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Abstract
Standard models of multi-agent modal logic do not capture
the fact that information is often ambiguous, and may be in-
terpreted in different ways by different agents. We propose a
framework that can model this, and consider different seman-
tics that capture different assumptions about the agents’ be-
liefs regarding whether or not there is ambiguity. We consider
the impact of ambiguity on a seminal result in economics:
Aumann’s result saying that agents with a common prior can-
not agree to disagree. This result is known not to hold if
agents do not have a common prior; we show that it also does
not hold in the presence of ambiguity. We then consider the
tradeoff between assuming a common interpretation (i.e., no
ambiguity) and a common prior (i.e., shared initial beliefs).

1 Introduction
In the study of multi-agent modal logics, it is always im-
plicitly assumed that all agents interpret all formulas the
same way. While they may have different beliefs regarding
whether a formula ϕ is true, they agree on what ϕ means.
Formally, this is captured by the fact that the truth of ϕ does
not depend on the agent.

Of course, in the real world, there is ambiguity; different
agents may interpret the same utterance in different ways.
For example, consider a public announcement p. Each
player i may interpret p as corresponding to some event Ei,
whereEi may be different fromEj if i 6= j. This seems nat-
ural: even if people have a common background, they may
still disagree on how to interpret certain phenomena or new
information. Someone may interpret a smile as just a sign of
friendliness; someone else may interpret it as a “false” smile,
concealing contempt; yet another person may interpret it as
a sign of sexual interest.

To model this formally, we can use a straightforward
approach already used in Halpern (2009) and Grove and
Halpern (1993): formulas are interpreted relative to a player.
But once we allow such ambiguity, further subtleties arise.
Returning to the announcement p, not only can it be inter-
preted differently by different players, it may not even occur
to the players that others may interpret the announcement
in a different way. Thus, for example, i may believe that
Ei is common knowledge. The assumption that each player
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believes that her interpretation is how everyone interprets
the announcement is but one assumption we can make about
ambiguity. It is also possible that player i may be aware
that there is more than one interpretation of p, but believes
that player j is aware of only one interpretation. For ex-
ample, think of a politician making an ambiguous statement
which he realizes that different constituencies will interpret
differently, but will not realize that there are other possible
interpretations. In this paper, we investigate a number of
different semantics of ambiguity that correspond to some
standard assumptions that people make with regard to am-
biguous statements, and investigate their relationship.

Our interest in ambiguity is motivated by a seminal result
in game theory: Aumann’s 1976 theorem showing that play-
ers cannot “agree to disagree”. More precisely, this theorem
says that agents with a common prior on a state space can-
not have common knowledge that they have different pos-
teriors.1 This result has been viewed as paradoxical in the
economics literature. Trade in a stock market seems to re-
quire common knowledge of disagreement (about the value
of the stock being traded), yet we clearly observe a great
deal of trading.

One well known explanation for the disagreement is that
we do not in fact have common priors: agents start out with
different beliefs. We provide a different explanation here, in
terms of ambiguity. It is easy to show that we can agree to
disagree when there is ambiguity, even if there is a common
prior. We then show that these two explanations of the pos-
sibility of agreeing to disagree are closely related, but not
identical. We can convert an explanation in terms of ambi-
guity to an explanation in terms of lack of common priors.2
Importantly, however, the converse does not hold; there are
models in which players have a common interpretation that
cannot in general be converted into an equivalent model with
ambiguity and a common prior. In other words, using het-
erogeneous priors may be too permissive if we are interested
in modeling a situation where differences in beliefs are due
to differences in interpretation.

Although our work is motivated by applications in eco-

1We explain this result in more detail in Section 3.
2More precisely, we can convert a model with ambiguity and a

common prior to an equivalent model—equivalent in the sense that
the same formulas are true—where there is no ambiguity but no
common prior.
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nomics, ambiguity has long been a concern in linguistics and
natural language processing. For example, there has been a
great deal of work on word-sense disambiguation (i.e., try-
ing to decide from context which of the multiple meanings
of a word are intended); see Hirst 1988 for a seminal con-
tribution, and Navigli 2009 for a recent survey. However,
there does not seem to be much work on incorporating am-
biguity into a logic. Apart from the literature on the logic
of context and on underspecification (see Van Deemter and
Peters 1996), the only paper that we are aware of that does
this is one by Monz 1999. Monz allows for statements that
have multiple interpretations, just as we do. But rather than
incorporating the ambiguity directly into the logic, he con-
siders updates by ambiguous statements. There are also con-
nections between ambiguity and vagueness. Although the
two notions are different—a term is vague if it is not clear
what its meaning is, and is ambiguous if it can have multi-
ple meanings, Halpern 2009 also used agent-dependent in-
terpretations in his model of vagueness, although the issues
that arose were quite different from those that concern us
here.

The rest of this paper is organized as follows. Section
2 introduces the logic that we consider. Section 3 inves-
tigates the implications of the common-prior assumption
when there is ambiguity. Section 4 studies the tradeoff be-
tween heterogeneous priors and ambiguity, and Section 5
concludes.

2 Syntax and Semantics
2.1 Syntax
We want a logic where players use a fixed common lan-
guage, but each player may interpret formulas in the lan-
guage differently. We also want to allow the players to be
able to reason about (probabilistic) beliefs.

The syntax of the logic is straightforward (and is, indeed,
essentially the syntax already used in papers going back to
Fagin and Halpern 1994). There is a finite, nonempty set
N = {1, . . . , n} of players, and a countable, nonempty set
Φ of primitive propositions. Let LC

n (Φ) be the set of for-
mulas that can be constructed starting from Φ, and clos-
ing off under conjunction, negation, the modal operators
{CBG}G⊆N,G6=∅, and the formation of probability formu-
las. (We omit the Φ if it is irrelevant or clear from con-
text.) Probability formulas are constructed as follows. If
ϕ1, . . . , ϕk are formulas, and a1, . . . , ak, b ∈ Q, then for
i ∈ N ,

a1pr i(ϕ1) + . . .+ akpr i(ϕk) ≥ b
is a probability formula, where pr i(ϕ) denotes the probabil-
ity that player i assigns to a formula ϕ. Note that this syn-
tax allows for nested probability formulas. We use the ab-
breviation Biϕ for pr i(ϕ) = 1, EB1

Gϕ for ∧i∈GBiϕ, and
EBm+1

G ϕ for EBm
GEB

1
Gϕ for m = 1, 2 . . .. Finally, we

take true to be the abbreviation for a fixed tautology such as
p ∨ ¬p.

2.2 Epistemic probability structures
There are standard approaches for interpreting this language
(Fagin and Halpern 1994), but they all assume that there

is no ambiguity, that is, that all players interpret the prim-
itive propositions the same way. To allow for different inter-
pretations, we use an approach used earlier (Halpern 2009;
Grove and Halpern 1993): formulas are interpreted relative
to a player.

An (epistemic probability) structure (over Φ) has the form

M = (Ω, (Πj)j∈N , (Pj)j∈N , (πj)j∈N ),

where Ω is the state space, and for each i ∈ N , Πi is a par-
tition of Ω, Pi is a function that assigns to each ω ∈ Ω a
probability space Pi(ω) = (Ωi,ω,Fi,ω, µi,ω), and πi is an
interpretation that associates with each state a truth assign-
ment to the primitive propositions in Φ. That is, πi(ω)(p) ∈
{true, false} for all ω and each primitive proposition p.
Intuitively, πi describes player i’s interpretation of the prim-
itive propositions. Standard models use only a single in-
terpretation π; this is equivalent in our framework to as-
suming that π1 = · · · = πn. We call a structure where
π1 = · · · = πn a common-interpretation structure. De-
note by [[p]]i the set of states where i assigns the value true
to p. The partitions Πi are called information partitions.
While it is more standard in the philosophy and computer
science literature to use models where there is a binary rela-
tion Ki on Ω for each agent i that describes i’s accessibility
relation on states, we follow the common approach in eco-
nomics of working with information partitions here, as that
makes it particularly easy to define a player’s probabilistic
beliefs. Assuming information partitions corresponds to the
case that Ki is an equivalence relation (and thus defines a
partition). The intuition is that a cell in the partition Πi is
defined by some information that i received, such as signals
or observations of the world. Intuitively, agent i receives the
same information at each state in a cell of Πi. Let Πi(ω)
denote the cell of the partition Πi containing ω. Finally, the
probability space Pi(ω) = (Ωi,ω,Fi,ω, µi,ω) describes the
beliefs of player i at state ω, with µi,ω a probability mea-
sure defined on the subspace Ωi,ω of the state space Ω. The
σ-algebra Fi,ω consists of the subsets of Ωi,ω to which µi,ω

can assign a probability. (If Ωi,ω is finite, we typically take
Fi,ω = 2Ωi,ω , the set of all subsets of Ωi,ω .) The interpreta-
tion is that µi,ω(E) is the probability that i assigns to event
E ∈ Fi,ω in state ω.

Throughout this paper, we make the following assump-
tions regarding the probability assignments Pi, i ∈ N :
A1. For all ω ∈ Ω, Ωi,ω = Πi(ω).
A2. For all ω ∈ Ω, if ω′ ∈ Πi(ω), then Pi(ω

′) = Pi(ω).
A3. For all j ∈ N,ω, ω′ ∈ Ω, Πi(ω) ∩Πj(ω

′) ∈ Fi,ω .
Furthermore, we make the following joint assumption on
players’ interpretations and information partitions:
A4. For all ω ∈ Ω, i ∈ N , and primitive proposition p ∈ Φ,

Πi(ω) ∩ [[p]]i ∈ Fi,ω .
These are all standard assumptions. A1 says that the set of
states to which player i assigns probability at state ω is just
the set Πi(ω) of worlds that i considers possible at state ω.
A2 says that the probability space used is the same at all
the worlds in a cell of player i’s partition. Intuitively, this
says that player i knows his probability space. Informally,
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A3 says that player i can assign a probability to each of j’s
cells, given his information. A4 says that primitive propo-
sitions (as interpreted by player i) are measurable according
to player i.

2.3 Prior-generated beliefs and the
common-prior assumption

One assumption that we do not necessarily make, but want
to examine in this framework, is the common-prior assump-
tion. The common-prior assumption is an instance of a more
general assumption, that beliefs are generated from a prior,
which we now define. The intuition is that players start with
a prior probability; they then update the prior in light of their
information. Player i’s information is captured by her parti-
tion Πi. Thus, if i’s prior is νi, then we would expect µi,ω

to be νi(· | Πi(ω)).

Definition 2.1 An epistemic probability structure M =
(Ω, (Πj)j∈N , (Pj)j∈N , (πj)j∈N ) has prior-generated be-
liefs (generated by (F1, ν1), . . . , (Fn, νn)) if, for each
player i, there exist probability spaces (Ω,Fi, νi) such that

• for all i, j ∈ N and ω ∈ Ω, Πj(ω) ∈ Fi;
• for all i ∈ N and ω ∈ Ω, Pi(ω) = (Πi(ω),Fi |

Πi(ω), µi,ω), where Fi | Πi(ω) is the restriction of Fi

to Πi(ω),3 and µi,ω(E) = νi(E | Πi(ω)) for all E ∈ Fi |
Πi(ω) if νi(Πi(ω)) > 0. (There are no constraints on νi,ω
if νi(Πi(ω)) = 0.)

It is easy to check that ifM has prior-generated beliefs, then
M satisfies A1, A2, and A3. More interestingly for our
purposes, the converse also holds for a large class of struc-
tures. Say that a structure is countably partitioned if for each
player i, the information partition Πi has countably many el-
ements, i.e., Πi is a finite or countably infinite collection of
subsets of Ω.

Proposition 2.2 If a structure M has prior-generated be-
liefs, then M satisfies A1, A2, and A3. Moreover, every
countably partitioned structure that satisfies A1, A2, and A3
is one with prior-generated beliefs, with the priors νi satis-
fying νi(Πi(ω)) > 0 for each player i ∈ N and state ω ∈ Ω.

Proof. The first part is immediate. To prove the second
claim, suppose that M is a structure satisfying A1–A3.
Let Fi be the unique algebra generated by ∪ω∈ΩFi,ω . To
define νi, if there are Ni < ∞ cells in the partition Πi,
define νi(ω) = 1

Ni
µi,ω(ω). Otherwise, if the collection Πi

is countably infinite, order the elements of Πi as p1
i , p

2
i , . . ..

Choose some state ωk ∈ pki for each k, with associated
probability space Pi(ωk) = (Ωi,ωk

,Fi,ωk
, µi,ωk

). By A2,
each choice of ωk in pki gives the same probability measure
µi,ωk

. Define νi =
∑

k
1
2kµi,ωk

. It is easy to see that νi
is a probability measure on Ω, and that M is generated by
(F1, ν1), . . . , (Fn, νn).

3Recall that the restriction ofFi to Πi(ω) is the σ-algebra {B∩
Πi(ω) : B ∈ Fi}.

Note that the requirement that that M is countably parti-
tioned is necessary to ensure that we can have νi(Πi(ω)) >
0 for each player i and state ω.

In light of Proposition 2.2, when it is convenient, we will
talk of a structure satisfying A1–A3 as being generated by
(F1, ν1), . . . , (Fn, νn).

The common-prior assumption is essentially just the spe-
cial case of prior-generated beliefs where all the priors are
identical. We make one additional technical assumption. To
state this assumption, we need one more definition. A state
ω′ ∈ Ω is G-reachable from ω ∈ Ω, for G ⊆ N , if there ex-
ists a sequence ω0, . . . , ωm in Ω with ω0 = ω and ωm = ω′,
and i1, . . . , im ∈ G such that ω` ∈ Πi`(ω`−1). Denote by
RG(ω) ⊆ Ω the set of states G-reachable from ω.
Definition 2.3 An epistemic probability structure M =
(Ω, (Πj)j∈N , (Pj)j∈N , (πj)j∈N ) satisfies the common-
prior assumption (CPA) if there exists a probability space
(Ω,F , ν) such that M has prior-generated beliefs generated
by ((F , ν), . . . , (F , ν)), and ν(RN (ω)) > 0 for all ω ∈ Ω.

As shown by Halpern 2002, the assumption that
ν(RN (ω)) > 0 for each ω ∈ Ω is needed for Aumann’s
1976 impossibility result.

2.4 Capturing ambiguity
We use epistemic probability structures to give meaning to
formulas. Since primitive propositions are interpreted rela-
tive to players, we must allow the interpretation of arbitrary
formulas to depend on the player as well. Exactly how we
do this depends on what further assumptions we make about
what players know about each other’s interpretations. There
are many assumptions that could be made. We focus on two
of them here, ones that we believe arise in applications of
interest, and then reconsider them under the assumption that
there may be some ambiguity about the partitions.

Believing there is no ambiguity The first approach is ap-
propriate for situations where players may interpret state-
ments differently, but it does not occur to them that there
is another way of interpreting the statement. Thus, in this
model, if there is a public announcement, all players will
think that their interpretation of the announcement is com-
mon knowledge. We write (M,ω, i) �out ϕ to denote that
ϕ is true at state ω according to player i (that is, according
to i’s interpretation of the primitive propositions in ϕ). The
superscript out denotes outermost scope, since the formu-
las are interpreted relative to the “outermost” player, namely
the player i on the left-hand side of �out . We define �out ,
as usual, by induction.

If p is a primitive proposition,
(M,ω, i) �out p iff πi(ω)(p) = true.

This just says that player i interprets a primitive proposition
p according to his interpretation function πi. This clause is
common to all our approaches for dealing with ambiguity.

For conjunction and negation, as is standard,
(M,ω, i) �out ¬ϕ iff (M,ω, i) 6 �outϕ,

(M,ω, i) �out ϕ ∧ ψ iff (M,ω, i) �out ϕ and (M,ω, i) �out ψ.
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Now consider a probability formula of the form
a1pr j(ϕ1) + . . . + akpr j(ϕk) ≥ b. The key feature that
distinguishes this semantics is how i interprets j’s beliefs.
This is where we capture the intuition that it does not occur
to i that there is another way of interpreting the formulas
other than the way she does. Let

[[ϕ]]outi = {ω : (M,ω, i) �out ϕ}.

Thus, [[ϕ]]outi is the event consisting of the set of states
where ϕ is true, according to i. Note that A1 and A3 guaran-
tee that the restriction of Ωj,ω to Πi(ω) belongs to Fi,ω . As-
sume inductively that [[ϕ1]]outi ∩Ωj,ω, . . . , [[ϕk]]outi ∩Ωj,ω ∈
Fj,ω . The base case of this induction, where ϕ is a primitive
proposition, is immediate from A3 and A4, and the induc-
tion assumption clearly extends to negations and conjunc-
tions. We now define

(M,ω, i) �out a1pr j(ϕ1) + . . .+ akpr j(ϕk) ≥ b iff

a1µj,ω([[ϕ1]]outi ∩Ωj,ω)+. . .+akµj,ω([[ϕk]]outi ∩Ωj,ω) ≥ b.

Note that it easily follows from A2 that (M,ω, i) �out

a1pr j(ϕ1) + . . . + akpr j(ϕk) ≥ b if and only if
(M,ω′, i) �out a1pr j(ϕ1) + . . . + akpr j(ϕk) ≥ b for all
ω′ ∈ Πj(ω). Thus, [[a1pr j(ϕ1) + . . . + akpr j(ϕk) ≥ b]]i
is a union of cells of Πj , and hence [[a1pr j(ϕ1) + . . . +
akpr j(ϕk) ≥ b]]i ∩ Ωj,ω ∈ Fj,ω .

With this semantics, according to player i, player j as-
signs ϕ probability b if and only if the set of worlds where
ϕ holds according to i has probability b according to j.
Intuitively, although i “understands” j’s probability space,
player i is not aware that j may interpret ϕ differently from
the way she (i) does. That i understands j’s probability
space is plausible if we assume that there is a common prior
and that i knows j’s partition (this knowledge is embodied
in the assumption that i intersects [[ϕk]]outi with Ωj,ω when
assessing what probability j assigns to ϕk).4

Given our interpretation of probability formulas, the in-
terpretation of Bjϕ and EBkϕ follows. For example,

(M,ω, i) �out Bjϕ iff µj,ω([[ϕ]]outi ) = 1.

For readers more used to belief defined in terms of a pos-
sibility relation, note that if the probability measure µj,ω is
discrete (i.e., all sets are µj,ω-measurable, and µj,ω(E) =∑

ω′∈E µj,ω(ω′) for all subsets E ⊂ Πj(ω)), we can define
Bj = {(ω, ω′) : µj,ω(ω′) > 0}; that is, (ω, ω′) ∈ Bj if, in
state ω, agent j gives state ω′ positive probability. In that
case, (M,ω, i) �out Bjϕ iff (M,ω′, i) �out ϕ for all ω′
such that (ω, ω′) ∈ Bj . That is, (M,ω, i) �out Bjϕ iff ϕ
is true according to i in all the worlds to which j assigns
positive probability at ω.

4Note that at state ω, player i will not in general know that it is
state ω. In particular, even if we assume that i knows which ele-
ment of j’s partition contains ω, i will not in general know which
of j’s cells describes j’s current information. But we assume that
i does know that if the state is ω, then j information is described
by Ωj,ω . Thus, as usual, “(M, i, ω) �out ϕ” should perhaps be un-
derstood as “according to i, ϕ is true if the actual world is ω”. This
interpretational issue arises even without ambiguity in the picture.

It is important to note that (M,ω, i) � ϕ does not imply
(M,ω, i) � Biϕ: while (M,ω, i) �out ϕ means “ϕ is true
at ω according to i’s interpretation,” this does not mean that
i believes ϕ at state ω. The reason is that i can be uncertain
as to which state is the actual state. For i to believe ϕ at ω,
ϕ would have to be true (according to i’s interpretation) at
all states to which i assigns positive probability.

Finally, we define

(M,ω, i) �out CBGϕ iff (M,ω, i) �out EBk
Gϕ for k = 1, 2, . . .

for any nonempty subset G ⊆ N of players.

Awareness of possible ambiguity We now consider the
second way of interpreting formulas. This is appropriate for
players who realize that other players may interpret formu-
las differently. We write (M,ω, i) �in ϕ to denote that ϕ
is true at state ω according to player i using this interpreta-
tion, which is called innermost scope. The definition of �in

is identical to that of �out except for the interpretation of
probability formulas. In this case, we have

(M,ω, i) �in a1pr j(ϕ1) + . . .+ akpr j(ϕk) ≥ b iff

a1µj,ω([[ϕ1]]inj ∩Ωj,ω)+. . .+akµj,ω([[ϕk]]inj ∩Ωj,ω) ≥ b,

where [[ϕ]]inj is the set of states ω such that (M,ω, j) �in ϕ.
Hence, according to player i, player j assigns ϕ probability
b if and only if the set of worlds where ϕ holds according
to j has probability b according to j. Intuitively, now i re-
alizes that j may interpret ϕ differently from the way that
she (i) does, and thus assumes that j uses his (j’s) interpre-
tation to evaluate the probability of ϕ. Again, in the case
that µj,ω is discrete, this means that (M,ω, i) �in Bjϕ iff
(M,ω′, j) �in ϕ for all ω′ such that (ω, ω′) ∈ Bj .

Note for future reference that if ϕ is a probability formula
or a formula of the form CBGϕ

′, then it is easy to see that
(M,ω, i) �in ϕ if and only if (M,ω, j) �in ϕ; we some-
times write (M,ω) �in ϕ in this case. Clearly, �out and �in

agree in the common-interpretation case, and we can write
�.

Ambiguity about information partitions Up to now, we
have assumed that players “understand” each other’s prob-
ability spaces. This may not be so reasonable in the pres-
ence of ambiguity and prior-generated beliefs. We want to
model the following type of situation. Players receive infor-
mation, or signals, about the true state of the world, in the
form of strings (formulas). Each player understands what
signals he and other players receive in different states of the
world, but players may interpret signals differently. For in-
stance, player i may understand that j sees a red car if ω is
the true state of the world, but i may or may not be aware
that j has a different interpretation of “red” than i does. In
the latter case, i does not have a full understanding of j’s
information structure.

We would like to think of a player’s information as be-
ing characterized by a formula (intuitively, the formula that
describes the signals received). Even if the formulas that
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describe each information set are commonly known, in the
presence of ambiguity, they might be interpreted differently.

To make this precise, let Φ∗ be the set of formulas that is
obtained from Φ by closing off under negation and conjunc-
tion. That is, Φ∗ consists of all propositional formulas that
can be formed from the primitive propositions in Φ. Since
the formulas in Φ∗ are not composed of probability formu-
las, and thus do not involve any reasoning about interpreta-
tions, we can extend the function πi(·) to Φ∗ in a straight-
forward way, and write [[ϕ]]i for the set of the states of the
world where the formula ϕ ∈ Φ∗ is true according to i.

The key new assumption we make to model players’
imperfect understanding of the other players’ probability
spaces is that i’s partition cell at ω is described by a formula
ϕi,ω ∈ Φ∗. But, of course, this formula may be interpreted
differently by each player. We want Πi(ω) to coincide with
i’s interpretation of the formula ϕi,ω . If player j understands
that i may be using a different interpretation than he does
(i.e., the appropriate semantics are the innermost-scope se-
mantics), then j correctly infers that the set of states that i
thinks are possible in ω is Πi(ω) = [[ϕi,ω]]i. But if j does
not understand that i may interpret formulas in a different
way (i.e., under outermost scope), then he thinks that the set
of states that i thinks are possible in ω is given by [[ϕi,ω]]j ,
and, of course, [[ϕi,ω]]j may not coincide with Πi(ω). In any
case, we require that j understand that these formulas form a
partition and that ω belongs to [[ϕi,ω]]j . Thus, we consider
structures that satisfy A5 and A6 (for outermost scope) or
A5 and A6’ (for innermost scope), in addition to A1–A4.

A5. For each i ∈ N and ω ∈ Ω, there is a formula ϕi,ω ∈
Φ∗ such that Πi(ω) = [[ϕi,ω]]i.

A6. For each i, j ∈ N , the collection {[[ϕi,ω]]j : ω ∈ Ω} is
a partition of Ω and for all ω ∈ Ω, ω ∈ [[ϕi,ω]]j .

A6′. For each i ∈ N , the collection {[[ϕi,ω]]i : ω ∈ Ω} is a
partition of Ω and for all ω ∈ Ω, ω ∈ [[ϕi,ω]]i.

Assumption A6 is appropriate for outermost scope: it pre-
sumes that player j uses his own interpretation of ϕi,ω in
deducing the beliefs for i in ω. Assumption A6′ is appropri-
ate for innermost scope. Note that A6′ is a weakening of A6.
While A6 requires the signals for player i to induce an in-
formation partition according to every player j, the weaker
version A6′ requires this to hold only for player i himself.

We can now define analogues of outermost scope and in-
nermost scope in the presence of ambiguous information.
Thus, we define two more truth relations, �out,ai and �in,ai .
(The “ai” here stands for “ambiguity of information”.) The
only difference between �out,ai and �out is in the semantics
of probability formulas. In giving the semantics in a struc-
ture M , we assume that M has prior-generated beliefs, gen-
erated by (F1, ν1), . . . , (Fn, νn). As we observed in Propo-
sition 2.2, this assumption is without loss of generality as
long as the structure is countably partitioned. However, the
choice of prior beliefs is relevant, as we shall see, so we have
to be explicit about them. When i evaluates j’s probability at
a state ω, instead of using νj,ω , player i uses νj(· | [[ϕj,ω]]i).
When i = j, these two approaches agree, but in general they
do not. Thus, assuming that M satisfies A5 and A6 (which

are the appropriate assumptions for the outermost-scope se-
mantics), we have

(M,ω, i) �out,ai a1pr j(ϕ1) + . . .+ akpr j(ϕk) ≥ b iff
a1νj([[ϕ1]]out,aii | [[ϕj,ω]]out,aii ) + . . .

+akνj([[ϕk]]out,aii | [[ϕj,ω]]out,aii ) ≥ b,

where [[ψ]]out,aii = {ω′ : (M,ω, i) �out,ai ψ}.
That is, at ω ∈ Ω, player j receives the information (a

string) ϕj,ω , which he interprets as [[ϕj,ω]]j . Player i un-
derstands that j receives the information ϕj,ω in state ω, but
interprets this as [[ϕj,ω]]i. This models a situation such as
the following. In state ω, player j sees a red car, and thinks
possible all states of the world where he sees a car that is
red (according to j). Player i knows that at world ω player
j will see a red car (although she may not know that the ac-
tual world is ω, and thus does not know what color of car
player j actually sees). However, i has a somewhat different
interpretation of “red car” (or, more precisely, of j seeing
a red car) than j; i’s interpretation corresponds to the event
[[ϕj,ω]]i. Since i understands that j’s beliefs are determined
by conditioning her prior νj on her information, i can com-
pute what she believes j’s beliefs are.

We can define �in,ai in an analogous way. Thus, the se-
mantics for formulas that do not involve probability formu-
las are as given by �in , while the semantics of probability
formulas is defined as follows (where M is assumed to sat-
isfy A5 and A6′, which are the appropriate assumptions for
the innermost-scope semantics):

(M,ω, i) �in,ai a1pr j(ϕ1) + . . .+ akpr j(ϕk) ≥ b iff
a1νj([[ϕ1]]in,aij | [[ϕj,ω]]in,aij ) + . . .

+akνj([[ϕk]]in,aij | [[ϕj,ω]]in,aij ) ≥ b.

Note that although we have written [[ϕj,ω]]in,aii , since ϕj,ω

is a propositional formula, [[ϕj,ω]]in,aii = [[ϕj,ω]]out,aii =
[[ϕj,ω]]outi = [[ϕj,ω]]ini . It is important that ϕj,ω is a propo-
sitional formula here; otherwise, we would have circular-
ities in the definition, and would somehow need to define
[[ϕj,ω]]in,aii .

Again, here it may be instructive to consider the definition
ofBjϕ in the case that µj,ω is discrete for all ω. In this case,
Bj becomes the set {(ω, ω′) : νj(ω

′ | [[ϕj,ω]]in,aij ) > 0.
That is, state ω′ is considered possible by player j in state
ω if agent j gives ω′ positive probability after conditioning
his prior νj on (his interpretation of) the information ϕj,ω he
receives in state ω. With this definition of Bj , we have, as
expected, (M,ω, i) �in,ai Bjϕ iff (M,ω′, i) �in,ai ϕ for
all ω′ such that (ω, ω′) ∈ Bj .

The differences in the different semantics arise only when
we consider probability formulas. If we go back to our ex-
ample with the red car, we now have a situation where player
j sees a red car in state ω, and thinks possible all states where
he sees a red car. Player i knows that in state ω, player j sees
a car that he (j) interprets to be red, and that this determines
his posterior. Since i understands j’s notion of seeing a red
car, she has a correct perception of j’s posterior in each state
of the world. Thus, the semantics for �in,ai are identical to
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those for �in (restricted to the class of structures with prior-
generated beliefs that satisfy A5 and A6′), though the infor-
mation partitions are not predefined, but rather generated by
the signals.

Note that, given an epistemic structure M satisfying
A1–A4, there are many choices for νi that allow M to
be viewed as being generated by prior beliefs. All that
is required of νj is that for all ω ∈ Ω and E ∈
Fj,ω such that E ⊆ [[ϕj,ω]]out,aij , it holds that νj(E ∩
[[ϕj,ω]]out,aij )/νj([[ϕj,ω]]out,aij ) = µj,ω(E). However, be-
cause [[ϕj,ω]]out,aii may not be a subset of [[ϕj,ω]]out,aij =

Πj(ω), we can have two prior probabilities νj and ν′j
that generate the same posterior beliefs for j, and still
have νj([[ϕk]]out,aii | [[ϕj,ω]]out,aii ) 6= ν′j([[ϕk]]out,aii |
[[ϕj,ω]]out,aii ) for some formulas ϕk. Thus, we must be ex-
plicit about our choice of priors here.

3 The common-prior assumption revisited
This section applies the framework developed in the pre-
vious sections to understand the implications of assuming
a common prior when there is ambiguity. The application
in Section 3.1 makes use of the outermost- and innermost-
scope semantics, while Section 3.2 considers a setting with
ambiguity about information partitions.

3.1 Agreeing to Disagree
The first application we consider concerns the result of Au-
mann 1976 that players cannot “agree to disagree” if they
have a common prior. As we show now, this is no longer
true if players can have different interpretations. But ex-
actly what “agreeing to disagree” means depends on which
semantics we use.

Example 3.1 [Agreeing to Disagree] Consider a structure
M with a single state ω, such that π1(ω)(p) = true and
π2(ω)(p) = false. Clearly M satisfies the CPA. The fact
that there is only a single state inM means that, although the
players interpret p differently, there is perfect understanding
of how p is interpreted by each player. Specifically, taking
G = {1, 2}, we have that (M,ω) �in CBG(B1p ∧ B2¬p).
Thus, with innermost scope, according to each player, there
is common belief that they have different beliefs at state ω;
that is, they agree to disagree.

With outermost scope, we do not have an agreement
to disagree in the standard sense, but the players do dis-
agree on what they have common belief about. Specifically,
(M,ω, 1) �out CBGp and (M,ω, 2) �out CBG¬p. That
is, according to player 1, there is common belief of p; and
according to player 2, there is common belief of ¬p. To us,
it seems that we have modeled a rather common situation
here!

Note that in the model of Example 3.1, there is maximal
ambiguity: the players disagree with probability 1. We also
have complete disagreement. As the following result shows,
the less disagreement there is in the interpretation of events,
the closer the players come to not being able to agree to
disagree. Suppose that M satisfies the CPA, where ν is the

common prior, and that ϕ ∈ Φ∗ (so that ϕ is a propositional
formula). Say that ϕ is only ε-ambiguous in M if the set of
states where the players disagree on the interpretation of ϕ
has ν-measure at most ε; that is,

ν({ω : ∃i, j((M,ω, i) � ϕ and (M,ω, j) � ¬ϕ})}) ≤ ε.

We write � here because, as we observed before, all the
semantic approaches agree on propositional formulas, so
this definition makes sense independent of the semantic ap-
proach used. Note that if players have a common interpreta-
tion, then all formulas are 0-ambiguous.

Proposition 3.2 If M satisfies the CPA and ϕ is only ε-
ambiguous in M , then there cannot exist players i and j,
numbers b and b′ with b′ > b+ ε, and a state ω such that all
states are G-reachable from ω and

(M,ω) �in CBG((pr i(ϕ) < b) ∧ (pr j(ϕ) > b′)).

Proof. Essentially the same arguments as those used by
Aumann 1976 can be used to show that if all states are
reachable from ω and (M,ω) �in CBG(pr i(ϕ) < b),
then it must be the case that ν([[ϕ]]i) < b, where ν is the
common prior. Similarly, ν([[ϕ]]j) > b′. This contradicts
the assumption that ϕ is only ε-ambiguous in M .

3.2 Understanding differences in beliefs
Since our framework separates meaning from message, it is
worth asking what happens if players receive the same mes-
sage, but interpret it differently. Aumann 1987 has argued
that “people with different information may legitimately en-
tertain different probabilities, but there is no rational basis
for people who have always been fed precisely the same in-
formation to do so.” Here we show that this is no longer
true when information is ambiguous, even if players have a
common prior and fully understand the ambiguity that they
face, except under strong assumptions on players’ beliefs
about the information that others receive. This could happen
if players with exactly the same background and informa-
tion can interpret things differently, and thus have different
beliefs.

We assume that information partitions are generated by
signals, which may be ambiguous. That is, in each state
of the world ω, each player i receives some signal σi,ω
that determines the states of the world he thinks possible;
that is, Πi(ω) = [[reci(σi,ω)]]i, where reci(σi,ω) ∈ Φ∗ is
“i received σi,ω .” As usual, we restrict attention to struc-
tures with prior-generated beliefs that satisfy A5 and A6′
when considering innermost-scope semantics and A5 and
A6 when considering outermost-scope semantics.

In any given state, the signals that determine the states
that players think are possible may be the same or may differ
across players. Following Aumann 1987, we are particularly
interested in the former case. Formally, we say that σω is
a common signal in ω if σi,ω = σω for all i ∈ N . For
example, if players have a common interpretation, and all
players observe a red car in state ω, then σω is “red car”,
while reci(σω) is “i observes a car that is red.” The fact that
“red car” is a common signal in ω means that all players in
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fact observe a red car in state ω. But assuming that players
have received a common signal does not imply that they have
the same posteriors, as the next example shows:
Example 3.3 There are two players, 1 and 2, and three
states, labeled ω1, ω2, ω3. The common prior gives each
state equal probability, and players have the same interpreta-
tion. In ω1, both players receive signal σ; in ω2, only 1 does;
in ω3, only 2 receives σ. The primitive proposition p is true
in ω1 and ω2, and the primitive proposition q is true in ω1

and ω3. In state ω1, both players receive signal σ, but player
1 assigns probability 1 to p and probability 1

2 to q, while 2
gives probability 1

2 to p and probability 1 to q.
Thus, players who receive a common signal can end up hav-
ing a different posterior over formulas, even if they have a
common prior and the same interpretation. The problem is
that even though players have received the same signal, they
do not know that the other has received it, and they do not
know that the other knows they have received it, and so on.
That is, the fact that players have received a common signal
in ω does not imply that the signal is common knowledge
in ω. We say that signal σ is a public signal at state ω if
(M,ω) � CBN (∧i∈Nreci(σ)): it is commonly believed at
ω that all players received σ.

For the remainder of this section, we will be considering
structures with a common prior ν. To avoid dealing with
topological issues, we assume that ν is a discrete measure.
Of course, if the common prior ν is discrete, then so are all
the measures µi,ω . Let Supp(µ) denote the support of the
probability measure µ. If µ is discrete, then Supp(µ) =
{ω : µ(ω) 6= 0}.

Even though common signals are not sufficient for play-
ers to have the same beliefs, as Example 3.3 demonstrates,
Aumann’s claim does hold for common-interpretation struc-
tures if players receive a public signal (provided that they
started with a common prior):
Proposition 3.4 If M is a common-interpretation structure
with a common prior, and σ is a public signal at ω, then
players’ posteriors are identical at ω: for all i, j ∈ N and
E ∈ F ,

µi,ω(E ∩Πi(ω)) = µj,ω(E ∩Πj(ω)).

In particular, for any formula ϕ,

µi,ω([[ϕ]] ∩Πi(ω)) = µj,ω([[ϕ]] ∩Πj(ω)).

Proof. Let ν be the common prior in M . By as-
sumption, Πi(ω) = [[reci(σ)]] for all players i ∈ N .
Since σ is public, we have that (M,ω) � Bi(recj(σ)).
Thus, (M,ω′) � recj(σ) for all ω′ ∈ Supp(µi,ω).
It follows that Supp(µi,ω) ⊆ Πj(ω) for all players
i and j. Since µi,ω(Supp(µi,ω)) = 1, we have that
ν(Πj(ω) | Πi(ω)) = ν(Πi(ω) | Πj(ω)) = 1. Thus, for all
E ∈ F , we must have ν(E | Πi(ω)) = ν(E | Πj(ω). The
result now follows immediately.

There is another way of formalizing the assumption
that (it is commonly believed that) players are “ fed the
same information”; namely, we say that if one player
i receives a signal σ then so do all others. Formally,

a signal σ is a shared signal at state ω if (M,ω) �
∧i,j∈NCBN (reci(σ) ⇔ recj(σ)). If there is no ambiguity,
a signal is shared iff it is public; we leave the straightforward
proof (which uses ideas from the proof of Proposition 3.4)
to the reader.

Proposition 3.5 IfM is a common-interpretation structure,
and σω is received at state ω by all players, then σω is a
public signal at ω iff σ is a shared signal at ω.

The assumption that signals are public or shared is quite
strong: one requires common belief that a particular signal is
received (and so precludes any uncertainties about what one
player believes that other players believe that others have
received), while the other requires common belief that dif-
ferent players always receive the same signal (and, similarly,
precludes uncertainties about what is received).

What happens if we introduce ambiguity? If the sig-
nal itself is a propositional formula (which is the case in
many cases of interest), then players may interpret the sig-
nal differently; that is, we may have [[σω]]i 6= [[σω]]j for
i 6= j. Moreover, players may have a different interpre-
tation of observing a given signal, i.e., it is possible that
[[reci(σω)]]i 6= [[reci(σω)]]j . Going back to our example of
the red car, different players may interpret “red car” differ-
ently, and they may interpret the notion of observing a red
car differently. In addition, it is now possible that players
have the same posteriors over events, but not over formulas,
or vice versa, given that they may interpret formulas differ-
ently.

If we assume that players are not aware that there is ambi-
guity, then we retain the equivalence between shared signals
and common signals, and players’ posteriors over formulas
coincide after receiving a public signal. However, they may
have different beliefs over events:

Proposition 3.6 If M is a structure satisfying A5 and A6,
and σ is received at state ω by all players, then σ is a public
signal at ω iff σ is a shared signal at ω under outermost-
scope semantics. Moreover, ifM has a common prior, and σ
is a public signal at ω, then players’ posteriors on formulas
are identical at ω; that is, for all formulas ψ, we have

µi,ω([[ψ]]out,aii ∩Πi(ω)) = µj,ω([[ψ]]out,aij ∩Πj(ω)).

However, players’ posteriors on events may differ; that is,
there may exist some E such that

µi,ω(E ∩Πi(ω)) 6= µj,ω(E ∩Πj(ω)).

We leave the straightforward arguments to the reader.
The situation for innermost scope presents an interesting

contrast. A first observation is that public signals and shared
signals are no longer equivalent:

Example 3.7 Consider a structure M with two play-
ers, where Ω = {ω11, ω12, ω21, ω22}. Suppose
that [[rec1(σ)]]1 = [[rec2(σ)]]1 = {ω11, ω12}, and
[[rec1(σ)]]2 = [[rec2(σ)]]2 = {ω11, ω21}. Assume that
the beliefs in M are generated by a common prior that
gives each state probability 1/4. Clearly (M,ω11) �in,ai

CBN (rec1(σ)⇔ rec2(σ)) ∧ ¬CBN (rec1(σ)).
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The problem in Example 3.7 is that, although the signal is
shared, the players don’t interpret receiving the signal the
same way. It is not necessarily the case that player 1 re-
ceived σ from player 1’s point of view iff player 2 received
σ from player 2’s point of view. The assumption that play-
ers receive shared signals is not strong enough to ensure that
they have identical posteriors, either over formulas or over
events. In Example 3.7, for example, players clearly have
different posteriors on the event {ω11, ω12} in state ω11;
similarly, it is not hard to show that players can have differ-
ent posteriors over formulas. Say that σ is strongly shared
at state ω if

• (M,ω) �in,ai ∧i,jCBN (reci(σ)⇔ recj(σ)); and

• (M,ω) �in,ai ∧i,jCBN (Bi(reci(σ))⇔ Bj(recj(σ))).

The second clause says that it is commonly believed at ω
that each player believes that he has received σ iff each of
the other players believes that he has received σ. This clause
is implied by the first in common-interpretation structures
and with outermost scope, but not with innermost scope.

Proposition 3.8 If M is a structure satisfying A5 and A6′,
and σ is received at ω by all players, then σ is a public
signal at ω iff σ is a strongly shared signal at ω under the
innermost-scope semantics. If M is a structure with a com-
mon prior and σ is a public signal at ω, then players’ poste-
riors over events are identical at ω: for all i, j ∈ N and all
E ∈ F ,

µi,ω(E ∩Πi(ω)) = µj,ω(E ∩Πj(ω)).

However, players’ posteriors on formulas may differ; that is,
for some formula ψ, we could have that

µi,ω([[ψ]]in,aii ∩Πi(ω)) 6= µj,ω([[ψ]]in,aij ∩Πj(ω)).

These results emphasize the effect of ambiguity on shared
and public signals.

4 Common priors or common
interpretations?

As Example 3.1 shows, we can have agreement to disagree
with ambiguity under the �in semantics (and thus, also the
�in,ai semantics). We also know that we can do this by hav-
ing heterogeneous priors. As we now show, structures with
ambiguity that satisfy the CPA have the same expressive
power as common-interpretation structures that do not nec-
essarily satisfy the CPA (and common-interpretation struc-
tures, by definition, have no ambiguity). On the other hand,
common-interpretation structures with heterogeneous priors
are more general than structures with ambiguity and com-
mon priors.

To make this precise, we consider what formulas are valid
in structures with or without ambiguity or a common prior.
To define what it means for a formula to be valid, we need
some more notation. Fix a nonempty, countable set Ψ of
primitive propositions, and let M(Ψ) be the class of all
structures that satisfy A1–A4 and that are defined over some

nonempty subset Φ of Ψ such that Ψ \ Φ is countably infi-
nite.5 Given a subset Φ of Ψ, a formula ϕ ∈ LC

n (Φ), and
a structure M ∈ M(Ψ) over Φ, we say that ϕ is valid in
M according to outermost scope, and write M �out ϕ,
if (M,ω, i) �out ϕ for all ω ∈ Ω and i ∈ N . Given
ϕ ∈ Ψ, say that ϕ is valid according to outermost scope
in a class N ⊆M(Ψ) of structures, and write N �out ϕ, if
M �out ϕ for allM ∈ N defined over a set Φ ⊂ Ψ of prim-
itive propositions that includes all the primitive propositions
that appear in ϕ.

We get analogous definitions by replacing �out by �in ,
�out,ai and �in,ai throughout (in the latter two cases, we
have to restrict N to structures that satisfy A5 and A6 or
A6′, respectively, in addition to A1–A4). Finally, given a
class of structures N , let Nc be the subclass of N in which
players have a common interpretation. Thus, Mc(Ψ) de-
notes the structures in M(Ψ) with a common interpreta-
tion. LetMai(Ψ) denote all structures inM(Ψ) with prior-
generated beliefs that satisfy A5 and A6 (where we assume
that the prior ν that describes the initial beliefs is given ex-
plicitly).6 Finally, letMcpa(Ψ) (resp.,Mcpa,ai(Ψ)) consist
of the structures in M(Ψ) (resp., Mai(Ψ)) satisfying the
CPA.

Proposition 4.1 For all formulas ϕ ∈ LC
n (Ψ), the follow-

ing are equivalent:

(a) Mc(Ψ) � ϕ;
(b) M(Ψ) �out ϕ;
(c) M(Ψ) �in ϕ;
(d) Mai

c (Ψ) � ϕ;
(e) Mai(Ψ) �out,ai ϕ;
(f) Mai(Ψ) �in,ai ϕ.

Proof. Since the set of structures with a common inter-
pretation is a subset of the set of structures, it is immedi-
ate that (c) and (b) both imply (a). Similarly, (e) and (f)
both imply (d). The fact that (a) implies (b) is also im-
mediate. For suppose that Mc(Ψ) � ϕ and that M =
(Ω, (Πj)j∈N , (Pj)j∈N , (πj)j∈N ) ∈ M(Ψ) is a structure
over a set Φ ⊂ Ψ of primitive propositions that contains
the primitive propositions that appear in ϕ. We must show
that M �out ϕ. Thus, we must show that (M,ω, i) �out ϕ
for all ω ∈ Ω and i ∈ N . Fix ω ∈ Ω and i ∈ N , and let
M ′i = (Ω, (Πj)j∈N , (Pj)j∈N , (π

′
j)j∈N ), where π′j = πi for

all j. Thus,M ′i is a common-interpretation structure over Φ,
where the interpretation coincides with i’s interpretation in
M . ClearlyM ′i satisfies A1–A4, soM ′i ∈Mc(Ψ). It is easy
to check that (M,ω, i) �out ψ if and only if (M ′i , ω, i) � ψ

5Most of our results hold if we just consider the set of structures
defined over some fixed set Φ of primitive propositions. However,
for one of our results, we need to be able to add fresh primitive
propositions to the language. Thus, we allow the set Φ of primitive
propositions to vary over the structures we consider, but require Ψ\
Φ to be countably infinite so that there are always “fresh” primitive
propositions that we can add to the language.

6For ease of exposition, we assume A6 even when dealing with
innermost scope. Recall that A6 implies A6′, which is actually the
appropriate assumption for innermost scope.
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for all states ω ∈ Ω and all formulas ψ ∈ LC
n (Φ). Since

M ′i � ϕ, we must have that (M,ω, i) �out ϕ, as desired.
To see that (a) implies (c), given a structure M =

(Ω, (Πj)j∈N , (Pj)j∈N , (πj)j∈N ) ∈ M(Ψ) over some set
Φ ⊂ Ψ of primitive propositions and a player j ∈ N , let Ωj

be a disjoint copy of Ω; that is, for every state ω ∈ Ω, there
is a corresponding state ωj ∈ Ωj . Let Ω′ = Ω1 ∪ . . . ∪ Ωn.
Given E ⊆ Ω, let the corresponding subset Ej ⊆ Ωj be the
set {ωj : ω ∈ E}, and let E′ be the subset of Ω′ correspond-
ing to E, that is, E′ = {ωj : ω ∈ E, j ∈ N}.

Define M ′ = (Ω′, (Π′j)j∈N , (P ′j)j∈N , (π′j)j∈N ), where
Ω′ = Ω1 ∪ . . . ∪ Ωn and, for all ω ∈ Ω and i, j ∈ N , we
have
• Π′i(ωj) = (Πi(ω))′;
• πi(ωj)(p) = πj(ω)(p) for a primitive proposition p ∈ Φ;
• P ′i(ωj) = (Ω′i,ωj

,F ′i,ωj
, µ′i,ωj

), where Ω′i,ωj
= Ω′i,ω ,

F ′i,ωj
= {E` : E ∈ Fi,ω, ` ∈ N}, µ′i,ωj

(Ei) = µi,ω(E),
µ′i,ωj

(E`) = 0 if ` 6= i.

Thus, π1 = · · · = πn, so that M ′ is a common-
interpretation structure; on a state ωj , these interpretations
are all determined by πj . Also note that the support of the
probability measure µ′i,ωj

is contained in Ωi, so for different
players i, the probability measures µ′i,ωj

have disjoint sup-
ports. Now an easy induction on the structure of formulas
shows that(M ′, ωj) � ψ if and only if (M,ω, j) �in ψ for
any formula ψ ∈ LC

n (Φ). It easily follows that if M ′ � ϕ,
then M �in ϕ for all ϕ ∈ LC

n (Φ).
The argument that (d) implies (e) is essentially iden-

tical to the argument that (a) implies (b); similarly, the
argument that (d) implies (f) is essentially the same as the
argument that (a) implies (c). Since Mai

c (Ψ) ⊆ Mc(Ψ),
(a) implies (d). To show that (d) implies (a), suppose that
Mai

c (Ψ) � ϕ for some formula ϕ ∈ LC
n (Ψ). Given a

structure M = (Ω, (Πj)j∈N , (Pj)j∈N , π) ∈ Mc(Ψ) over
a set Φ ⊂ Ψ of primitive propositions that includes the
primitive propositions that appear in ϕ, we want to show
that (M,ω, i) � ϕ for each state ω ∈ Ω and player i. Fix ω.
Recall that RN (ω) consists of the set of states N -reachable
from ω. Let M ′ = (RN (ω), (Π′j)j∈N , (P ′j)j∈N , π′), with
Π′j and P ′j the restriction of Πj and Pj , respectively, to the
states in RN (ω), be a structure over a set Φ′ of primitive
propositions, where Φ′ contains Φ and new primitive
propositions that we call pi,ω for each player i and state
ω ∈ RN (ω).7 Note that there are only countably many
information sets in RN (ω), so Φ′ is countable. Define
π′ so that it agrees with π (restricted to RN (ω)) on the
propositions in Φ, and so that [[pi,ω]]i = Πi(ω). Thus,
M ′ satisfies A5 and A6. It is easy to check that, for all
ω′ ∈ RN (ω) and all formulas ψ ∈ LC

n (Φ), we have that
(M,ω′, i) � ψ iff (M ′, ω′, i) � ψ. Since M ′ � ϕ, it follows

7This is the one argument that needs the assumption that the
set of primitive propositions can be different in different structures
in M(Ψ), and the fact that every Ψ \ Φ is countable. We have
assumed for simplicity that the propositions pi,ω are all in Ψ \ Φ,
and that they can be chosen in such a way so that Ψ \ (Φ ∪ {pi,ω :
i ∈ {1, . . . , n}, ω ∈ Ω}) is countable.

that (M,ω, i) � ϕ, as desired.

The proof that (a) implies (c) shows that, starting from
an arbitrary structure M , we can construct a common-
interpretation structure M ′ that is equivalent to M in the
sense that the same formulas hold in both models. Note that
because the probability measures in the structure M ′ con-
structed in the proof of Proposition 4.1 have disjoint support,
M ′ does not satisfy the CPA, even if the original structure
M does. As the next result shows, this is not an accident.
Proposition 4.2 For all formulas ϕ ∈ LC

n (Ψ), if either
Mcpa(Ψ) �out ϕ, Mcpa(Ψ) �in ϕ, Mcpa,ai(Ψ) �out,ai

ϕ, or Mcpa,ai(Ψ) �in,ai ϕ, then Mcpa
c (Ψ) � ϕ. More-

over, if Mcpa
c (Ψ) � ϕ, then Mcpa(Ψ) �out ϕ and

Mcpa,ai(Ψ) �out,ai ϕ. However, in general, ifMcpa
c (Ψ) �

ϕ, then it may not be the case thatMcpa(Ψ) �in ϕ.
Proof. All the implications are straightforward, with
proofs along the same lines as that of Proposition 4.1.
To prove the last claim, let p ∈ Ψ be a primitive propo-
sition. Aumann’s agreeing to disagree result shows that
Mcpa

c (Ψ) � ¬CBG(B1p ∧ B2¬p), while Example 3.1
shows thatMcpa(Ψ) 6 �in¬CBG(B1p ∧B2¬p).

Proposition 4.2 depends on the fact that we are consid-
ering belief and common belief rather than knowledge and
common knowledge, where knowledge is defined in the
usual way, as truth in all possible worlds:

(M,ω, i) �in Kiϕ iff (M,ω′, i) �in ϕ for all ω′ ∈ Πi(ω),

with Ki the knowledge operator for player i, and where
we have assumed that ω ∈ Πi(ω) for all i ∈ N and
ω ∈ Ω. Aumann’s result holds if we consider common
belief (as long as what we are agreeing about are judg-
ments of probability and expectation). With knowledge,
there are formulas that are valid with a common interpre-
tation that are not valid under innermost-scope semantics
when there is ambiguity.For example,Mc(Ψ) � Kiϕ⇒ ϕ,
while it is easy to construct a structure M with ambiguity
such that (M,ω, 1) �in K2p ∧ ¬p. What is true is that
M(Ψ) �in (K1ϕ⇒ ϕ)∨. . .∨(Knϕ⇒ ϕ). This is because
we have (M,ω, i) �in Kiϕ⇒ ϕ, so one of K1ϕ⇒ ϕ, . . . ,
Knϕ ⇒ ϕ must hold. As shown in (Halpern 2009), this
axiom essentially characterizes knowledge if there is ambi-
guity.

As noted above, the proof of Proposition 4.1 demonstrates
that, given a structure M with ambiguity and a common
prior, we can construct an equivalent common-interpretation
structure M ′ with heterogeneous priors, where M and M ′
are said to be equivalent (under innermost scope) if for ev-
ery formula ψ, M �in ψ if and only if M ′ �in ψ. The con-
verse does not hold, as the next example illustrates: when
formulas are interpreted using innermost scope, there is a
common-interpretation structure with heterogeneous priors
that cannot be converted into an equivalent structure with
ambiguity that satisfies the CPA.
Example 4.3 We construct a structure M with heteroge-
neous priors for which there is no equivalent ambiguous
structure that satisfies the CPA. The structure M has three
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players, one primitive proposition p, and two states, ω1 and
ω2. In ω1, p is true according to all players; in ω2, the propo-
sition is false. Player 1 knows the state: his information par-
tition is Π1 = {{ω1}, {ω2}}. The other players have no in-
formation on the state, that is, Πi = {{ω1, ω2}} for i = 2, 3.
Player 2 assigns probability 2

3 to ω1, and player 3 assigns
probability 3

4 to ω1. Hence, M is a common-interpretation
structure with heterogeneous priors. We claim that there is
no equivalent structure M ′ that satisfies the CPA.

To see this, suppose thatM ′ is an equivalent structure that
satisfies the CPA, with a common prior ν and a state space
Ω′. As M ′ �in pr2(p) = 2

3 and M ′ �in pr3(p) = 3
4 , we

must have

ν({ω′ ∈ Ω′ : (M ′, ω′, 2) �in p}) = 2
3 ,

ν({ω′ ∈ Ω′ : (M ′, ω′, 3) �in p}) = 3
4 .

Observe that M �in B2(p⇔ B1p) ∧B3(p⇔ B1p). Thus,
we must have M ′ �in B2(p ⇔ B1p) ∧ B3(p ⇔ B1p). Let
E = {ω′ ∈ Ω′ : (M ′, ω′, 1) �in B1p}. It follows that we
must have ν(E) = 2/3 and ν(E) = 3/4, a contradiction.

Example 4.3 demonstrates that there is no structure M ′
that is equivalent to the structure M (defined in Example
4.3) that satisfies the CPA. In fact, as we show now, an even
stronger result holds: In any structure M ′ that is equivalent
to M , whether it satisfies the CPA or not, players have a
common interpretation.
Proposition 4.4 If a structure M ′ ∈ M(Ψ) is equivalent
under innermost scope to the structure M defined in Exam-
ple 4.3, then M ′ ∈Mc.
Proof. Note that M � p ⇔ (pr1(p) = 1). Hence, if
a structure M ′ is equivalent to M , we must have that
M ′ �in p ⇔ (pr1(p) = 1), that is, for all ω ∈ Ω and
i ∈ N , (M ′, ω, i) �in p ⇔ (pr1(p) = 1). By a similar
argument, we obtain that for every ω ∈ Ω and i ∈ N , it
must be the case that (M ′, ω, i) �in ¬p ⇔ (pr1(¬p) = 1).
Since the truth of a probability formula does not depend on
the player under the innermost-scope semantics, it follows
that for each i, j ∈ N , the interpretations π′i and π′j in M ′

coincide. In other words, M ′ is a common-interpretation
structure.

5 Discussion
We have defined a logic for reasoning about ambiguity, and
considered the tradeoff between having a common prior (so
that everyone starts out with the same belief) and having a
common interpretation (so that everyone interprets all for-
mulas the same way). We showed that, in a precise sense,
allowing different beliefs is more general than allowing mul-
tiple interpretations. But we view that as a feature, not
a weakness, of considering ambiguity. Ambiguity can be
viewed as a reason for differences of beliefs; as such, it pro-
vides some structure to these differences.

We have not discussed axiomatizations of the logic. From
Proposition 4.1 it follows that for formulas in LC

n (Ψ), we
can get the same axiomatization with respect to structures
in M(Ψ) for both the �out and �in semantics; moreover,

this axiomatization is the same as that for the common-
interpretation case. An axiomatization for this case is al-
ready given in (Fagin and Halpern 1994). Things get more
interesting if we considerMcpa(Ψ), the structures that sat-
isfy the CPA. Halpern 2002 provides an axiom that says that
it cannot be common knowledge that players disagree in ex-
pectation, and shows that it can be used to obtain a sound and
complete characterization of common-interpretation struc-
tures with a common prior. (The axiomatization is actually
given for common knowledge rather than common belief,
but a similar result holds with common belief.) By Propo-
sition 4.2, the axiomatization remains sound for outermost-
scope semantics if we assume the CPA. However, using Ex-
ample 4.3, we can show that this is no longer the case for
the innermost-scope semantics. The set of formulas valid
for innermost-scope semantics in the class of structures sat-
isfying the CPA is strictly between the set of formulas valid
in all structures and the set of formulas valid for outermost-
scope semantics in the class of structures satisfying the CPA.
Finding an elegant complete axiomatization remains an open
problem.
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