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Abstract

We introduce the framework of qualitative optimization prob-
lems (or, simply, optimization problems) to represent prefer-
ence theories. The formalism uses separate modules to de-
scribe the space of outcomes to be compared (the generator)
and the preferences on outcomes (the selector). We consider
two types of optimization problems. They differ in the way
the generator, which we model by a propositional theory, is
interpreted: by the standard propositional logic semantics,
and by the equilibrium-model (answer-set) semantics. Un-
der the latter interpretation of generators, optimization prob-
lems directly generalize answer-set optimization programs
proposed previously. We study strong equivalence of opti-
mization problems, which guarantees their interchangeability
within any larger context. We characterize several versions
of strong equivalence obtained by restricting the class of op-
timization problems that can be used as extensions and es-
tablish the complexity of associated reasoning tasks. Under-
standing strong equivalence is essential for modular repre-
sentation of optimization problems and rewriting techniques
to simplify them without changing their inherent properties.

Introduction
We introduce the framework of qualitative optimization
problems in which, following the design of answer-set
optimization (ASO) programs (Brewka, Niemelä, and
Truszczyński 2003), we use separate modules to describe
the space of outcomes to be compared (the generator) and
the preferences on the outcomes (the selector). In all op-
timization problems we consider, the selector module fol-
lows the syntax and the semantics of preference modules
in ASO programs, and the generator is given by a proposi-
tional theory. If this propositional theory is interpreted ac-
cording to the standard propositional logic semantics, that is,
outcomes to be compared are classical models of the gener-
ator, we speak about classical optimization problems (CO
problems, for short). If the generator theory is interpreted
by the semantics of equilibrium models (Pearce 1997), also
known as answer sets (Ferraris 2005), that is, it is the an-
swer sets of the generator that are being compared, we speak
about answer-set optimization problems (ASO problems, for
short).
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Representing and reasoning about preferences in quali-
tative settings is an important research area for knowledge
representation and qualitative decision theory. The main ob-
jectives are to design expressive yet intuitive languages to
model preferences, and to develop automated methods to
reason about formal representations of preferences in these
languages. The literature on the subject of preferences is
vast. We refer the reader to the special issue of Artificial
Intelligence Magazine (Goldsmith and Junker 2008) for a
collection of overview articles and references.

Understanding when optimization problems are equiva-
lent, in particular, when one can be interchanged with an-
other within any larger context, is fundamental to any pref-
erence formalism. Speaking informally, optimization prob-
lems P and Q are interchangeable or strongly equivalent
when for every optimization problem R (context), P ∪ R
and Q ∪ R define the same optimal models. Understanding
when one optimization problem is equivalent to another in
this sense is essential for preference analysis, modular pref-
erence representation, and rewriting techniques to simplify
optimization problems into forms more amenable to pro-
cessing, without changing any of their inherent properties.
Let us consider a multi-agent setting, in which agents com-
bine their preferences on some set of alternatives with the
goal of identifying optimal ones. Can one agent in the en-
semble be replaced with another so that the set of optimal
alternatives is unaffected not only now, but also under any
extension of the ensemble in the future? Strong equivalence
of agents’ optimization problems is precisely what is needed
to guarantee this full interchangeability property!

The notion of strong equivalence is of general interest,
by no means restricted to preference formalisms. In some
cases, most notably for classical logic, it coincides with
equivalence, the property of having the same models. How-
ever, if the semantics is not monotone, that is, extend-
ing the theory may introduce new models, not only elim-
inate some, strong equivalence becomes a strictly stronger
concept, and the one to adopt if theories being analyzed
are to be placed within a larger context. The nonmono-
tonicity of the semantics is the salient feature of nonmono-
tonic logics (Marek and Truszczyński 1993) and strong
equivalence of theories in nonmonotonic logics, especially
logic programming with the answer-set semantics (Gelfond
and Lifschitz 1991), was extensively studied in that set-
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ting (Lifschitz, Pearce, and Valverde 2001; Turner 2003;
Eiter, Fink, and Woltran 2007). Preference formalisms also
often behave nonmonotonically as adding a new preference
may cause a non-optimal outcome (model) to become an op-
timal one. Thus, in preference formalisms, equivalence and
strong equivalence are typically different notions. Accord-
ingly, strong equivalence was studied for logic programs
with rule preferences (Faber and Konczak 2006), programs
with ordered disjunction (Faber, Tompits, and Woltran 2008)
and programs with weak constraints (Eiter et al. 2007).

We extend the study of strong equivalence to the formal-
ism of qualitative optimization problems. The formalism is
motivated by the design of answer-set optimization (ASO)
programs of Brewka, Niemelä, and Truszczyński (2003). It
borrows two key features from ASO programs that make
it an attractive alternative to the preference modeling ap-
proaches based on logic programming that we mentioned
above. First, following ASO programs, optimization prob-
lems provide a clear separation of hard constraints, which
specify the space of feasible outcomes, and preferences (soft
constraints) that impose a preference ordering on feasible
outcomes. Second, optimization problems adopt the syn-
tax and the semantics of preference rules of ASO programs
that correspond closely to linguistic patterns of simple con-
ditional preferences used by humans.

The separation of preference modules from hard con-
straints facilitates eliciting and representing preferences.
It is also important for characterizing strong equivalence.
When a clear separation is not present, like in logic pro-
grams with ordered disjunctions, strong equivalence char-
acterizations are cumbersome as they have to account for
complex and mostly implicit interactions between hard con-
straints and preferences. For optimization problems, which
impose the separation, we have “one-dimensional” forms of
strong equivalence, in which only hard constraints or only
preferences are added. These “one-dimensional” concepts
are easier to study yet provide enough information to con-
struct characterizations for the general case.
Main Contributions. Our main contribution can be sum-
marized as follows.

• We propose a general framework of qualitative optimiza-
tion problems, extending in several ways the formalism
of ASO programs. We focus on two important instantia-
tions of the framework, the classes of classical optimiza-
tion (CO) problems and answer-set optimization (ASO)
problems. The latter one directly generalizes ASO pro-
grams.

• We characterize the concept of strong equivalence of opti-
mization problems relative to changing selector modules.
The characterization is independent of the semantics of
generators and so, applies both to CO and ASP problems.
We also characterize strong equivalence relative to chang-
ing generators (with preferences fixed). In this case, not
surprisingly, the characterization depends on the seman-
tics of generators. However, we show that the dependence
is quite uniform, and involves a characterization of strong
equivalence of generators relative to their underlying se-
mantics, when they are considered on their own as propo-

sitional theories. Finally, we combine the characteriza-
tions of the “one-dimensional” concepts of strong equiv-
alence into a characterization of the general “combined”
notion.

• We develop our results for the case when preferences are
ranked. In practice, preferences are commonly ranked due
to the hierarchical structure of preference providers. The
general case we study allows for additions of preferences
of ranks from a specified interval [i, j]. This covers the
case when only some segment in the hierarchy of pref-
erence providers is allowed to add preferences (top deci-
sion makers, middle management, low-level designers),
as well as the case when there is no distinction between
the importance of preferences (the non-ranked case).

• We establish the complexity of deciding whether two op-
timization problems are strongly equivalent relative to
changing selectors, generators, or both.

Due to the space restriction, we present only proof sketches
and some of the simpler and not overly technical proofs here.
All proofs can be found in the full version of the paper at
http://arxiv.org/abs/1112.0791.

Optimization Problems
A qualitative optimization problem (an optimization prob-
lem, from now on) is an ordered pair P = (T, S), where T
is called the generator and S the selector. The role of the
generator is to specify the family of outcomes to be com-
pared. The role of the selector S is to define a relation ≥
on the set of outcomes and, consequently, define the notion
of an optimal outcome. The relation ≥ induces relations >
and ≈: we define I > J if I ≥ J and J 6≥ I , and I ≈ J if
I ≥ J and J ≥ I . For an optimization problem P , we write
P g and P s to refer to its generator and selector, respectively.
Generators. As generators we use propositional theories
in the language determined by a fixed countable universe
of propositional variables (or alphabet) U that form atomic
propositions, a boolean constant ⊥, and boolean connec-
tives ∧, ∨ and→, and where we define the constant >, and
the connectives ¬ and ↔ in the usual way as > := ¬⊥,
¬φ := φ→ ⊥, and φ↔ ψ := (φ→ ψ)∧ (ψ → φ), respec-
tively.1 Models of the generator, as defined by the semantics
used, represent outcomes of the corresponding optimization
problem. We consider two quite different semantics for gen-
erators: the classical propositional logic semantics and the
semantics of equilibrium models (Pearce 1997). Thus, out-
comes are either models or equilibrium models, depending
on the semantics chosen. The first semantics is of interest
due to the fundamental role and widespread use of classi-
cal propositional logic, in particular, as a means to describe
constraints. Equilibrium models generalize answer sets of
logic programs to the case of arbitrary propositional theories
(Pearce 1997; Ferraris 2005) and are often referred to as an-
swer sets. The semantics of equilibrium models is important
due to the demonstrated effectiveness of logic programming

1While the choice of primitive connectives is not common for
the language of classical propositional logic, it is standard for the
of logic here-and-there which underlies the answer-set semantics.
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with the semantics of answer sets for knowledge representa-
tion applications. We use the terms equilibrium models and
answer sets interchangeably.

Throughout the paper, we represent interpretations as sub-
sets of U , which contain exactly those atomic propositions
that are interpreted as true. We write I |= φ to state that
an interpretation I ⊆ U is a (classical propositional) model
of a formula φ. Furthermore, we denote the set of classical
models of a formula or theory T by Mod(T ).

Equilibrium models arise in the context of the proposi-
tional logic of here-and-there, or the logic HT for short
(Heyting 1930). We briefly recall here definitions of con-
cepts, as well as properties of the logic HT that are directly
relevant to our work. We refer to the papers by Pearce (1997)
and Ferraris (2005) for further details.

The logic HT is a logic located between the intuitionistic
and the classical logics. Interpretations in the logic HT are
pairs 〈I, J〉 of standard propositional interpretations such
that I ⊆ J . We write 〈I, J〉 |=HT φ to denote that a formula
φ holds in an interpretation 〈I, J〉 in the logic HT. The rela-
tion |=HT is defined recursively as follows: for an atom a,
〈I, J〉 |=HT a if and only if a ∈ I . The cases of the boolean
connectives ∧ and ∨ are standard, and 〈I, J〉 |=HT ϕ → ψ
if and only if J |= ϕ → ψ (classical satisfiability) and
〈I, J〉 6|=HT ϕ or 〈I, J〉 |=HT ψ. Finally, 〈I, J〉 6|=HT ⊥.

An equilibrium model or answer set of a propositional
theory T is a standard interpretation I such that 〈I, I〉 |=HT

T and for every proper subset J of I , 〈J, I〉 6|=HT T . An-
swer sets of a propositional theory T are also classical mod-
els of T . The converse is not true in general.

We denote the set of all answer sets of a theory T by
AS (T ), and the set of all HT-models of T by ModHT (T ),
that is, ModHT (T ) = {〈I, J〉 | I ⊆ J, 〈I, J〉 |=HT T}.

For each of the semantics there are two natural concepts
of equivalence. Two theories T1 and T2 are equivalent if
they have the same models (classical or equilibrium, respec-
tively). They are strongly equivalent if for every theory S,
T1 ∪S and T2 ∪S have the same models (again, classical or
equilibrium, respectively).

For classical semantics, strong equivalence and equiva-
lence coincide. It is not so for the semantics of equilibrium
models. The result by Lifschitz, Pearce, and Valverde (2001)
states that two theories T1 and T2 are strongly equivalent for
equilibrium models if and only if T1 and T2 are equivalent
in the logic HT, that is, ModHT (T1) = ModHT (T2).

Example 1 Let us consider the theory Ta = {a → a}.
The classical models are Mod(Ta) = {∅, {a}}, so a be-
ing true and a being false are both admissible scenarios.
The HT-models are 〈∅, ∅〉, 〈∅, {a}〉, and 〈{a}, {a}〉. Hence,
there is only one answer set (equilibrium model) ∅. The
other possible candidate, {a}, is not an answer set. While
〈{a}, {a}〉 |=HT T does hold, also 〈∅, {a}〉 |=HT T does.
The intuition here is that the theory does not contain any
“cause” for a to hold.

Next, let us consider the theory Tb = {a ∨ b}. The clas-
sical models are {a}, {b} and {a, b}, and the HT-models
are 〈{a}, {a}〉, 〈{b}, {b}〉, 〈{a}, {a, b}〉, 〈{b}, {a, b}〉 and
〈{a, b}, {a, b}〉. The answer sets are therefore {a} and {b}.

Again the the intuition is that the theory does not contain
any “cause” for a and b to hold simultaneously.

Finally, let us consider the theory Tc = {(¬a → b) ∧
(¬b → a)}. The classical models are the same as for
Tb, that is, Mod(Tc) = {{a}, {b}, {a, b}}. We also
have ModHT (Tc) = {〈{a}, {a}〉, 〈{b}, {b}〉, 〈{a}, {a, b}〉,
〈{b}, {a, b}〉, 〈{a, b}, {a, b}〉, 〈∅, {a, b}〉} = ModHT (Tb) ∪
{〈∅, {a, b}〉}. The answer sets are again the same as for
Tb: AS (Tc) = {{a}, {b}}. Also here the intuition is that
the theory does not contain any “cause” for a and b to hold
simultaneously.

We observe that Tb and Tc are equivalent for both the
classical and equilibrium setting (they have the same clas-
sical and equilibrium models). The former implies that
they are also strongly equivalent in the classical setting.
However, they are not strongly equivalent in the equilib-
rium setting because ModHT (Tb) 6= ModHT (Tc) and in-
deed we can see that for S = {a → b, b → a}, we obtain
AS (Tb ∪ S) = {{a, b}}, while AS (Tc ∪ S) = ∅.

We recall that optimization problems under the classi-
cal interpretation of generators are referred to as classical
optimization problems or CO problems, and when we use
the answer-set semantics for generators, we speak about
answer-set optimization problems or ASO problems.
Selectors. We follow the definitions of preference mod-
ules in ASO programs (Brewka, Niemelä, and Truszczyński
2003), adjusting the terminology to our more general setting.
A selector is a finite set of ranked preference rules

φ1 > · · · > φk
j← ψ (1)

where k and j are positive integers, and φi, 1 ≤ i ≤ k,
and ψ are propositional formulas over U . For a rule r of the
form (1), the number j is the rank of r, denoted by rank(r),
hd(r) = {φ1, . . . , φk} is the head of r and ψ is the body of
r, bd(r). Moreover, we write hd i(r) to refer to formula φi.

If rank(r) = 1 for every preference rule r in a selector
S, then S is a simple selector. Otherwise, S is ranked. We
often omit “1” from the notation “ 1←” for simple selectors.
For a selector S, and i, j ∈ {0, 1, 2, . . .} ∪ {∞}, we define
S[i,j] = {r ∈ S | i ≤ rank(r) ≤ j} (where we assume
that for every integer k, k <∞) and write [i, j] for the rank
interval {k | i ≤ k ≤ j}. We extend this notation to op-
timization problems. For P = (T, S) and a rank interval
[i, j], we set P[i,j] = (T, S[i,j]). For some rank intervals we
use shorthands, for example = i for [i, i], < i for [1, i − 1],
≥ i for [i,∞], and similar.

For an interpretation I , a satisfaction degree of a prefer-
ence rule r is vI(r) = min{i | I |= hd i(r)}, if I |= bd(r)
and I |=

∨
hd(r); otherwise, the rule is irrelevant to

I , and vI(r) = 1. We note that Brewka, Niemelä, and
Truszczyński (2003) represented the satisfaction degree of
an irrelevant rule by a special non-numeric degree, treated
as being equivalent to 1. The difference is immaterial and
the two approaches are equivalent.

Selectors determine a preference relation on interpreta-
tions. Given interpretations I and J and a simple selector S,
I ≥S J holds precisely when for all r ∈ S, vI(r) ≤ vJ(r).
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Therefore, I >S J holds if and only if I ≥S J and there
exists r ∈ S such that vI(r) < vJ(r); I ≈S J if and only if
for every r ∈ S, vI(r) = vJ(r).

Given a ranked selector S, we define I ≥S J if for every
preference rule r ∈ S, vI(r) = vJ(r), or if there is a rule
r′ ∈ S such that the following three conditions hold:

1. vI(r′) < vJ(r′)

2. for every r ∈ S of the same rank as r′, vI(r) ≤ vJ(r)

3. for every r ∈ S of smaller rank than r′, vI(r) = vJ(r).
Moreover, I >S J if and only if there is a rule r′ for which
the three conditions above hold, and I ≈S J if and only
if for every r ∈ S, vI(r) = vJ(r). Given an optimization
problem P = (T, S) we often write ≥P for ≥S (and simi-
larly for > and ≈).
Optimal (preferred) outcomes. For an optimization prob-
lem P , µ(P ) denotes the set of all outcomes of P , that is,
the set of all models (under the selected semantics) of the
generator of P . Thus, µ(P ) stands for all models of P in
the framework of CO problems and for all answer sets of P ,
when ASO problems are considered. A model I ∈ µ(P ) is
optimal or preferred for P if there is no model J ∈ µ(P )
such that J >P I . We denote the set of all preferred models
of P by π(P ).
Relation to ASO programs. Optimization problems ex-
tend the formalism of ASO programs (Brewka, Niemelä,
and Truszczyński 2003) in several ways. First, the genera-
tor programs are arbitrary propositional theories. Under the
semantics of equilibrium models, our generators properly
extend logic programs with the answer-set semantics used
as generators in ASO programs. Second, the selectors use
arbitrary propositional formulas in the heads of preference
rules, as well as for conditions in their bodies. Finally, opti-
mization problems explicitly allow for alternative semantics
of generators, a possibility mentioned but not pursued by
Brewka, Niemelä, and Truszczyński (2003).
Notions of Equivalence. We define the union of optimiza-
tion problems as expected, that is, for P1 = (T1, S1) and
P2 = (T2, S2), we set P1 ∪ P2 = (T1 ∪ T2, S1 ∪ S2).
Two optimization problems P1 and P2 are strongly equiva-
lent with respect to a classR of optimization problems (con-
texts) if for every optimization problemR ∈ R, π(P1∪R) =
π(P2 ∪R).

We consider three general classes of contexts. First and
foremost, we are interested in the class LU of all optimiza-
tion problems over U . We also consider the families LgU
and LsU of all optimization problems of the form (T, ∅) and
(∅, S), respectively. The first class consists of optimiza-
tion problems where all models of the generator are equally
preferred. We call such optimization problems generator
problems. The second class consists of optimization prob-
lems in which every interpretation of U is an acceptable out-
come. We call such optimization problems selector prob-
lems. These “one-dimensional” contexts provide essential
insights into the general case. For the first class, we simply
speak of strong equivalence, denoted ≡sg . For the latter two
classes, we speak of strong gen-equivalence, denoted ≡g ,
and strong sel-equivalence, denoted ≡s, respectively.

Constraining ranks of rules in selectors gives rise to two
additional classes of contexts parameterized using rank in-
tervals [i, j]:

1. Ls,[i,j]U = {(∅, S) ∈ LsU | S = S[i,j]}

2. L[i,j]
U = {(T, S) ∈ LU | S = S[i,j]}

The first class of contexts gives rise to strong sel-
equivalence with respect to rules of rank in [i, j], denoted
by ≡s,[i,j]. The second class of contexts yields the con-
cept of strong equivalence with respect to rules of rank in
[i, j]. We denote it by ≡s,[i,j]g . We call problems in the class
L=1
U = L[1,1]

U simple optimization problems.

Examples
We present now examples that illustrate key issues relevant
to strong equivalence of optimization problems. They point
to the necessity of some conditions that appear later in char-
acterizations of strong equivalence and hint at some con-
structions used in proofs. In all examples except for the last
one, we consider simple CO problems. In all problems only
atoms explicitly listed matter, so we disregard all others.

Example 2 Let P1 = (T1, S1), where T1 = {a ↔ ¬b}
and S1 = {a > b ←}. There are two outcomes here, {a}
and {b}, that is, µ(P1) = {{a}, {b}}. Let r be the only
preference rule in S1. Clearly, v{a}(r) = 1 and v{b}(r) =

2. Thus, {a} >P1 {b} and so, π(P1) = {{a}}.
In addition, let P2 = (T2, S1), where T2 = {a ∧ ¬b}

and S1 is as above. Then, µ(P2) = {{a}} and, trivially,
π(P2) = {{a}}. It follows that P1 and P2 are equivalent,
as they specify the same optimal outcomes. However, they
are not strongly gen-equivalent (and so, also not strongly
equivalent). Indeed, let R = ({¬a}, ∅). Then µ(P1 ∪ R) =
{{b}} and so, π(P1 ∪ R) = {{b}}. On the other hand,
µ(P2 ∪R) = ∅ and, therefore, π(P2 ∪R) = ∅.

Example 2 suggests that we must have µ(P1) = µ(P2)
if problems P1 and P2 are to be strongly (gen-)equivalent.
Otherwise, by properly selecting the context generator, we
can eliminate all outcomes in one problem still leaving some
in the other.

Example 3 Let P3 = (T3, S3), where T3 = {a∨b∨c,¬(a∧
b),¬(a∧ c),¬(b∧ c)} and S3 = {a > b←, a > c←}. We
have µ(P3) = {{a}, {b}, {c}}. In addition, {a} >P3 {b},
{a} >P3 {c}, and {b} and {c} are incomparable. Thus,
π(P3) = {{a}}. Let now P4 = (T4, S4), where T4 = T3
and S4 = {a > b > c ←}. Clearly, µ(P4) = µ(P3) =
{{a}, {b}, {c}}. Moreover, {a} >P4 {b} >P4 {c}. Thus,
π(P4) = {{a}} and so, P3 and P4 are equivalent. They are
not strongly (gen-)equivalent. Indeed, let R = ({¬a}, ∅).
Then, π(P3 ∪R) = {{b}, {c}} but π(P4 ∪R) = {{b}}.

This example suggests that for two optimization problems
to be strongly (gen-)equivalent, they have to define the same
preference relation > on outcomes.

Example 4 Let P5 = (T5, S5), where T5 = {a,¬b} and
S5 = ∅. We have µ(P5) = {{a}} and so, π(P5) = {{a}}.
It follows that P5 is equivalent to P1. Let R = (∅, {b >
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a ←}). Since µ(P5 ∪ R) = µ(P5) = {{a}}, π(P5 ∪ R) =
{{a}}. Further, P1 ∪ R = (T1, {a > b ←, b > a ←})
and so, µ(P1 ∪ R) = µ(P1) = {{a}, {b}}) and we get
π(P1 ∪R) = {{a}, {b}}. Thus, P5 and P1 are not strongly
(sel-)equivalent.

Informally, this example shows that by modifying the se-
lector part, we can make non-optimal outcomes optimal.
Thus, as in the case of strong gen-equivalence (Example 2)
the equality of sets of models (i.e., equivalence) is important
for strong (sel-)equivalence (a more refined condition will
be needed for ranked programs, as we show in Theorem 2).
Example 5 For the next example, let us consider problems
P6 = (T1, S6) and P7 = (T1, S7), where T1 is the generator
from Example 2, S6 = {a > b ←, b > a ←} and S7 = ∅.
We have µ(P6) = µ(P7) = {{a}, {b}}. Moreover, {a} ≥P6

{b} and {b} ≥P6 {a}. Thus, π(P6) = {{a}, {b}}. Since
P s7 = ∅, we also have (trivially) that {a} ≈P7 {b}. Thus,
π(P7) = {{a}, {b}}, too, and the problems P6 and P7 are
equivalent. They are not strongly sel-equivalent, though. Let
R = (∅, {a > b ←}). Then, P6 ∪ R = P6 and so, π(P6 ∪
R) = {{a}, {b}}. On the other hand, {a} >P7∪R {b}.
Thus, π(P7 ∪R) = {{a}}.

The example suggests that for strong sel-equivalence the
equality of the relation ≥ induced by the problems consid-
ered is important. The equality of the relation > is not suf-
ficient. In our example, the relations >P6 and >P7 are both
empty and hence equal. But they are empty for different rea-
sons, absence of preference versus conflicting preferences,
which can give rise to different preferred models when ex-
tending selectors.

Our last example involves ranked problems. It is meant
to hint at issues that arise when ranked problems are consid-
ered. In the general case of ranked selectors, the equality of
the relation > induced by programs being evaluated is not
related to strong sel-equivalence in any direct way and an
appropriate modification of that requirement has to be used
together with yet another condition (cf. Theorem 2).

Example 6 Let P = (T1, S), where S = {a > b
2←}

and P ′ = (T1, S
′), where S′ = {a > b

3←}. Clearly,
µ(P ) = µ(P ′) = {{a}, {b}} and π(P ) = π(P ′) = {a}.
Thus, the two problems are equivalent. They are not strongly
sel-equivalent if arbitrary selectors are allowed. For in-
stance, let R = (∅, {b > a

2←}). Adding this new pref-
erence rule to P makes {a} and {b} incomparable and so,
π(P ∪ R) = {{a}, {b}}. On the other hand, since the new
rule has rank 2, it dominates the preference rule of P ′, which
is of rank 3. Thus, µ(P ′ ∪ R) = {{b}}. A similar effect oc-
curs with the problem R′ = (∅, {b > a

3←}). Since its only
preference rule is dominated by the only preference rule in
P , π(P ∪ R′) = π(P ) = {{a}}. On the other hand, {a}
and {b} are incomparable in P ′ ∪ R′ and, consequently,
π(P ′ ∪ R′) = {{a}, {b}}. Thus, extending P and P ′ with
selectors containing rules of rank 2 or 3 may lead to differ-
ent optimal outcomes. It is so even though the relations >
induced by P and P ′ on the set of all outcomes coincide.

However, adding selectors consisting only of rules of rank
greater than 3 cannot have such an effect, since the existing

rules would dominate them. Also, adding rules of rank 1
cannot result in differing preferred answer sets, as such rules
would dominate the existing ones. Formally, the problems P
and P ′ are strongly sel-equivalent relative to selectors with
preference rules of rank greater than 3 or less than 2.

Strong sel-equivalence
We start with the case of strong sel-equivalence, the core
case for our study. Indeed, characterizations of strong sel-
equivalence naturally imply characterizations for the general
case thanks to the following simple observation.

Proposition 1 Let P and Q be optimization problems (ei-
ther under classical or answer-set semantics for the genera-
tors) and [i, j] a rank interval. Then P ≡s,[i,j]g Q if and only
if for every generator R ∈ LgU , P ∪R ≡s,[i,j] Q ∪R.

Proof. (⇒) Let R ∈ LgU . Since P ≡s,[i,j]g Q, P ∪R ≡s,[i,j]g

Q ∪R and so, P ∪R ≡s,[i,j] Q ∪R.

(⇐) Let R be any optimization problem in L[i,j]
U . We have

P ∪ R = (P ∪ (Rg, ∅)) ∪ (∅, Rs) and Q ∪ R = (Q ∪
(Rg, ∅)) ∪ (∅, Rs). Moreover, by the assumption we have
that P ∪ (Rg, ∅) ≡s,[i,j] Q ∪ (Rg, ∅). Thus,

π((P ∪ (Rg, ∅)) ∪ (∅, Rs)) = π((Q ∪ (Rg, ∅)) ∪ (∅, Rs)).

It follows that π(P ∪ R) = π(Q ∪ R) and, consequently,
that P ≡s,[i,j]g Q. 2

Furthermore, the set of outcomes of an optimization prob-
lem P is unaffected by changes in the selector module. It
follows that the choice of the semantics for generators does
not matter for characterizations of strong sel-equivalence.
Thus, whenever in this section we refer to the set of out-
comes of an optimization problem P , we use the notation
µ(P ), and not the more specific one, Mod(Pg) or AS (P g),
that applies to CO and ASO problems, respectively.

Our first main result concerns strong sel-equivalence rel-
ative to selectors consisting of preference rules of ranks in a
rank interval [i, j]. Special cases for strong sel-equivalence
will follow as corollaries. To state the result, we need some
auxiliary notation. For an optimization problem P , we de-
fine diff P (I, J) to be the largest k such that I ≈P<k J . If
for every k we have I ≈P<k J , then we set diff P (I, J) =

∞. It is clear that diff P (I, J) is well-defined. Moreover, as
I ≈P<1 J , diff P (I, J) ≥ 1. Furthermore, for a set V ⊆ 2U

and a relation � over 2U , we write �V for the restriction of
� to V , that is, �V = {(A,B) ∈ � | A,B ∈ V }.
Theorem 2 For all ranked optimization problems P and Q,
and every rank interval [i, j], P ≡s,[i,j] Q if and only if the
following conditions hold:

1. π(P<i) = π(Q<i)

2. >Pπ(P<i)
= >Qπ(Q<i)

3. For every I, J ∈ π(P<i) such that i < diff P (I, J) or
i < diff Q(I, J), diff P (I, J) = diff Q(I, J) or both
diff P (I, J) > j and diff Q(I, J) > j.
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We now comment on this characterization and derive
some of its consequences.

First, we observe that conditions (1) and (2) are indeed
necessary — differences between π(P<i) and π(Q<i) or
>Pπ(P<i)

and>Qπ(Q<i)
can be exploited to construct a selector

from Ls,[i,j]U whose addition to P and Q results in problems
with different sets of optimal outcomes. This is illustrated
by Examples 4 and 5 in the case of simple problems and
simple contexts (i = j = 1), where π(P<i) and π(Q<i)
coincide with µ(P ) and µ(Q), respectively.

Condition (3) is necessary, too. Intuitively, if the first
ranks where P and Q differentiate between two outcomes
I and J (which are optimal for ranks less than i) are not
equal, these first ranks must both be larger than j. Other-
wise, one can find a selector with rules of ranks in [i, j], that
will make one of the interpretation optimal in one extended
problem but not in the other.

Next, we discuss some special cases of the characteriza-
tion. First, we consider the case i = 1, which allows for a
simplification of Theorem 2.
Corollary 3 For all ranked optimization problemsP andQ,
and every rank interval [1, j], P ≡s,[1,j] Q if and only if the
following conditions hold:

1. µ(P ) = µ(Q)

2. >Pµ(P ) = >Qµ(Q)

3. For every I, J ∈ µ(P ), diff P (I, J) = diff Q(I, J) or
both diff P (I, J) > j and diff Q(I, J) > j.

Proof. Starting from Theorem 2, we note that the selector of
P<1 is empty and hence π(P<1) = µ(P ). Moreover, if the
precondition i < diff P (I, J) and i < diff Q(I, J) in condi-
tion (3) of Theorem 2 is not satisfied for i = 1 and a pair
I, J ∈ µ(P ), then diff P (I, J) = 1 and diff Q(I, J) = 1
and thus the consequent is satisfied in that case as well,
which allows for omitting the precondition. 2

If in addition j = ∞, we obtain the case of rank-
unrestricted selector contexts, and condition (3) can be sim-
plified once more, since diff P (I, J) > j and diff Q(I, J) >
j never hold for j =∞.
Corollary 4 For all optimization problems P and Q, P ≡s
Q (equivalently, P ≡s,≥1 Q or P ≡s,[1,∞] Q) if and only if
the following conditions hold:

1. µ(P ) = µ(Q)

2. >Pµ(P ) = >Qµ(Q)

3. for every I, J ∈ µ(P ), diff P (I, J) = diff Q(I, J).

Next, we note that if an optimization problem is simple
then diff P (I, J) > 1 if and only if diff P (I, J) =∞, which
is equivalent to I ≈P J . This observation leads to the fol-
lowing characterization of strong sel-equivalence of simple
optimization problems.
Corollary 5 For all simple optimization problems P andQ,
the following statements are equivalent:

(a) P ≡s Q (equivalently, P ≡s,[1,∞] Q)

(b) P ≡s,=1 Q (equivalently, P ≡s,[1,1] Q)

(c) µ(P ) = µ(Q) and ≥Pµ(P )=≥
Q
µ(Q).

Proof. The implication (a)⇒(b) is evident from the defini-
tions.
(b)⇒(c) From Corollary 3 with j = 1 we directly obtain
µ(P ) = µ(Q). The condition ≥Pµ(P )=≥

Q
µ(Q) follows from

conditions (2) and (3) of that corollary. Indeed, let us con-
sider I, J ∈ µ(P ) such that I ≥P J and distinguish two
cases. If (i) diff P (I, J) = 1 then I >P J and by condi-
tion (2) of Corollary 3, also I >Q J , implying I ≥Q J . If
(ii) diff P (I, J) > 1 then by condition (3) of Corollary 3,
diff Q(I, J) > 1. Since P,Q are simple, I ≈Q J , and con-
sequently I ≥Q J . By symmetry, we also have that I ≥Q J

implies I ≥P J . Thus, ≥Pµ(P )=≥
Q
µ(Q).

(c)⇒(a) From (c) it follows that >Pµ(P )=>
Q
µ(Q) and

≈Pµ(P )=≈
Q
µ(Q). Thus, conditions (1) and (2) of Corol-

lary 4 follow. To prove condition (3), let us first assume
diff P (I, J) > 1 for I, J ∈ µ(P ). It follows that
diff P (I, J) = ∞ and thus I ≈Pµ(P ) J . By our earlier

observation also I ≈Qµ(Q) J and thus diff Q(I, J) = ∞.

Hence diff P (I, J) = diff Q(I, J). For diff Q(I, J) > 1
we reason analogously. In the last remaining case,
diff P (I, J) = 1 and diff Q(I, J) = 1, so we directly obtain
diff P (I, J) = diff Q(I, J). By Corollary 4, P ≡s Q
follows. 2

Corollary 5 shows, in particular, that for simple prob-
lems there is no difference between the relations ≡s,≥1 and
≡s,=1. This property reflects the role of preference rules
of rank 2 and higher. They allow us to break ties among
optimal outcomes, as defined by preference rules of rank
1. Thus, they can eliminate some of these outcomes from
the family of optimal ones, but they cannot introduce new
optimal outcomes. Therefore, they do not affect strong sel-
equivalence of simple problems. This property has the fol-
lowing generalization to ranked optimization problems.

Corollary 6 Let P and Q be ranked optimization problems
and let k be the maximum rank of a preference rule in P ∪Q.
Then the relations ≡s,≥k and ≡s,=k coincide.

Proof. Clearly, P ≡s,≥k Q implies P ≡s,=k Q. Thus,
it is enough to prove that if P ≡s,=k Q then P ≡s,≥k Q.
Using the characterization of Theorem 2, we observe
that conditions (1) and (2) are equal for P ≡s,=k Q
and P ≡s,≥k Q. Condition (3) for P ≡s,=k Q reads
“For every I, J ∈ π(P<k) such that k < diff P (I, J)

or k < diff Q(I, J), diff P (I, J) = diff Q(I, J) or
both diff P (I, J) > k and diff Q(I, J) > k.” while
for P ≡s,≥k Q it reads “For every I, J ∈ π(P<k)

such that k < diff P (I, J) or k < diff Q(I, J),
diff P (I, J) = diff Q(I, J) or both diff P (I, J) > ∞
and diff Q(I, J) > ∞.”. Clearly, neither diff P (I, J) > ∞
nor diff Q(I, J) > ∞ can ever hold, so we have to show
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that diff P (I, J) = diff Q(I, J) holds in all cases. Let us
consider I, J ∈ π(P<k) such that diff P (I, J) > k, from
the assumption P ≡s,=k Q we know diff Q(I, J) > k.
Since k is the maximum rank of a preference rule in P
or Q, diff P (I, J) = ∞ and diff Q(I, J) = ∞. Thus,
diff P (I, J) = diff Q(I, J) (the case diff Q(I, J) > k is
similar). 2

Our observation on the role of preference rules with ranks
higher than ranks of rules in P or Q also implies that P
and Q are strongly sel-equivalent relative to selectors con-
sisting exclusively of such rules if and only if P and Q are
equivalent (have the same optimal outcomes), and if opti-
mal outcomes that “tie” in P also “tie” in Q and conversely.
Formally, we have the following result.

Corollary 7 Let P and Q be ranked optimization problems
and let k be the maximum rank of a preference rule in P ∪
Q. Then P ≡s,≥k+1 Q if and only if π(P ) = π(Q) and
≈Pπ(P )=≈

Q
π(Q).

Proof. Clearly, P<k+1 = P and Q<k+1 = Q and so,
π(P<k+1) = π(P ) and π(Q<k+1) = π(Q). Thus, the
“only-if” part follows by Theorem 2 (condition (1) of
that theorem reduces to π(P ) = π(Q) and condition (3)
implies ≈Pπ(P )=≈

Q
π(Q)). To prove the “if” part, we note

that condition (1) of Theorem 2 holds by the assumption.
Moreover, the relations >Pπ(P ) and >Qπ(Q) are empty and
so, they coincide. Thus, condition (2) of Theorem 2 holds.
Finally, if I, J ∈ π(P ), and diff P (I, J) > k + 1, then
diff P (I, J) = ∞ and so, I ≈P J . By the assumption,
I ≈Q J , that is, diff Q(I, J) =∞ = diff P (I, J). The case
when diff Q(I, J) > k + 1 is similar. Thus, condition (3) of
Theorem 2 holds, too, and P ≡s,≥k+1 Q follows. 2

Lastly, we give some simple examples illustrating how
our results can be used to “safely” modify or simplify opti-
mization problems, that is rewrite one into another strongly
sel-equivalent one.

Example 7 Let P = (T, S), where T = {a ∨ b ∨ c,¬(a ∧
b),¬(a ∧ c),¬(b ∧ c)} and S = {a > c←, b > c←}, and
P ′ = (T, S′), where S′ = {a ∨ b > c←}. Regarding these
problems as CO problems, we have that µ(P ) = µ(P ′) =

{{a}, {b}, {c}}. Moreover, it is evident that≥Pµ(P )=≥
P ′

µ(P ′).
Thus, by Corollary 5, P and P ′ are strongly sel-equivalent.
In other words, we can faithfully replace rules a > c ←,
b > c ← in the selector of any optimization problem with
generator T by the single rule a ∨ b > c←.

Next, for an example of a more general principle, we note
that removing preference rules with only one formula in the
head yields a problem that is strongly sel-equivalent.

Corollary 8 Let P andQ be two CO or ASO problems such
that P g = Qg and Qs is obtained from P s by removing all
preference rules with only one formula in the head (i.e., rules
r for which |hd(r)| = 1). Then P and Q are strongly sel-
equivalent.

Proof. Conditions (1)-(3) of Theorem 2 all follow from
an observation that for every interpretation I and every
preference rule r with |hd(r)| = 1, vI(r) = 1. 2

Strong gen-equivalence
We now focus on the case of strong gen-equivalence. The se-
mantics of generators makes a difference here but the differ-
ence concerns only the fact that under the two semantics we
consider, the concepts of strong equivalence are different.
Other aspects of the characterizations are the same. Specif-
ically, generators have to be strongly equivalent relative to a
selected semantics. Indeed, if the generators are not strongly
equivalent, one can extend them uniformly so that after the
extension one problem has a single outcome, which is then
trivially an optimal one, too, while the other one has no out-
comes and so, no optimal ones. Second, the preference re-
lation > defined by the selectors of the problems considered
must coincide. Thus, a single theorem handles both types of
problems.

Theorem 9 For all CO (ASO, respectively) problems P and
Q, P ≡g Q if and only if P g and Qg are strongly equiv-
alent (that is, Mod(Pg) = Mod(Qg) for CO problems,
and ModHT (P g) = ModHT (Qg) for ASO problems) and
>PMod(Pg) = >QMod(Qg).

In view of Examples 2 and 3, the result is not unexpected.
The two examples demonstrated that the conditions of the
characterization cannot, in general, be weakened.

It is clear from Corollary 4 and Theorem 9 that strong sel-
equivalence of CO problems is a stronger property than their
strong gen-equivalence.

Corollary 10 For all CO problems P and Q, P ≡s Q im-
plies P ≡g Q.

In general the implication in Corollary 10 cannot be re-
versed. The problems P6 and P7 considered in Exam-
ple 5 are not strongly sel-equivalent. However, based
on Theorem 9, they are strongly gen-equivalent. Indeed,
Mod(Pg

6 ) = Mod(Pg
7 ) and, writing M for Mod(Pg

6 ) =

Mod(Pg
7 ), the relations >P6

M and >P7

M are both empty and
so, equal.

The relation between strong sel-equivalence and strong
gen-equivalence of ASO problem is more complex. In gen-
eral, neither property implies the other even if both problems
P and Q are assumed to be simple. It is so because P ≡s Q
if and only if AS(P g) = AS(Qg) and ≥PAS(P g)=≥

Q
AS(Qg)

(Corollary 5), and P ≡g Q if and only of ModHT (P g) =

ModHT (Qg) and >PMod(Pg)=>
Q
Mod(Qg) (Theorem 9). Now,

AS(P g) = AS(Qg) (regular equivalence of programs)
does not imply ModHT (P g) = ModHT (Qg) (strong
equivalence) and >PMod(Pg)=>

Q
Mod(Qg) does not imply

≥PAS(P g)=≥
Q
AS(Qg).

Strong equivalence — the combined case
Finally, we consider the relation ≡sg , which results from
considering contexts that combine both generators and se-
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lectors. Since generators may vary here, as in the previous
section, the semantics of generators matters. But, as in the
previous section, the difference boils down to different char-
acterizations of strong equivalence of generators.

We start with a result characterizing strong equivalence of
CO and ASO problems relative to combined contexts (both
generators and selectors possibly non-empty) with selectors
consisting of rules of rank at least i and at most j, respec-
tively.

Theorem 11 For all ranked CO (ASO, respectively) prob-
lems P and Q, and every rank interval [i, j], P ≡s,[i,j]g Q if
and only if the following conditions hold:

1. P g and Qg are strongly equivalent (that is, Mod(Pg) =
Mod(Qg) for CO problems, and ModHT (P g) =
ModHT (Qg) for ASO problems)

2. >PMod(Pg) = >QMod(Qg)

3. For every I, J ∈ Mod(P g) such that i < diff P (I, J)

or i < diff Q(I, J), diff P (I, J) = diff Q(I, J) or both
diff P (I, J) > j and diff Q(I, J) > j

4. >P<i

Mod(Pg) = >Q<i

Mod(Qg).

The corresponding characterizations for CO and ASO
problems differ only in their respective conditions (1), which
now reflect different conditions guaranteeing strong equiva-
lence of generators under the classical and answer-set se-
mantics. Moreover, the four conditions of Theorem 11 can
be obtained by suitably combining and extending the con-
ditions of Theorem 2 and Theorem 9. First, as combined
strong equivalence implies strong gen-equivalence, condi-
tion (1) is taken from Theorem 9. Second, we modify
conditions (2) and (3) from Theorem 2 replacing π(P<i)
with Mod(P g) (and accordingly π(Q<i) with Mod(Qg)),
as each classical model of P g can give rise to an optimal
classical or equilibrium one upon the addition of a context,
an aspect also already visible in Theorem 9. Finally, we
have to add a new condition stating that the relations >P<i

and >Q<i coincide on the sets of models of P g and Qg .
When generators are allowed to be extended, one can make
any two of their models to be the only outcomes after the ex-
tension. If the two outcomes, say I and J , are related differ-
ently by the corresponding strict relations induced by rules
with ranks less than i, then in one extended problem, exactly
one of the two outcomes, say I , is optimal. In the other ex-
tended problem we cannot have both outcomes be optimal
nor J only be optimal as that would contradict the strong
equivalence of problems under considerations. If, however,
I is the only optimal outcome also in the other extended
problem, then I must “win” with J based on rules that have
ranks at least j. In such case, there is a way to add new pref-
erences of rank i that will “promote” J to be optimal too,
without making it optimal in the first problem. However,
that contradicts strong equivalence.

We conclude this section with observations concerning
the relation ≡sg for both CO and ASO problems. The con-
texts relevant here may contain preference rules of arbitrary
ranks. We start with the case of CO problems, where the re-
sults are stronger. While they can be derived from the gen-

eral theorems above, we will present here arguments relying
on results from previous sections, which is possible since for
CO problems equivalence and strong-equivalence of gener-
ators coincide.

We saw in the last section that for CO problems ≡s is a
strictly stronger relation than ≡g . In fact, for CO problems,
≡s coincides with the general relation ≡sg .

Theorem 12 For all CO problems P and Q, P ≡sg Q if and
only if P ≡s Q.

Proof. The “only-if” implication is evident. To prove the
converse implication, we will use Proposition 1 which re-
duces checking for strong equivalence to checking for strong
sel-equivalence. Let R ∈ LgU be a generator problem. Since
P ≡s Q, from Corollary 4 we have Mod(P g) = Mod(Qg).
Consequently, Mod((P ∪R)g) = Mod((Q∪R)g). Writing
M for Mod(P g) and M ′ for Mod((P ∪ R)g) we have
M ′ ⊆ M . Thus, also by Corollary 4, >P∪RM ′ =>Q∪RM ′ .
Finally, condition (3) of Corollary 4 for P and Q implies
condition (3) of that corollary for P ∪ R and Q ∪ R (as R
has no preference rules and M ′ ⊆ M). It follows, again by
Corollary 4, that P ∪R ≡s Q ∪R. Thus, by Proposition 1,
P ≡sg Q. 2

In particular, Corollary 5 implies that the relations ≡sg ,
≡s,=1
g , P ≡s,=1 Q, and ≡s coincide on simple CO prob-

lems.

Corollary 13 For all simple CO problems P and Q all
properties P ≡sg Q, P ≡s,=1

g Q, P ≡s,=1 Q and P ≡s Q
are equivalent.

For simple ASO problems we still have that≡sg and≡s,=1
g

coincide but in general these notions are different from ≡s
and ≡s,=1.

Corollary 14 For all simple ASO problems P and Q, the
following conditions are equivalent

(a) P ≡sg Q
(b) P ≡s,=1

g Q

(c) ModHT (P g)=ModHT (Qg) and≥PMod(P g) = ≥QMod(Qg).

Proof. The implication (a)⇒(b) is evident.
Let us assume (b). By Theorem 11, we have

ModHT (P g)=ModHT (Qg). This identity implies
Mod(P g) = Mod(Qg). Let us assume that for some
I, J ∈ Mod(P g), I ≥PMod(P g) J . If I >PMod(P g) J then, by

Theorem 11, I >QMod(Qg) J and so, I ≥QMod(Qg) J . Other-

wise, I ≈P J and so, diff P (I, J) = ∞. By Theorem 11,
diff Q(I, J) > 1. Since Q is simple, diff Q(I, J) = ∞.
Thus, I ≈Q J and, also, I ≥QMod(Qg) J . The converse
implication follows by symmetry. Thus, (c) holds.

Finally, we assume (c) and prove (a). To this end, we
show that conditions (1)–(4) of Theorem 11 hold. Directly
from the assumptions, we have that condition (1) holds.
Condition (2) follows from the general fact that for all
optimization problems P and Q, and every set V ⊆ 2U ,
≥PV = ≥QV implies >PV = >QV . Moreover, we also have that
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Mod(P g) = Mod(Qg). To prove condition (3), let us as-
sume that I, J ∈ Mod(P g) and that diff P (I, J) > 1. Since
P is simple, I ≈P J . Thus, I ≈Q J and, consequently,
diff P (I, J) =∞ = diff Q(I, J). Finally, condition (4), i.e.
>P<i

Mod(Pg) = >Q<i

Mod(Qg), obviously holds in case i = 1 and
Mod(P g) = Mod(Qg). 2

Complexity
In this section, we study the problems of deciding the var-
ious notions of strong equivalence. Typically the compar-
isons between sets of outcomes in the characterizations de-
termine the respective complexity. We start with results con-
cerning strong sel-equivalence.
Theorem 15 Given optimization problems P and Q, decid-
ing P ≡s Q is co-NP-complete in case of CO-problems and
ΠP

2 -complete in case of ASO-problems.
Proof. [Sketch] For membership, one can show that given a
pair of interpretations I, J it can be verified in polynomial
time (for CO-problems) or in polynomial time using an NP
oracle (for ASO-problems) whether they form a witness for
the complement of the conditions stated in Corollary 4. The
main observation is that model checking is polynomial for
the classical semantics, but co-NP-complete for the equilib-
rium semantics (Theorem 8 (Pearce, Tompits, and Woltran
2009)).

Hardness follows from considering the equivalence
problem for optimizations problems with empty selectors,
which is known to be co-NP-hard (for classical semantics)
and ΠP

2 -hard (for equilibrium semantics, Theorem 11
(Pearce, Tompits, and Woltran 2009)). 2

For the ranked case, we observe an increase in complex-
ity, which can be explained by the characterization given in
Theorem 2: Instead of outcome checking, this characteri-
zation involves optimal outcome checking, which is more
difficult (unless the polynomial hierarchy collapses).
Theorem 16 Given optimization problems P and Q and a
rank interval [i, j], deciding P ≡s,[i,j] Q is ΠP

2 -complete
in case of CO-problems and ΠP

3 -complete in case of ASO-
problems.
Proof. [Sketch] The membership part essentially follows the
same arguments as the proof of Theorem 15, but here the
problem of checking I ∈ π(P<i) is in co-NP for CO-
problems and in ΠP

2 for ASO-problems.
For the hardness part, we reduce the following problem to

sel-equivalence of CO-problems: Given two propositional
theories S and T , decide whether they possess the same min-
imal models. This problem is known to be ΠP

2 -complete
(e.g. Theorem 6.15 (Eiter, Fink, and Woltran 2007)), and
the problem remains hard if S and T are in negation normal
form (NNF) given over the same alphabet. We adapt a con-
struction used by Brewka et al. (2011), and given a theory
T (where U is the collection of atoms occurring in T ) we
construct a CO problem PT where

P gT = T [¬u/u′] ∪ {u↔ ¬u′ | u ∈ U},
P sT = {u′ > u←| u ∈ U},

and T [¬u/u′] stands for the theory resulting from replacing
all ¬u by u′ in T . The elements in π(PT ) are in a one-to-one
correspondence to the minimal models of T . For theories S
and T over U it follows that S and T have the same minimal
models if and only if PS ≡s,≥2 PT .

Concerning the hardness part for ASO problems, we use
the following problem: given two open quantified boolean
formulas (QBFs) ∀Y φ(X,Y ), ∀Y ψ(X,Y ), do they possess
the same minimal models. This problem is ΠP

3 -hard. For
φ(X,Y ), we construct Pφ as follows:

P gφ = {z ∨ z′ | z ∈ X ∪ Y } ∪
{(y ∧ y′)→ w,w → y, w → y′ | y ∈ Y } ∪
{φ[¬z/z′]→ w,¬w → w},

P sφ = {x′ > x←| x ∈ X},

where φ[¬z/z′] stands for the formula obtained by replac-
ing all ¬z by z′ in φ(X,Y ). The elements in π(Pφ) are
in a one-to-one correspondence to the minimal models
of ∀Y φ(X,Y ). For φ and ψ over X ∪ Y we get that
∀Y φ(X,Y ) and ∀Y ψ(X,Y ) have the same minimal
models if and only if Pφ ≡s,≥2 Pψ . 2

In Theorem 16 the rank interval [i, j] is given in input.
When fixing the interval, the hardness results still hold, pro-
vided that i > 1. In fact, the critical condition in Corol-
lary 3 is π(P<i) = π(Q<i); for rank intervals [1, j], the
selectors become empty and the condition is reduced to
µ(P ) = µ(Q), which is easier to decide.

The remaining problems are all in co-NP. For strong gen-
equivalence, completeness follows directly from Theorem 9
and co-NP-completeness of deciding strong equivalence be-
tween two propositional theories (for both semantics).

Theorem 17 Given two CO (ASO, respectively) problems
P and Q, deciding P ≡g Q is co-NP-complete.

Finally, for the combined case the hardness result fol-
lows from Theorem 11 and co-NP-completeness of deciding
strong equivalence of propositional theories.

Theorem 18 Given ranked CO (ASO, respectively) prob-
lems P andQ, and rank interval [i, j], deciding P ≡s,[i,j]g Q
is co-NP-complete.

By construction, all hardness results hold already for sim-
ple optimization problem.

Discussion
We introduced the formalism of optimization problems, gen-
eralizing the principles of ASO programs, in particular, the
separation of hard and soft constraints (Brewka, Niemelä,
and Truszczyński 2003). We focused on two important spe-
cializations of optimization problems: CO problems and
ASO problems. We studied various forms of strong equiv-
alence for these classes of optimization problems, depend-
ing on what contexts are considered. Specifically, we con-
sidered the following cases: new preference information is
added, but the hard constraints remain unchanged (strong
sel-equivalence); hard constraints are added but preferences
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remain unchanged (strong gen-equivalence); both hard con-
straints and preferences can be added (strong equivalence).
To the best of our knowledge, this natural classification of
equivalences in preference formalisms has not been studied
yet. In certain cases some of these notions coincide (The-
orem 12) but this is no longer true when the underlying se-
mantics is changed or ranks in contexts are restricted.

In previous work, the notion of strong equivalence (both
hard constraints and preferences can be added) has been
studied for logic programs with weak constraints by Eiter
et al. (2007) and logic programs with ordered disjunctions
(LPODs) by Faber et al. (2008). While for the former for-
malism, a separation of strong equivalence into different no-
tions – as suggested here for ASO problems – would be pos-
sible (also compare Lemma 23 (Eiter et al. 2007) to our
results, e.g. Corollary 14), a similar separation for strong
equivalence is not straightforward for LPODs. The reason
is the syntactic nature of LPOD rules which act like hard
constraints and preference rules at the same time. Faber et
al. (2008) considered strong equivalence with respect to con-
texts that are logic programs (which is similar to strong gen-
equivalence) and the combined case of strong equivalence
(called strong equivalence for arbitrary contexts there), but
they did not consider any counterpart to the notion of strong
sel-equivalence. In fact, it is even unclear whether in every
LPOD the generating and selecting modules can be cleanly
separated.

In our paper, we established characterizations of all three
types of strong equivalence. They exhibit strong similari-
ties. The characterizations of strong sel-equivalence for CO
and ASO problems in Theorem 2 are precisely the same,
mirroring the fact that generators are not subject to change.
Theorem 9 concerns strong gen-equivalence for CO and
ASO problems. In each case, the characterizations consist
of two requirements: the strong equivalence of generators,
and the equality of the strict preference relations restricted
to the class of models of the generators. The only difference
comes from the fact that strong equivalence for classical and
the equilibrium-model semantics have different characteri-
zations. Theorem 11 which concerns the combined case of
strong equivalence also does not differentiate between CO
and ASO problems other than implicitly (as before, the con-
ditions of strong equivalence are different for the two seman-
tics). Moreover, the characterizations given arise in a certain
systematic way from those given in Theorems 2 and 9. This
being the case in each of the different semantics we used
strongly suggests that there are some abstract principles at
play here. We are currently pursuing this direction, con-
jecturing that this is an inherent feature of preference for-
malisms with separation of hard and soft constraints.

Coming back to LPODs, these comments suggest that
identifying a “split” representation for that formalism might
be of interest. It could lead to alternative characterizations
of (combined) strong equivalence derived from the charac-
terizations of the two “one-dimensional” variants.

Next, we note that our results give rise to problem
rewriting methods that transform optimization problems into
strongly equivalent ones. We provided two simple examples
illustrating that application of our results in Example 7 and

Corollary 8. Similar examples can be constructed for our
results concerning strong gen-equivalence and (combined)
strong equivalence. A more systematic study of optimiza-
tion problem rewriting rules that result in strongly equivalent
problems will be a subject of future work.

Finally, we established the complexity of deciding
whether optimization problems are strongly equivalent. No-
tably, in the general case of strong (combined) equivalence
this problem remains in co-NP for both CO and ASO prob-
lems. It is strong sel-equivalence that is computationally
hardest to test (in case of ASO problems, ΠP

3 -hard). It is
so, as the concept depends of properties of outcomes that
are optimal with respect to rules of ranks less than i, while
in other cases all models have to be considered. Testing op-
timality is harder than testing for being a model, explaining
the results we obtained.
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