in P .

d = 1→ t (41)
d = 0→ ¬t (42)

The theorem below follows from the translation.
Theorem 6. Let P be a naming program.

(i) If there is a solution ν to τNa
mip(P), then 〈D,T 〉 ∈ AS(P)

where 〈D,T 〉 is an interpretation, D equals to Mν
P de-

fined by (15), and T = {t | d← t ∈ P and ν |= t}.
(ii) If 〈D,T 〉 ∈ AS(P), then there is a solution ν to τNa

mip(P)
such that D = Mν

P as defined by (15) and
T = {t | d← t ∈ P and ν |= t}.

Now, we are ready to define the translation τmip(P) of an
ASP(LC) program P as the union

τNmip(NPart(NT(P))) ∪ τNa
mip(TPart(NT(P)))

where τNmip(·) is applied as defined in the translation of NLPs
except that naming atoms d are not assigned to 0. The fol-
lowing result is implied by Theorems 3, 5, and 6.
Theorem 7. Let P be an ASP(LC) program.

(i) If there is solution ν to τmip(P), then 〈M,T 〉 ∈ AS(P)

where 〈M,T 〉 is an interpretation, M = Mν
P as defined

by (15), and T = {t | d← t ∈ NT(P) and ν |= t}.
(ii) If 〈M,T 〉 ∈ AS(P), then there is a solution ν to τmip(P)

such that M = Mν
P as defined by (15) and

T = {t | d← t ∈ NT(P) and ν |= t}.
Given Theorem 7, the integrated language ASP(LC) can

be implemented using a suitable back-end solver for linear
constraints. There are many MIP solvers available for this
purpose. However, notice that in the translation strict in-
equality is used in one constraint (42) while typical MIP

4Please refer to the User’s Manual of CPLEX v12.2.

implementations allow only non-strict inequalities. Hence,
the integrated language with linear constraints over integers
can be implemented using a MIP solver as for integers strict
inequalities can be replaced by non-strict ones straightfor-
wardly. This allows also the sophisticated MIP optimization
techniques to be used for implementing the ASP optimiza-
tion statements. The integrated language with linear con-
straints over reals can be handled, e.g., using an extended
Simplex method (Dutertre and de Moura 2006) for decid-
ing satisfiability of such constraints. However, the method
does not directly support implementing the ASP optimiza-
tion statements simultaneously.

As regards the space efficiency of our translations, it is
easy to verify the following result where the size of logic
program P means the number of atom occurrences in it.
Theorem 8. Let P be a normal, weight constraint, or
ASP(LC) program. The numbers of variables and con-
straints in the respective translations τNmip(P), τWmip(P), and
τmip(P) are linear in the size of P .

Implementation
We implemented a system called MINGO that supports the
extended ASP language ASP(LC), using existing off-the-
shelf ASP and MIP tools, and other Unix/Linux tools. The
architecture of the implementation is outlined as below.

(i) An input program is grounded by the existing ASP
grounder GRINGO, where theory atoms are represented by
special relational predicates with reserved names, e.g., 2a+
3b ≤ 7 is represented by mleq(2, a, 3, b, 7) and special do-
main predicates are reserved to declare the types of the argu-
ments of the relational predicates, e.g., int(a) declares that
a is a free integer constant and not an ASP constant.

(ii) The ground program is then translated into a MIP pro-
gram using a tool LP2MIP that implements our translation
presented in previous sections.

(iii) The relevant type information, e.g., the int(a), is ex-
tracted from the ground program and incorporated as type
declarations to the MIP program.

(iv) The theory atoms are extracted from the ground pro-
gram and expanded into respective linear constraints using a
standard macro processor M4.

(v) The MIP solver CPLEX is then invoked to compute
a solution to the MIP program (if any) and mapped back
to an answer set of the original program. Note that CPLEX
supports non-strict inequalities only and our system supports
theory atoms involving free integer constants only.

This implementation is justified by Theorem 7.

Experiments
In this section, we compare MINGO with the state-of-the-
art ASP solvers CLINGCON (Gebser, Ostrowski, and Schaub
2009) and CLINGO (Gebser, Kaufmann, and Schaub 2009)
using a number of benchmarks. The results are reported in
Tables 1 and 2. The system CLINGO supports pure ASP lan-
guage only and CLINGCON is an extension of CLINGO that
supports linear constraints with infinite domains. The ex-
periments are run on a Linux node (in a shared cluster) with
2.4GHz CPUs and 2.7G RAM. The cut off time is set to 600

39

seconds and running times greater than that are indicated by
a dash ’–’ in the tables.

The benchmarks5 were designed to evaluate three aspects
of the performance of MINGO: optimization, dealing with
variables with large domains, and both. The first five bench-
marks in Table 1 are optimization problems, the three in the
middle are problems with large domains, and the last two
involve both optimization and variables with large domains.

In Table 1, the running time and the number of solved
instances are reported for each benchmark. The second col-
umn contains the total number of instances for each bench-
mark. The following columns present numbers of solved
instances and the average time to solve them for each sys-
tem. We can see that MINGO is more efficient than other
systems for optimization problems. Specifically, it is orders
of magnitude faster than CLINGCON and CLINGO for the
knapsack and subset sum problems and it can solve a num-
ber of instances for the dominating set and traveling sales
person problems while the others cannot. In these optimiza-
tion benchmarks, all constraints are encoded in pure ASP.
Regardless of that CPLEX is performing surprisingly well.

For problems involving large variable domains, CLING-
CON is the best one and MINGO is more efficient than
CLINGO. The lesson we learned here is that encoding bench-
mark problems in the integrated language and making use of
linear constraints is preferable in answer set programming.

For problems involving both optimization and large vari-
able domains, MINGO is the best for maximization but the
worst for minimization. This may be due to the optimization
algorithm used in CLINGO based systems. For this group,
CLINGO is better than CLINGCON. Our conjecture is that
CLINGCON incurs overhead due to interaction between the
ASP solver and the constraint solver.

In Table 2, we present the size growth tendency for the
ground programs of the job shop problem. Recall that the
job shop problem involves a large time domain. In the en-
codings used for MINGO, the starting and ending times are
free constants and in that for CLINGO, they are ASP vari-
ables. The first column of the table is the size of the time
domain. The second and third columns show how the size
of the ground programs increases. The size of the small-
est ground program is set to 1 and the ratios of the bigger
ground programs follow. It can be seen that the size in-
creases linearly for the encoding in ASP(LC) and cubicly
for the encoding in pure ASP language. Similar behavior
can be observed for other problems such as the newspaper
and sorting problems and we also expect similar advantage
that can be achieved by using CLINGCON. This indicates the
reason why the use of free constants of MINGO or the similar
constructs of CLINGCON is preferable.

We also tried out 516 benchmark instances from the cat-
egory of NP-complete problems used in the Second ASP
Competition (Denecker et al. 2009). In the encodings of
these benchmarks, primitives provided by MINGO are not
used and the linear constraints are encoded in pure ASP lan-
guage. It turns out that MINGO is less efficient than CLINGO:

5The MINGO system and benchmarks can be found under
http://research.ics.aalto.fi/software/asp/

MINGO finishes 306 while CLINGO finishes 465 out of 516.
It seems that for these kinds of problems involving only bi-
nary variables and constraints, the performance of CPLEX is
not as competitive as state-of-the-art ASP solvers.

Selecting a solver for a particular answer set computa-
tion task is a non-trivial issue. Our experiences suggest the
following: In transformation based approaches, it is highly
important to choose a solver for which a concise, preferably
linear transformation from ASP languages to the solver in-
put language is available as achieved in this paper. Generally
speaking, it is hard to specify the most suitable solver for a
particular problem in advance. In practice, we recommend
to experiment with a number of solvers on small problem in-
stances before determining one for solving larger instances.

Related Work
In (Bell et al. 1994), a translation from a logic program to
a MIP program is presented. In the approach, the solutions
to the MIP program do not correspond to the answer sets of
the logic program but its supported models. To compute the
answer sets, an extra check procedure is needed to filter out
the supported models that are not answer sets. This is be-
cause the translation actually corresponds to the completion
of a logic program and no ranking constraints are included.

There are translations from logic programs to clauses
in classical propositional logic (Lin and Zhao 2004) and
pseudo-Boolean constraints (Liu and Truszczyński 2006),
where the solutions to the translated formulas correspond to
the answer sets of the program. However, these translations
are exponential, i.e., the number of formulas resulting from a
program is exponential in the size of the program, since they
are based on a notion of loop formulas the number of which
is exponential in the size of a program. Janhunen (2004)
presents a sub-quadratic translation which is basically linear
but involves a logarithmic factor. In contrast, our translation
is linear in the size of a program as the constraints enforced
by the loop formulas are captured by the ranking constraints
the number of which is linear in the size of a program.

Translations from normal logic programs to difference
logic are studied in (Niemelä 2008) and (Janhunen, Niemelä,
and Sevalnev 2009). Actually, the linear constraint encod-
ings presented in this paper lead to a simpler translation from
logic programs to difference logic theories. Given a normal
program P , an analogous translation into difference logic
takes place as follows.

1. For each r ∈ P , include a formula
bdr ↔ B+(r) ∧ ¬B−(r) (43)

where bdr is a propositional atom introduced for B(r).
2. For each atom a ∈ At(P), include formulas∨

r∈DefP (a)

bdr → a (44)

a→
∨

r∈ExtP (a)

bdr ∨

∨
r∈IntP (a)

(bdr ∧
∧

b∈IS(a,r)

xa > xb) (45)

40

Benchmark Instance MINGO CLINGCON CLINGO
solved time solved time solved time

Dominating Set 29 6 370.42 0 – 0 –
Knapsack 100 100 8.92 50 109.98 80 140.61
Subset Sum 130 130 0.02 130 2.64 110 55.55
Traveling Sales 29 12 313.90 0 – 0 –
Warehouse 100 100 74.19 30 168.50 30 163.29
Job Shop 100 100 7.79 100 0.03 70 118.83
Newspaper 100 100 0.66 100 0.01 60 42.79
Sorting 100 100 22.40 100 0.42 50 52.02
Routing Max 100 100 12.25 100 265.12 100 162.28
Routing Min 100 80 101.61 90 0.82 100 0.01

Table 1: Performance Comparison

Job Shop
Range MINGO CLINGO
50 1 1
100 1.97 8.14
150 2.97 28.48
200 3.98 68.53
250 4.98 135.04
300 5.98 235.22
350 6.98 375.06
400 7.98 562.33
450 8.98 801.19
500 9.98 1098.21

Table 2: Space Complexity

where xa and xb are integer variables in difference logic.

We denote the set of formulas {(43), (44), (45)} by
τNdl(P). The difference between τNdl(P) and the translation
in (Niemelä 2008) goes back to the formula (45). In τNdl(P),
we distinguish the externally and internally defining rules
and the ranking constraints are enforced only for the atoms
in the bodies of internally defining rules, while in the pre-
vious translation, the external and internal defining rules are
not distinguished and the ranking constraints are enforced
for atoms in the bodies of both of them. The translation in
(Janhunen, Niemelä, and Sevalnev 2009) also distinguishes
the externally and internally defining rules. But, to formal-
ize the difference, a number of extra propositional atoms and
formulas are introduced which are not used in τNdl(P).

We also note the work on translations between proposi-
tional logic and integer programming formulas (Li, Zhou,
and Du 2004). We investigate transformations of ASP rules
to MIP formulas that enable the integration of ASP and MIP.

Conclusion
In this paper, we relate ASP and MIP by establishing transla-
tions from ASP to MIP. These translations provide a promis-
ing way to extend ASP with linear constraints. We pro-
pose an extended language with linear constraints making
infinite domain variables available for modeling in the ASP
framework and facilitating compact encodings of problems
involving large variable domains. We have implemented
an answer set computation approach where answer sets of
programs in the extended language are computed using a
MIP solver back-end. The effectiveness of the approach is
demonstrated in a number of experiments. These results cre-
ate new opportunities to combine the expressive and com-
putational capacities of ASP and MIP paradigms for knowl-
edge representation and reasoning—opening up interesting
possibilities for further investigations.

References
Apt, K.; Blair, H.; and Walker, A. 1988. Towards a the-
ory of declarative knowledge. In Foundations of Deductive
Databases. Morgan Kaufmann. Chapter 2.

Balduccini, M. 2011. Industrial-size scheduling with
ASP+CP. In Proc. LPNMR’11, volume 6645 of LNCS, 284–
296.
Bell, C.; Nerode, A.; Ng, R. T.; and Subrahmanian, V. S.
1994. Mixed integer programming methods for computing
nonmonotonic deductive databases. J. ACM 41(6):1178–
1215.
Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
set programming at a glance. Commun. ACM 54(12):92–
103.
Denecker, M.; Vennekens, J.; Bond, S.; Gebser, M.; and
Truszczynski, M. 2009. The second answer set program-
ming competition. In Proc. LPNMR’09, 637–654.
Dutertre, B., and de Moura, L. M. 2006. A fast linear-
arithmetic solver for DPLL(T). In Proc. CAV, 81–94.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2009. Conflict-
driven answer set solver clasp: Progress report. In Proc.
LPNMR’09, 509–514.
Gebser, M.; Ostrowski, M.; and Schaub, T. 2009. Constraint
answer set solving. In Proc. ICLP’09, 235–249.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Proc. ICLP’88, 1070–
1080.
Janhunen, T., and Niemelä, T. 2011. Compact trans-
lations of non-disjunctive answer set programs to propo-
sitional clauses. In Michael Gelfond’s 65th Anniversary
Festscrift, volume 6565 of LNCS, 111–130.
Janhunen, T.; Niemelä, I.; and Sevalnev, M. 2009. Comput-
ing stable models via reductions to difference logic. In Proc.
LPNMR’09, 142–154.
Janhunen, T. 2004. Representing normal programs with
clauses. In Proc. ECAI’04, 358–362.
Li, R.; Zhou, D.; and Du, D. 2004. Satisfiability and in-
teger programming as complementary tools. In Proc. ASP-
DAC’04, 879–882.
Lin, F., and Zhao, Y. 2004. ASSAT: Computing answer sets
of a logic program by SAT solvers. Artificial Intelligence
157(1-2):115–137.
Liu, L., and Truszczyński, M. 2006. Properties and appli-

41

cations of programs with monotone and convex constraints.
JAIR 7:299–334.
Liu, G., and You, J.-H. 2010. Level mapping induced
loop formulas for weight constraint and aggregate logic pro-
grams. Fundam. Inform. 101(3):237–255.
Marek, V., and Subrahmanian, V. 1992. The relationship
between stable, supported, default and autoepistemic seman-
tics for general logic programs. TCS 103:365–386.
Marek, V.; Niemelä, I.; and Truszczyński, M. 2008. Logic
programs with monotone abstract constraint atoms. TPLP
8(2):167–199.
Mellarkod, V. S.; Gelfond, M.; and Zhang, Y. 2008. In-
tegrating answer set programming and constraint logic pro-
gramming. Annals of Math. and AI 53(1-4):251–287.
Niemelä, I. 2008. Stable models and difference logic. An-
nals of Math. and AI 53(1-4):313–329.
Nieuwenhuis, R.; Oliveras, A.; and Tinelli, C. 2006. Solv-
ing SAT and SAT modulo theories: From an abstract Davis-
Putnam-Logemann-Loveland procedure to DPLL(T). JACM
53(6):937–977.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extend-
ing and implementing the stable model semantics. Artificial
Intelligence 138(1-2):181–234.

42

