
Specifying and Reasoning with Underspecified
Knowledge Bases Using Answer Set Programming

Vinay K. Chaudhri
AI Center

SRI International
Mento Park, California, USA

Tran Cao Son
Computer Science Department
New Mexico State University

Las Cruces, New Mexico, USA

Abstract

A large and complex knowledge base that models some as-
pect of the real world can rarely be fully specified. Two ex-
amples of such underspecification are that (i) some of the car-
dinality constraints are omitted; (ii) some properties of all in-
dividual instances of a class are specialized across a class hi-
erarchy, but specific references to which particular values are
specialized are omitted. Such knowledge bases are of great
practical interest as they are the basis of an empirically tested
knowledge acquisition system that has been used to construct
a knowledge base from a significant portion of a biology text-
book. In this paper, we formalize an underspecified knowl-
edge base using answer set programming, and give a set of
rules called UMAP that support inheritance reasoning in such
a knowledge base.

Introduction
Building large and complex knowledge bases (KBs) has
been an intensive topic of artificial intelligence research
in general and knowledge representation and reasoning re-
search in particular (Lenat 1995). Clark & Porter proposed
a method toward this goal in which a KB can be built
from reusable components that can be composed automati-
cally in response to novel questions (Clark and Porter 1997;
Clark et al. 2000). Their AAAI’97 paper on this topic won
the best paper prize and this approach was implemented in a
knowledge representation and reasoning system called KM
(Clark and Porter 2011), which has been the foundation of
two knowledge acquisition systems, SHAKEN (Barker et al.
2003) and AURA (Gunning et al. 2010). Both of these sys-
tems have been empirically tested in acquiring knowledge
from domain experts. The success is attributed to two key
features of the KM system: prototypes and heuristic unifica-
tion. There has, however, been no published computational
characterization of these features. Such characterization is
of interest for at least two reasons: other representation lan-
guages could support these features for similar problems,
and the substantial KBs built using this approach could be
used for reasoning systems other than KM. In addition, this
formalization provides a way to analyze how the representa-
tion and reasoning in AURA could be improved.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A knowledge base in KM is a collection of frames repre-
senting classes and individuals. Classes are organized into a
class hierarchy. Each frame is associated with a set of slots
and slot values. Each slot value can be a class, individual, or
a value. For example, the statement “Every Car has an en-
gine and a tank connected to the engine” can be represented
by the following axiom in KM:

(every Car has
(has-engine ((a Engine called E1)))
(has-tank ((a Tank with
connected-to (((the has-engine
of Self) called E1)))))

(1)

This axiom applies to all individual instances of the class
Car and defines two slots has-engine and has-tank.
The slot has-engine (resp. has-tank) is associated with
a frame that refers to a Skolem instance of class Engine
(resp. Tank). The Skolem instance Tank has a further slot
connected-to that has a value that is same as the Skolem
instance of Engine that is the value of the has-engine slot.
The use of “called E1” is similar to using a variable name
in traditional logical syntax. KM also provides an alternative
syntax called prototypes to encode such axioms. The axioms
such as (1) are the most frequently occurring axiom pattern
in the biology textbook KB. We note that KM identifies (1)
with the following first-order logic formula:

∀x.[instance-of(x,Car)⇒
∃e, t.[instance-of(e, Engine)∧
instance-of(t, Tank) ∧ has-engine(x, e)∧
has-tank(x, t) ∧ connected-to(e, t)]]

While constructing a KB, it is common to specialize proper-
ties of classes along the class hierarchy. While doing so, one
may need to refer to a Skolem instance that was introduced
in one of the superclasses. For example, assume that we add
to the KB the following axioms:1

∀x.[instance-of(x, Suburban)⇒
instance-of(x,Car)]

(2)

and
∀x.[instance-of(x, Suburban)⇒
∃e.[instance-of(e, Engine)∧
has-engine(x, e) ∧ size(e, Large)]]

(3)

These axioms state that Suburban is a subclass of Car, and
every suburban has a large engine. The axioms (1)-(3) are an
example of an underspecified KB in the sense that they omit

1For simplicity of the presentation, we omit the KM represen-
tation of the axioms.

424

Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning

the relationship between an Engine introduced in axiom (1)
and the Engine introduced in axiom (3). In one possible in-
terpretation, the engines mentioned in axioms (1) and (3) re-
fer to the same individual and in another interpretation they
refer to different values.

A system can handle such underspecification in the fol-
lowing ways:

1. While writing (3), provide a mechanism using which a
user can explicitly state that the engine in axiom (3) is
a specialization of the engine introduced in (1). We refer
to this approach as explicit coreference. For instance, the
formulae (1) and (3) should be given as:

∀x.[instance-of(x,Car)⇒
[instance-of(E1(x), Engine)∧
instance-of(T1(x), Tank)∧
has-engine(x,E1(x))∧
has-tank(x, T1(x))∧
connected-to(E1(x), T1(x))]]

(4)

and
∀x.[instance-of(x, Suburban)⇒
size(E1(x), Large)]

(5)

2. Add a cardinality constraint to the KB saying that cars
have exactly one engine. We refer to this approach as the
cardinality constraint.

3. Support a default reasoning mechanism that can draw in-
tuitive conclusions with the axioms as they are currently
written. We refer to this approach as the underspecified
knowledge base.

The explicit coreference approach has the advantage that
it leaves no ambiguity, but it has a major disadvantage: it
breaks the modularity of axioms in that while writing an
axiom, we must refer to other axioms. While creating the
class Suburban, we must refer to its superclass Car, and
explicitly say which specific engine value we are special-
izing. If after having created Car and Suburban, suppose
we introduce a superclass Vehicle and we want this class
to also have a value for has-engine, we must refer to its
subclasses and make sure all of them now specialize the
Engine value introduced in Vehicle. In case of multiple
inheritance, for example, if a Car were to be a subclass of
Vehicle and Gas-driven objects each of which provides
an Engine, the knowledge base author must resolve how the
multiple inheritance must be handled while defining Car.
The approach breaks down completely when we need to an-
swer a novel question about an object that must be an in-
stance of multiple classes. But, there is no pre-existing class
which specifies how values from multiple classes must be
combined. The extra work of fully specifying correfernces
starts to become onerous and is unnecessary for a large num-
ber of practical situations in which the specificity principle
in default reasoning, which states that when conflicts arise
more specific information overrides less specific one, could
be adapted for answering such a question. Our adaption of
this principle will, however, maintain the principle of inheri-
tance reasoning in that it does not affect multiple inheritance
of non-conflicting values. For example, since Suburban is
a subclass of Car, we have that the slot specification at the

class Suburban is more preferred than (and thus could over-
ride) the slot specification at the class Car, resulting in a
conclusion that a Suburban has only one Engine. Further-
more, if a class inherits non-conflicting values from the mul-
tiple super classes, for example, a Subarau has a large en-
gine (defined for the class Suburban), and that a Subarau
has a gas driven engine (defined for the class Gas driven
Object), our adaptation of the specificity principle will al-
lows us to conclude that a Subarau has a large and gas
driven engine. The disadvantage of the explicit coreference
approach is especially a limiting factor when the knowledge
base is to be authored by a domain expert who is not well-
versed in logical knowledge representation and the knowl-
edge base must evolve over a period of time.

In the cardinality constraint approach we can conclude
that the axioms (1) and (3) musr refer the the same Engine
value. It can work for many situations, but in some cases it
is incorrect to use such constraints. For example, race cars
may have more than one engine, and it is too strong to add
a constraint that every car has exactly one engine. The KM
system supports such reasoning using cardinality constraints
when the constraints are available, but in situations where it
is incorrect to add constraints such reasoning cannot be used.

In an underspecified knowledge base approach, we as-
sume that the inherited and locally defined engines must
be the same unless there is a reason to believe otherwise.
Thus, the class definitions for Car, Suburban, Vehicle,
and Gas-driven objects could be written without mak-
ing any reference to each other. At the time of answering
questions, the reasoning system is able to resolve the un-
derspecified reference between the Engine values, and as
a default inference, assumes that they must be the same. If
the KB contained knowledge to the contrary, for example,
for a Race Car, we introduce a new engine such as Turbo
Diesel Engine, and we had a statement in the KB saying
that the class Turbo Engine is disjoint from Gas Engine,
then the system will assume that an inherited Gas-driven
engine could not be the same as a Turbo Engine. By sup-
porting such reasoning with an underspecified knowledge
base, we retain the modularity of axiom definitions. The
users can write their knowledge base in a modular fashion,
and be confident that any obvious missing details will be
filled in by the reasoning mechanism at the time of answer-
ing questions. The KM system implements heuristic unifi-
cation to do such default reasoning with an underspecified
knowledge base.

The focus of this paper is to define a default reasoning
mechanism called unification mapping or UMAP. UMAP is
motivated by the heuristic unification in KM. UMAP has a
declarative specification in Answer Set Programming (ASP))
(Marek and Truszczyński 1999; Niemelä 1999), a declar-
ative problem solving approach using logic programming
under answer set semantics (Gelfond and Lifschitz 1990).
The use of ASP also enables reasoning with disjunction and
negation for which KM is not well suited. UMAP has the
same behavior as heuristic unification in KM for a number
of practical examples. Thus, UMAP puts an empirically use-
ful and well-tested behavior in a rigorous formal framework.

We will start with a review of logic programming with

425

answer set semantics. We then define a simple description
language suitable for the encoding of underspecified knowl-
edge bases (KB) in logic programs. The KB will contain
specifications about classes, individuals, and relationships
between individuals. It might not contain all explicit spe-
cializations or lack constraints. Then we discuss the four
principles for the unification mapping between terms in rea-
soning with an underspecified knowledge base. First is the
well-known specificity principle in default reasoning and the
second one is specific to this application, called the special-
ization principle, which dictates that the specificity principle
should be applied in a controlled manner. The third princi-
ple aims at removing redundant specification, and the fourth
principle ensures that unification between terms is consis-
tently applied across all specifications. We then present an
ASP program that implements these principles. Finally, we
relate our formalization to that of the KM system and discuss
some potential uses of the newly developed ASP program.

Logic Programming and Answer Sets
A logic program Π is a set of rules of the form

c1 | . . . | ck ← a1, . . . , am, not am+1, . . . , not an (6)
where 0 ≤ m ≤ n, 0 ≤ k, each ai or cj is a literal of
a propositional language2 and not represents negation-as-
failure. When n = 0, the rule is called a fact. When k = 0,
the rule is called a constraint. A negation as failure literal
(or naf-literal) is of the form not a where a is a literal.

For a rule r of the form (6), head(r) denotes the set
{c1, . . . , ck}; pos(r) and neg(r) denote {a1, . . . , am} and
{am+1, . . . , an}, respectively. For a program P , lit(P) de-
notes the set of literals occurring in P .

Consider a set of ground literals X . X is consistent if
there exists no atom a such that both a and ¬a belong to
X . The body of a rule r of the form (6) is satisfied by X if
neg(r) ∩ X = ∅ and pos(r) ⊆ X . A rule of the form (6)
with nonempty head is satisfied byX if either its body is not
satisfied by X or head(r)∩X 6= ∅. A constraint is satisfied
by X if its body is not satisfied by X .

For a consistent set of ground literals S and a program
Π, the reduct of Π w.r.t. S, denoted by ΠS , is the program
obtained from the set of all rules of Π by deleting (i) each
rule that has a naf-literal not a in its body with a ∈ S, and
(ii) all naf-literals in the bodies of the remaining rules.
S is an answer set (or a stable model) of Π (Gelfond and

Lifschitz 1990) if it satisfies the following conditions: (i) If
Π does not contain any naf-literal (i.e., m = n in every rule
of Π) then S is a minimal consistent set of literals that sat-
isfies all the rules in Π; and (ii) If Π does contain some naf-
literal (m < n in some rule of Π), then S is an answer set of
Π if S is the answer set of ΠS .

Several new extensions have been introduced to enhance
the modeling capability of logic programming. In this paper,
we will make use of cardinality constraint atom (Simons,
Niemelä, and Soininen 2002) of the following form:

l{b1, . . . , bk}u (7)

2Rules with variables are viewed as a shorthand for the set of
its ground instances.

where bj’s are literals and l and u are two integers, l ≤ u.
An atom of the form (7) is true in a set of literalsX if at least
l and at most u literals of the set {b1, . . . , bk} are true in X .
Cardinality constraint atoms can be used anywhere a literal
can be used. Using this type of atom, one can greatly reduce
the number of rules of programs in answer set programming.

ASP has been successfully applied to several applications
such as bioinformatics (Gebser et al. 2010); diagnosis for the
space shuttle (Balduccini et al. 2001); linear temporal logic
(LTL) model checking (Heljanko and Niemelä 2003); plan-
ning (Tu et al. 2011); security protocols verification (Aiello
and Massacci 2001); and so on. The existence of answer set
solvers, whose performance is comparable to state-of-the-art
SAT solvers in many domains (e.g., CLASP (Gebser et al.
2007)), the theoretical building block results of ASP, and its
recent extensions (e.g. aggregates) make ASP an appealing
language for modeling of and reasoning with knowledge-
intensive applications.

Underspecified Knowledge Bases
In this paper, we consider underspecified knowledge bases
that are built over many sorted signatures (Manzano 1993)
containing at least the three sorts class, slot, and individual.
A sorted signature σ is a collection of constants, predicate
symbols, and function symbols and is represented by a tuple
〈C,P,F〉 where C, P , and F are pairwise disjoint and

• C is a collection of sorted constants, including class con-
stants, slot constants, individual constants, and other con-
stants;

• P is a set of sorted first-order predicates that contains
at least the following predicates: class, subclass of ,
instance of , and slot whose type3 is 〈class〉, 〈class ×
class〉, 〈individual× class〉, and 〈slot× individual×
class〉, respectively; and

• F is a set of sorted first-order functions that contains
at least a set of Skolem function mapping individuals to
classes.

We denote the set of class, slot, individual, and other con-
stants by Cc, Cs, Ci, and Co; the set of Skolem functions by
Fs. We define the following types of axioms.

• A class axiom is an atom of the form
class(c) (8)

for c ∈ Cc. This axiom states that the constant c denotes a
class. For example, if car ∈ Cc then class(car) is a class
atom stating that car encodes the class of cars.
• A constant axiom is an axiom of the form

constant(o) (9)
for o ∈ Ci ∪ Co. This axiom indicates that o is a constant.
• A subclass axiom is an atom of the form4

subclass of(c, c′) (10)

3A predicate with the type 〈s1 × . . .× sn〉 has arity n and is a
relation over tuples (x1, . . . , xn) where xi is a variable of sort si.

4From the knowledge representation perspective, allowing
c = c′ in the specification results in redundancy. A simple rule
subclass of(X,X)← class(X) can be used to enforce reflexiv-
ity of the subclass of relation.

426

for c, c′ ∈ Cc, c 6= c′. This axiom states that c is a sub-
class of c′. E.g., the atom subclass of(suburban, car)
states that the class of Suburbans, denoted by suburban,
is a subclass of the class of cars, denoted by car.
• An instance axiom is a rule of the form

instance of(i, c) (11)
for some i ∈ Ci, and c ∈ Cc. This axiom states that the
constant i is an individual of the class c. For example, to
state that s1 is a suburban, we write

instance of(s1, suburban).

• A descriptive axiom is a rule of the form

2

{
slot(s,X, f1(X)),
instance of(f1(X), c1)

}
2

← instance of(X, c)
(12)

or

3

{
slot(s, f1(X), f2(X)),
instance of(f1(X), c1),
instance of(f2(X), c2)

}
3

← instance of(X, c)

(13)

where f1, f2 are Skolem functions in Fs, c, c1, c2 ∈ Cc
and s ∈ Cs, and X is a variable and c 6∈ {c1, c2}.
A descriptive axiom of the form (12) or (13) de-
scribes a property of individuals belonging to class
c, encoded by the slot-atom slot(s,X, f1(X)) or
slot(s, f1(X), f2(X)) respectively; (12) states for each
individual X in c, X is related to f1(X)—an individual
in class c1—via the slot s; (13) states that for each individ-
ual X in c, f1(X)—an individual in class c1— is related
to f2(X)—an individual in the class c2—via the slot s.
We observe that descriptive axioms help us capture rules
of form (1), and more generally, the knowledge that one
would find in KM prototypes.

• A value axiom is a rule of the form
slot(s,X, v)← instance of(X, c) (14)

or

2

{
slot(s, f(X), v),
instance of(f(X), c′)

}
2

← instance of(X, c)
(15)

where c, c′ ∈ Cc, c 6= c′, f ∈ Fs, and v ∈ Co. Intuitively,
(14)-(15) allow for the specification of specific value of a
slot.

In the following we will assume that for each Skolem
function f ∈ Fs there exists at most one c ∈ Cc such
that instance of(f(X), c) appears in the axioms (12)–(15).
This assumption is reasonable since the Skolemization of a
formula usually creates different Skolem functions for dif-
ferent variables. This assumption also guarantees that for a
finite signature, the ground instantiation of all axioms (8)-
(15) yields a finite set of rules, a precondition for the use of
answer set solvers.

We define the notion of a domain description as follows.

Definition 1 A domain descriptionD(σ) over a signature σ
is a logic program D(σ)=Db∪De where Db ∩De = ∅ and

• Db is a set of axioms of the form (8)-(15); and
• De is set of ASP rules defined over the signature σ.

We callDb andDe the basic and extended part ofD. We say
that D is basic if De = ∅.

For simplicity, we delay the consideration of constraints in
domain descriptions to later part of the paper.

The next example shows that domain descriptions are suf-
ficiently expressive for the representation of knowledge en-
coded by KM’s axioms.

Example 1 Let us consider an extended version of the car
domain discussed in the introduction. The signature σ0
consists of Cc = {car, engine, tank, suburban}, Ci =
{s1}, Cs = {has engine, has tank, connected}, Fs =
{ Eng, Tank}. D(σ0) is given by the following axioms:

class(X) for X ∈ Cc
instance of(s1, suburban)
subclass of(suburban, car)

and the following descriptive axioms (the third axiom is sim-
plified by omitting the two instance axioms, which have al-
ready been included in the first two):

2

{
slot(has engine,X, Eng(X)),
instance of(Eng(X), engine)

}
2

← instance of(X, car)

2

{
slot(has tank,X, Tank(X)),
instance of(Tank(X), tank)

}
2

← instance of(X, car)
slot(connected, Eng(X), Tank(X))

← instance of(X, car)

(16)

2

Observe that a domain description D(σ) is a logic program
that could be used to reason about properties of individuals
encoded inD(σ) under the answer set semantics represented
by the slot-atoms. This reasoning will need to take into con-
sideration the inheritance information encoded in D(σ) in
axioms of the form (8), (10), and (11). This can be achieved
by the set ΠI , which allows for reasoning about class mem-
bership and subclass relationship in inheritance reasoning
encoded in the following rules:

subclass of(C1, C3) ← subclass of(C1, C2),(17)
subclass of(C2, C3).

instance of(X,C1) ← instance of(X,C2), (18)
subclass of(C2, C1).

To use domain descriptions in reasoning about its individ-
uals, we need to take ΠI into consideration. We define the
notion of an underspecified knowledge base as follows.

Definition 2 A knowledge base defined over a signature σ is
the programD(σ)∪ΠI whereD(σ) is a domain description
over σ.

We observe that a knowledge base can be underspecified in
the sense discussed in the introduction (see, e.g, the knowl-
edge base in Ex. 3). A knowledge base, under the answer set
semantics, will entail various slot-atoms about its individu-
als. A feasible but naive approach is to use these atoms to
characterize the properties of an individual as shown in the
next example.

Example 2 Let KB0 = D(σ0) ∪ ΠI . It is easy to see that
KB0 has a unique answer set containing the following
slot-atoms: slot(connected, Eng(s1), Tank(s1))
slot(has engine, s1, Eng(s1)), and
slot(has tank, s1, Tank(s1)).

427

These atoms belong to the answer set because of the ax-
ioms in the group (16) and the fact that s1 is an instance of
suburban and thus is also a member of car (due to ΠI). 2

The result in Ex. 2 suggests that slot-atoms can be used for
reasoning about individuals in an underspecified knowledge
base. The next example shows that the approach is too weak
to deal with inheritance.

Example 3 Let σ1 be the signature σ0 extended with the
class constants {lEngine, lTank} and the Skolem func-
tions { lEng, lTank} (the prefix ‘l’ stands for ‘large’). Let
D1(σ1) be D0(σ0) extended with the following axioms:

class(lEngine). subclass of(lEngine, engine).
class(lTank). subclass of(lTank, tank).

and the descriptive axioms

2

{
instance of(lEng(X), lEngine),
slot(has engine,X, lEng(X))

}
2

← instance of(X, suburban).
(19)

2

{
instance of(lTank(X), lTank),
slot(has tank,X, lTank(X))

}
2

← instance of(X, suburban).
(20)

Let KB1 = D1(σ1) ∪ ΠI . Again, we can show that it has a
unique answer set containing the slot-atoms in Fig. 1.

slot(has engine, s1, Eng(s1))
slot(has tank, s1, Tank(s1))
slot(connected, Eng(s1), Tank(s1))
slot(has engine, s1, lEng(s1))
slot(has tank, s1, lTank(s1))

Figure 1: Slot atoms entailed by KB1

The presence of slot(has engine, s1, lEng(s1)) and
slot(has tank, s1, lTank(sa)) is due to the newly intro-
duced descriptive axioms. 2

Consider the first descriptive axioms in (16) and (19)-(20).
Both describe the slot has engine of individuals in the class
suburban; the former via inheritance and the latter via a
direct specification. This is the reason for the presence of
different slot-atoms (e.g., slot(has engine, s1, Eng(s1))
and slot(has engine, s1, lEng(s1)))—indicating that s1
has two engines denoted by Eng(s1) and lEng(s1)—
in the answer set of KB1. Because lEngine is a sub-
class of Engine, we have that lEng(s1) is more specific
than Eng(s1). Following the specificity principle, which
states that more specific information overrides less specific
one, it is intuitive to conclude that s1 has only one en-
gine LEng(s1), i.e., to unify LEng(s1) with Eng(s1).
Similarly, we have that LTank(s1) should be unified with
Tank(s1). Our goal in the next section is to develop a

declarative formalization of this type of unification.

UMAP-Atoms
We define a set of logic programming rules defining a spe-
cial type of atom, called umap-atom, to characterize how in-
herited values in an underspecified knowledge bases may be
combined with locally asserted values. This set of rules will
define a predicate, called umap, whose type is the same as
that of the predicate slot. Each ground atom umap(s, x, y)
encodes a relation, named s, between the individuals x and

y, i.e., umap/3 has the same meaning as that of slot/3 in
a descriptive axioms (12)-(13). The key difference between
umap-atoms and slot-atoms lies in that one umap-atom
might encode a relation represented by several slot-atoms.
Our goal is to identify a set of umap-atoms that, given a
knowledge base, (i) represents the expected result from the
users’ point of view; and (ii) fully characterizes individuals
in the domains. For example, given KB1 (Ex. 3), the slot-
atoms in Fig. 1 should be represented by three umap-atoms:

umap(connected, lEng(s1), lTank(s1))
umap(has engine, s1, lEng(s1)), and
umap(has tank, s1, lTank(s1)).

We begin with a discussion about the principles that will be
used for UMAP.

Principles for Unification Mapping
As we have mentioned, a umap-atom unifies a set of slot-
atoms, e.g., umap(has engine, s1, lEng(s1)) represents
the set consisting of slot(has engine, s1, lEng(s1)) and
slot(has engine, s1, Eng(s1)). Therefore, the key ques-
tions in defining the umap-atoms are

1. How can such a set of slot-atoms be identified and when
should the atoms be unified?

2. When two or more slot atoms are unified in one rule, how
should that decision be reflected in other rules that use the
same atoms?

In the following, we will answer these questions by develop-
ing principles that should be applied in the unification pro-
cess. First, let us define some additional notions. Let D be a
domain description. In the following, by an atom, we mean
a grounded atom occurring in the knowledge base D ∪ΠI .
Definition 3 Let D(σ) = Db ∪De be a domain description
over a signature σ. A slot-atom of D is a ground atom of the
form slot(S,X, Y) that occurs in Db.

Given a slot-atom slot(S,X, Y),X and Y are called slot-
term (or term) of D.
It is easy to see that by the definition of domain descrip-
tions, a term is of the form X (or f(X)) for an instance X
(or a Skolem function f) of some class c; furthermore, if
f(X) is a term then D will contain a rule stating that it is
a member of some class. Due to the subclass relationship,
a term can be a member of several classes. A class c is a
most specific class of a term X if c is a minimal element
(with respect to the ordering defined by the subclass of re-
lation) among classes having X as an instance. Two terms
f(X) and g(X) are compatible if it can be proved that they
belong to the same class. In Ex. 3, for any instance X of
the class suburban, we have that lEng(X) and Eng(X)
are compatible terms since they are an instance of the class
engine; the most specific class of lEng(X) and Eng(X)
is lEngine and engine, respectively. A termX is more spe-
cific than a term Y if X and Y are compatible and the most
specific class of X is more specific than the most specific
class of Y .

The first principle that we would like to enforce in the
definition of the umap-atoms is the well-known specificity
principle in inheritance reasoning. In the context of this pa-
per, it is as follows.

428

(P1) Specificity principle: in selecting terms for the
construction of umap-atoms, more specific terms
should be preferred over less specific ones.

Applying this principle to the construction of the umap-
atoms implies that if umap(N,X, Y) is entailed by the
knowledge base then
• It should be obtained from an atom slot(N,X1, Y1) by

substituting X1 and Y1 with compatible terms X and Y ,
respectively; and

• X and Y are more specific than or at least as specific as,
according to the inheritance principle, X1 and Y1, respec-
tively.
According to (P1), slot(has engine, s1, lEng(s1)) and

slot(has engine, s1, Eng(s1)) should be unified into
a single umap-atom umap(has engine, s1, lEng(s1))
since lEng(s1) is compatible to and more specific than
Eng(s1). This is indeed what we expect given D1(σ1).

However, the use of the more specific principle is in some
situations too strong, as illustrated in the next example.
Example 4 Let σ2 be the signature σ1 (Ex. 3) extended with
a Skolem function eEng (‘eEng’ stands for ‘extra engine’)
and D2(σ2) be D1(σ1) extended with the axiom

2

{
slot(has engine,X, eEng(X)),
instance of(eEng(X), engine)

}
2

← instance of(X, car)
(21)

Intuitively, (21) and (16) represent two different constraints
on the slot has engine of individuals in car, which state
that each car has two engines.

Consider an instance s0 of the class car. We
have that eEng(s0) and Eng(s0) are compati-
ble but neither is preferred over the other. As such,
the two atoms slot(has engine, s0, Eng(s0)) and
slot(has engine, s0, eEng(s0)) will yield two
umap-atoms umap(has engine, s0, Eng(s0)) and
umap(has engine, s0, eEng(s0)) which indicates that
s0—being a member of the class car—has two engines, the
(standard) one Eng(s0) and the extra one eEng(s0).

Now, consider again the instance s1 of suburban. Ob-
serve that the term lEng(s1) is compatible to, and more
specific than, both terms Eng(s1) and eEng(s1). Thus,
applying the principle (P1) results in a single umap-atom
umap(has engine, s1, lEng(s1)), i.e., s1 has a single en-
gine. This is counter intuitive since s1, being an instance of
car, should have two engines. 2

Example 4 shows that the use of the most preferred term
could lead to the loss of constraints on an individual with set
valued slots. We therefore introduce the next principle in the
definition of umap-axioms.

(P2) Specialization Principle: Given a slot s and a class
c, the application of the specificity principle should be
limited to at most one possible value of s at c. Further-
more, if the application of (P1) does not violate (P2)
then (P1) should be applied.
Observe that while (P2) limits the application of (P1), it

also guarantees that (P1) is applied on as many terms that
have a more specific term as possible. This can be seen in
the next example.

Example 5 Returning to Ex. 4, (P2) should yield two pos-
sible outcomes:
• lEng(s1) overrides Eng(s1) which gives
umap(has engine, s1, lEng(s1)) and
umap(has engine, s1, eEng(s1)); and

• lEng(s1) overrides eEng(s1) which yields
umap(has engine, s1, lEng(s1)) and
umap(has engine, s1, Eng(s1)). 2

Our next principle deals with the redundancy of specifica-
tions, which often occurs in a large knowledge base. A slot
can have multiple specifications and some might be redun-
dant. Consider D1(σ1) with the additional descriptive ax-
iom:

2

{
slot(has engine,X, Eng1(X)),
instance of(Eng1(X), engine)

}
2

← instance of(X, suburban)
(22)

This axiom says that every suburban has an engine. Intu-
itively, this axiom is redundant because the conclusion that
a suburban has an engine follows from the fact that it is a
car and every car has an engine. An alternative view is that
(22) is a more specific specification of the slot has engine
in (16) and thus should override the specification in (16). We
call this the redundancy principle as follows.5

(P3) Redundancy Principle: In the presence of multi-
ple specifications of a slot for an individual, the most-
specific slot specification overrides less-specific ones.

(P1)-(P3) are used to decide whether a term x should
be unified with a term y of the same slot. They do not
relate different slots of the same classes. For example,
Eng(s1) occurs in both slot(has engine, s1, Eng(s1))

and slot(connected, Eng(s1), Tank(s1)). Clearly, we
should require that if Eng(s1) is unified with a term t then t
should be used in both umap-atoms derived from these two
slot-atoms. This is stated in the next principle.

(P4) Consistency Principle: If a unification between x
and y takes place at class c then it should be applied in
every slot of class c.

Computing UMAP-Atoms using ASP
We will now specify a program, denoted by ΠR, for defining
the umap-axioms. ΠR enforces the principles (P1)–(P3). It
consists of rules for reasoning about specificity and defining
the predicate umap. We next describe the rules of ΠR, divid-
ing them into the set of domain-dependent rules Πd

R and the
set of domain-independent rules Πi

R. Assume that KB(σ)
is a knowledge base over σ.
• Domain-dependent rules: Rules in this group declare the

compatibility between terms constructed from Skolem
functions over individuals. For each pair of f1, f2 ∈ Fs

appearing in an axiom of the form (12) or (13), Πd
R con-

tains the rule
compatible(f1(X), f2(X))
← constant(X), instance of(f1(X), D),
class(D), instance of(f2(X), D).

(23)

5We observe that (P3) is needed only when the KB contains re-
dundant axioms. For KB without redundant axioms, this principle
(and the rules for enforcing it) will not be needed.

429

Furthermore, for each descriptive axiom of the form (12)
Πd

R contains the rules
range(fi(X), ci)← constant(X) (24)
dom(fi(X), c)← constant(X) (25)

Atoms of the form range(Z, c) (dom(Z, c)) encode the
range (domain) of the Skolem function occurring in Z.

• Domain-independent rules: The set of independent rules
Πi

R defines various predicates related to the compatibility
between constants and terms of the form f(X), f ∈ Fs,
and the preference between compatible terms under the
specificity principle.

– Terms, compatibility between terms, and type of slots:
This group includes the following rules.

2{term(X), term(Y)}2← slot(S,X, Y). (26)
tv(Y, S,C)← slot(S,X, Y), range(Y,C). (27)

compatible(X,X)← constant(X). (28)
Rule (26) defines terms that will be used in defining
umap-atoms. Rule (27) associates a value (a term) with
a slot at a class for use in UMAP since UMAP is re-
stricted to values for the same slot at the same class.
For example, terms referring to instances of the class
engine and used in the slot has engine can be unified
with each other; they should not be unified with terms
referring to the class tank. Rule (28), with (23), defines
the compatibility between two terms X and Y .

– Specificity between terms: Rules in this group define
a more specific relation between terms and the most
specific term of a given term.

inst(X,C)← instance of(X,C1), (29)
C1 6= C, subclass of(C1, C).

most cls(X,C)← instance of(X,C), (30)
not inst(X,C).

more sp(X,Y)← compatible(X,Y), (31)
subclass of(C1, C2), C1 6= C2,

most cls(X,C1),most cls(Y,C2).

has ms(Y)← compatible(X,Y), (32)
more sp(X,Y),

mspec(X,Y, S,C)← more sp(X,Y), (33)
tv(X,S,C), tv(Y, S,C),

compatible(X,Y), not has ms(X).

mspec(X,Y, S,C)← more sp(X,Y), (34)
compatible(X,Y), subclass of(C,C1),

tv(X,S,C), tv(Y, S,C1),

not has ms(X).

Rule (29) says that X is an instance of a class C by
inheritance (inst(X,C)) if it is an instance of a class
C1 that is a proper subclass of C. Rule (30) identifies
the most specific class of a term X . Rule (31) defines
the more specific relation between compatible terms:
X is more specific than Y if X and Y are compatible
terms and the most specific class of X is a subclass
of the most specific class of Y . Rule (32) identifies
a term that has a compatible and more specific term.

mspec(X,Y, S,C), defined in (33)-(34), encodes that
X is a most specific term of Y and can be used in defin-
ing umap-atoms for the slot S at the class C. The rules
state that X is a most specific term of Y if they are
compatible, X is more specific than Y , and there exists
no term that is more specific than X .

– Computing Redundancy: Rules in this group identify
redundant specifications and enforce the principle (P3).

2{over(Y1, Y), redundant(S,X, Y)}2← (35)
class(C), slot(S,X, Y), slot(S,X, Y1),

range(Y,C), range(Y1, C), dom(Y,D),

dom(Y1, D1), subclass of(D1, D).

over(Y2, Y)← over(Y2, Y1), over(Y1, Y). (36)
selected to replace(Y)← over(Y1, Y). (37)

(35) declares redundant(S,X, Y) which encodes that
slot(S,X, Y) is redundant if there exists another speci-
fication slot(S,X, Y1) for the same class at a more spe-
cific class. In this case, Y should be unified with Y1,
denoted by over(Y1, Y). (36) says that over is transi-
tive and (37) says that Y will be replaced by some term
if it is unified with some other term.

– Unification rules: Rules in this group create a mapping
between terms for the unification mapping according to
the principles (P1), (P2), and (P4)

0

{
pick(X,Y, S,C) :
mspec(X,Y, S,C)

}
1← term(Y). (38)

Intuitively, pick(X,Y, S,C) states that the most spe-
cific term X of Y , w.r.t. the slot S at the class C, will
be unified with Y . Rule (38) creates a mapping from
the set of terms into the set of their most specific terms.
To ensure that the two principles are enforced, we need
the following rules.

override(Y, S,C)← pick(X,Y, S,C). (39)
selected ovd(Y)← pick(X,Y, S,C). (40)

used ovd(X,S,C)← pick(X,Y, S,C). (41)
These rules keep track of the terms that have been
selected for unification mapping by projecting differ-
ent elements of pick(X,Y, S,C). (39) and (40) define
override(Y, S,C) and selected ovd(X), respectively,
indicating that the value Y of slot S at class C has
been selected to be unified with some other term. These
atoms are used in the enforcement of (P1) and (P2) by
the following constraints.

← tv(X,S,C), pick(Z,X, S,C), X 6= Y, (42)
term(Z), tv(Y, S,C), pick(Z, Y, S, C).

← mspec(X,Y, S,C), (43)
not override(Y, S,C),

not used ovd(X,S,C).
(42) guarantees that one term is not unified with two
different and less specific terms. (43) ensures that the
specificity principle is applied whenever it is possible.
The combination of these two rules enforces (P2).
The next rules finalize the mapping for the unification

430

process.
unify(X,Y)← pick(X,Y, S,C). (44)

unify(X,Y)← over(X,Y), (45)
not selected to replace(X).

unify(X,X)← not selected ovd(X), (46)
term(X), not selected to replace(X).

Rules (44)-(46) enforce (P4) by defining the predicate
unify(X,Y). If unify(X,Y) holds, then the term X
should replace the term Y . (44) states that if X has
been selected to replace Y via pick(X,Y, S,C), then
Y should be identified with X . (45) states that if X has
been selected to be replaced by any other term Y , then
Y should be identified with X . (46) indicates that if X
has not been selected to be replaced by any other term
then, X is identified by itself.

– Creating umap-atoms: Rule (47) defines the predicate
umap(S,X, V). It states that umap(S,X, V) should
be obtained from some slot-atom slot(S,X1, V1) by
applying the specificity and specialization principles on
the terms X1 and V1 simultaneously.

umap(S,X, V)← slot(S,X1, V1),
not redundant(S,X, V),
unify(X,X1), unify(V, V1).

(47)

Given an underspecified knowledge baseKB = D(σ)∪ΠI ,
by KBr we denote the program KB ∪ ΠR. Let S be a set
of ground atoms in KBr and i be an individual constant in
σ, we define

D(i, S) =

{
umap(s, x, v)

umap(s, x, v) ∈ S,
x = i ∨ ∃f ∈ Fs.[x = f(i)]
v = i ∨ ∃g ∈ Fs.[v = f(i)]

}
Definition 4 Let KB be an underspecified knowledge base
over σ, i be an individual of the class c in KB, and S be an
answer set ofKBr. The setD(i, S) is called the description
of i w.r.t. S.
In the next examples, we illustrate the use of KBr in the
different knowledge bases.
Example 6 Let us consider the KBs from Examples 2-3. We
can check that KBr

0 has an answer set M that contains the
following umap-atoms: umap(has engine, s1, Eng(s1)),
umap(has tank, s1, Tank(s1)),
umap(connected, Eng(s1), Tank(s1)).

Each of the umap-atoms corresponds to one
slot-atom (Ex. 2) because none of the terms in
the set {s1, Eng(s1), Tank(s1)} has a more spe-
cific term. Hence, there exists no atom of the form
mspec(V1, V, S, C) in M . This implies that no atom of
the form selected ovd(V), selected to replace(V), or
redundant(S,X, Y) exists in M . Under this condition,
rule (46) identifies each term by itself. Rule (47) indicates
that for each slot(N,X, V) ∈M , umap(N,X, Y) ∈M .

Now consider KB1 from Ex. 3. We will show
that the program KBr

1 has a unique answer set
M that contains umap(has engine, s1, lEng(s1)),
umap(has tank, s1, lTank(s1)), and
umap(connected, lEng(s1), lTank(s1)).

First, we have that instance of(s1, suburban) ∈ M
because it is a fact of KBr

1 . This, together with

rule (18), implies that instance of(s1, car)∈M .
The latter, with the axioms in D1(σ1) (Ex. 3), im-
plies that instance of(lEng(s1), engine)∈M and
instance of(lTank(s1), tank)∈M . Similarly, we
have that instance of(lEng(s1), lEngine)∈M and
instance of(lTank(s1), lTank)∈M .

It is easy to see that the atoms of the form
instance of(X,Y) in M imply the presence of the five
atoms of the form slot(S,X, V) in Fig. 1 in M .

Since there exists no class that is a proper subclass of
lEng or lTank, the most specific class of lEng(s1) and
lTank(s1) is lEngine and lTank, respectively (by (29)-

(30)); this implies that the most specific term of lEng(s1)
(resp. lTank(s1)) is itself (by (33)-(34)). On the other
hand, Eng(s1) (resp. Tank(s1)) has a more specific term,
lEng(s1) (resp. lTank(s1)), as both are instances of
engine (resp. tank), but the former is more specific than
the latter. This results in the following atoms are in M :
mspec(lEng(s1), Eng(s1), has engine, engine) and
mspec(lTank(s1), Tank(s1), has tank, tank)

Since none of the terms lEng(s1), Eng(s1),
lTank(s1), and Tank(s1) appears more than once

in atoms of the form mspec, rules (38)-(43) imply
that pick(lEng(s1), Eng(s1), has engine, engine)
pick(lTank(s1), Tank(s1), has tank, tank) be-
long to M . So, unify(lEng(s1), Eng(s1)) belongs
to M because of (42). Similarly, we can show that
unify(lTank(s1), Tank(s1)) belongs to M . This im-
plies that the application of rule (47) yields only three
umap-atoms in M as described earlier. 2

We observe that the principle (P2) might create different
specializations of a slot and thus different sets of umap-
atoms for an individual. It is easy to see that for D2(σ2)
(Ex. 4) and KB2 = D2(σ2) ∪ ΠI , KBr

2 has two answer
sets, each corresponding to one outcome discussed in Ex. 5.

Properties of the Implementation
We now discuss some properties of the program developed
in the previous subsection. In general, we say that a program
P satisfies a principle (Pi) (i = 1, . . . , 4) if none of the an-
swer sets of P violates (Pi).
Theorem 1 For a basic domain description D(σ) over the
signature σ, the program KBr = D(σ)∪ΠI ∪ΠR satisfies
the principles (P1)-(P4).
Proof. (Sketch) LetM be an answer set ofKBr.M satisfies
(P1) because of rules (44) and (45). It satisfies (P2) because
of rules (42) and (43). Rules (35)-(37)) guarantee that M
satisfies (P3). (P4) is satisfied because of the rule (47). 2

To discuss the next property, we need an additional defi-
nition.
Definition 5 Given a domain description D(σ), a slot s is
deterministic at a class c in D(σ) if
• there exists at most one Skolem function fc such that
slot(s,X, fc(X)) appears in an axiom of the form (12)
in D(σ) whose right side is instance of(X, c); and
• there exists at most one pair of Skolem functions f1, f2

such that slot(s, f1(X), f2(X)) appears in D(σ) whose
right side is instance of(X, c).

431

A slot s is deterministic if it is deterministic at every class in
D(σ). Otherwise, s is nondeterministic.
D(σ) is deterministic if every slot in D(σ) is deterministic.

Observe that the fact that a slot s is deterministic does not
imply that the slot is associated with a single value as com-
monly called single-valued slot in the literature. For exam-
ple, the slot has engine of D1(σ1) (Ex. 3) is indeed a de-
terministic slot since for each class appearing inD1(σ1), we
can check that the above conditions are satisfied.

Theorem 2 For a basic and deterministic domain descrip-
tion D(σ), the program KBr = D(σ) ∪ ΠI ∪ ΠR has a
unique answer set.

Proof. We use the splitting sequence theorem (Lifschitz and
Turner 1994) with respect to the sequence 〈Xi〉6i=1 where
Xi =

⋃i
j=1 Li and

• L1 is the set of atoms of the form class(X),
constant(X), instance of(X,Y), subclass of(X,Y),
and slot(X,Y, Z);
• L2 is the set of atoms of the form compatible(X,Y),
range(X,Y), dom(X,C), term(X), tv(X,S,C), and
inst(X,C);

• L3 is the set of atoms of the form most cls(X,C);
• L4 is the set of atoms of the form more sp(X,Y);
• L5 is the set of atoms of the form mspe(X,Y, S,C); and
• L6 is the set of atoms of the form replace(X,Y),
selected to replace(X), or redundant(S,X, Y).

It can be shown that the bottom of KBr relative to Xi has
a unique answer set S0 and the partial evaluation of KBr

with respect this answer set has a unique answer set. Detail
can be found in (Chaudhri and Son 2011). 2

We note that Theorem 1 indicates that KBr provides a
declarative characterization of umap-atoms. Since the class
of basic domain descriptions covers the most frequently oc-
curred axioms in the biology textbook KB—which was an
inspiration for our investigation—we can conclude that the
proposed methodology is a viable alternative to query an-
swering in systems that employs the knowledge base devel-
oped in AURA and SHAKEN. Theorem 2 shows that for
basic and deterministic domain descriptions, the description
for each individual in the domain is unique and can be com-
puted bottom up. This, along with the recent advances in
ASP solvers, allows us to expect that answering queries us-
ing KBr can be done efficiently.

Related Work and Discussions
We first comment on our choice of using ASP for this work
as opposed to a description logic formalism. Recall that the
axiom (1) is the most frequently occurring axiom pattern in
KM prototypes. The axiom (1) violates the tree model prop-
erty. The axioms of this form can only be represented in de-
scription graphs, but that requires separating the slots that
participate in such graphs from the slots in the rest of the
KB (Motik et al. 2009). For this reason, we chose to first do
this formalization using ASP. We do, however, believe that it

is possible to express aspects of reasoning in an underspec-
ified knowledge base in a description logic framework, and
we are investigating that in our current research.

Our formalization of umap-atoms is inspired by the
heuristic unification implemented in the KM system (Clark
and Porter 2011). There are several differences between uni-
fication mapping as specified in this paper and the heuristic
unification used in KM. First, KM’s approach is procedural
and is explained mostly using examples while our formaliza-
tion is declarative. This also prevents an object-level com-
parison between KM and our formalization. Second, KM
computes only one possible unification while our approach
computes all possible unifications. A single default choice
for unification suffices in many practical situations, but in
situations where the default choice goes wrong, it is impor-
tant to give the user an option of choosing amongst differ-
ent alternatives. Finally, the heuristic unification in KM is
destructive, i.e., when two individuals are unified, one is re-
placed with the other in the KB. In contrast, our approach is
non-destructive. The unification decisions made by UMAP
are truly non-monotonic in the sense that if additional infor-
mation is added to the KB, the individuals that were unified
in the initial version of the KB may no longer be unified
in the new version of the KB. Due to destructive nature of
unification in KM, it is not capable of such non-monotonic
behavior. KM allows a user to make explicit unification as-
sertions in the KB. We have not yet considered that aspect
of heuristic unification in our formalization.

We note that even though an ability to write class defini-
tions in a modular manner is a desirable property, it is still
useful to provide a facility when a change in a class could
be automatically reflected in its subclasses. The SHAKEN
and AURA systems have supported a knowledge propaga-
tion mechanism for this purpose. The current paper ignores
the aspect of updating an under-specified knowledge base.

Dealing with Multiple Inheritance

Multiple inheritance occurs when two values of a slot at a
class are represented by Skolem functions defined in two
different classes.

Example 7 Consider the following statements about cars:
(i) A powerful car is a car that has an engine with lots of
power; (ii) A big car is a car that has a large engine; (iii)
Suburbans are powerful cars and are big cars; and (iv) s1
is a suburban. This information can be encoded as a do-
main description over the signature σcar containing Ci =
{s1}; Cc = {engine, big car, powerful car, suburban};
Co = {large, lots}; Cs = {has engine, size, power};
and Cf = { Eng1, Eng2, size, power}. For brevity, we
omit the class, instance, constant, and subclass axioms of
D(σcar). To state that a big car has a large engine, we use6

3

{
instance of(Eng1(X), engine),
slot(size, Eng1(X), large),
slot(has engine,X, Eng1(X))

}
3

← instance of(X, big car).

(48)

6We combine two descriptive axioms into one to save space.

432

That powerful car has a powerful engine is encoded as

3

{
slot(power, Eng2(X), lots)
slot(has engine,X, Eng2(X))
instance of(Eng2(X), engine)

}
3←

instance of(X, powerful car)

(49)

We can check that D(σcar)∪ΠI∪ΠR has a single an-
swer set containing umap(has engine, s1, Eng1(s1)),
umap(size, Eng1(s1), large),
umap(power, Eng2(s1), lots),
umap(has engine, s1, Eng2(s1)). 2

The answer given by KB(σcar)r is only partially satisfac-
tory in that it indicates that s1 has an engine that is large
and an engine that is powerful. It is not fully satisfactory
since, unless there is a reason to believe otherwise, the two
engines should be considered the same. Observe that be-
cause there is no subclass relation between big car and
powerful car, there is no preference among the slot speci-
fication for has engine in (48) and (49). Nevertheless, it is
intuitive that they should be unified. When should this uni-
fication be executed? To answer this question, we observe
that a slightly different situation occurs in Ex. 4 where the
two slot-atoms should not be unified. We observe that the
specifications of the has engine slot in Ex. 4 have the same
domain while those in Ex. 7 come from unrelated domains.
So, we can resolve the coreferential problem by (i) determin-
ing the set S(v, s, c) of coreferential slot-atoms given each
triple of a term v, a class c, and a slot s; and (ii) unify the set
S(v, s, c). The first task can be realized using the following
ASP rule:

coreference(X,Y, S,C)← X 6= Y,C1 6= C2, (50)
compatible(X,Y), dom(X,C1), dom(Y,C2),

not has ms(X), not has ms(Y), dom(X,C1),

tv(X,S,C), not subclass of(C1, C2),

tv(Y, S,C), not subclass of(C2, C1).
The above rule states that two compatible terms X and Y ,
which are possible values of the term S at class C, are coref-
erential if their domains are unrelated and neither has a more
specific term. To accomplish task (ii), we need a set of rules
similar to the unification rules (38)–(46).

Dealing with Constraints
We will now develop a set of rules for dealing with cardinal-
ity constraints on the set of slot values. First, we extend our
domain description language to allow the representation of
cardinality constraints on a set of slot values as follows. A
constraint axiom can be given in the following form:

constraint(s, c, l, u) (51)
where s ∈ Cs, c ∈ Cc, and l and u are integers with 1 ≤
l ≤ u. This constraint states that slot s has at least l and
at most u values at class c. We will next discuss a set of
rules for enforcing the constraints of the form (51). First,
we need to guarantee that the set {umap(s,X, Y) | X is
a specified instance of c} has at least l elements, where a
specified instance of a class is a member of the class that is
not an instance of any of its subclasses. This can be achieved
by the following constraint:
← {umap(s,X, Y)} l − 1, instance of(X, c)
not inst(X, c), constraint(s, c, l, u)

(52)

Since each umap-atom encodes at least one slot-atom, the
above rule guarantees that slot s has at least l values at class
c. Similarly, we can add a constraint to make sure that the
set {umap(s,X, Y) | X is a specified instance of c} has at
most u elements. The following constraint achieves this:
← u+ 1 {umap(s,X, Y)}, instance of(X, c)
not inst(X, c), constraint(s, c, l, u)

(53)

We will need to add rules, similar to rules (38)–(46), to the
program to make sure that, for each constraint(s, c, l, u), if
the set {slot(s,X, Y)} | X is a specified instance of c} has
more than u elements then unification needs to be executed;
and if it has less than l elements then the program is incon-
sistent. This can be achieved using a set of rules similar to
rules (38)–(46). We omit these rules for space reasons (see
(Chaudhri and Son 2011)).

Conclusions and Future Work
In this paper, we considered the problem of reasoning in
an under-specified knowledge base. Specifically, we consid-
ered two forms of underspecification: some of the cardinal-
ity constraints are omitted from the KB and some values are
specialized across a class hierarchy but the explicit refer-
ences to which values are specialized are omitted. Such un-
derspecification is very useful in achieving modularity in a
large complex KB. We presented an approach called UMAP
or unification mapping to do inheritance reasoning in such
an under-specified KB. UMAP is inspired by a similar rea-
soning mechanism called heuristic unification that is imple-
mented in KM and has proven to be empirically useful in
enabling knowledge base construction by biologists with lit-
tle background in formal knowledge representation. While
we have used ASP as a formal framework to present our
approach, we believe that the basic ideas are general and ap-
plicable to other reasoning frameworks.

Our immediate goal in the near future is to do the per-
formance evaluation of the proposed framework using the
biology knowledge base developed as part of Project Halo
(Gunning et al. 2010). Our focus will be on using the pro-
gram in answering three types of questions: (i) What is aX?
The set of UMAP-atoms represents a complete description
about an individual and thus can serve as the answer for this
question; (ii) What are the relationships between X and Y ?
In this type of question, we will focus on relationships that
can be described by paths connecting two individualsX and
Y . We expect that the efficient solvers that have been devel-
oped for ASP will help us compute relationships that cannot
be computed by the current KM system. (iii) A third possible
class of questions involves process interruption reasoning.
Specifically, we plan to enhance the current formalization to
include a modular action language similar to what has been
done in (Inclezan and Gelfond 2011).
Acknowledgment: This work has been funded by Vulcan
Inc. and SRI International. This work has greatly benefited
from substantive discussions with Pete Clark, Richard Fikes,
Benjamin Grosof, Michael Kifer and Michael Wessel. We
are grateful to them for their input.

433

References
Aiello, L. C., and Massacci, F. 2001. Verifying security
protocols as planning in logic programming. ACM Trans.
Comput. Log. 2(4):542–580.
Balduccini, M.; Gelfond, M.; Watson, R.; and Nogueira, M.
2001. The USA-Advisor: a case study in answer set plan-
ning. In Lectures Notes in Artificial Intelligence (Proceed-
ings of the Sixth International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning, LPNMR’01), vol-
ume 2173, 439–442. Springer-Verlag.
Barker, K.; V., C.; Clark, P.; Israel, D.; Porter, B.; and
Romero, P. 2003. Halo Pilot Project. Technical report,
SRI International.
Chaudhri, V. K., and Son, T. C. 2011. Specifying and rea-
soning with underspecified knowledge bases using answer
set programming. Technical report, NMSU. Technical Re-
port.
Clark, P., and Porter, B. W. 1997. Building concept repre-
sentations from reusable components. In Proceedings of the
AAAI Conference, 369–376.
Clark, P., and Porter, B. 2011. KM (v2.0 and later): Users
Manual.
Clark, P.; ; Thompson, J.; and Porter, B. W. 2000. Knowl-
edge patterns. In Proceedings of the KRR Conference, 591–
600.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. clasp: A conflict-driven answer set solver. In Baral,
C.; Brewka, G.; and Schlipf, J., eds., Proceedings of the
Ninth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’07), volume 4483 of
Lecture Notes in Artificial Intelligence, 260–265. Springer-
Verlag.
Gebser, M.; Schaub, T.; Thiele, S.; and Veber, P. 2010. De-
tecting inconsistencies in large biological networks with an-
swer set programming. Theory and Practice of Logic Pro-
gramming 10(4-6).
Gelfond, M., and Lifschitz, V. 1990. Logic programs with
classical negation. In Warren, D., and Szeredi, P., eds.,
Logic Programming: Proceedings of the Seventh Interna-
tional Conference, 579–597.
Gunning, D.; Chaudhri, V. K.; Clark, P.; Barker, K.; Chaw,
S.-Y.; Greaves, M.; Grosof, B.; Leung, A.; McDonald, D.;
Mishra, S.; Pacheco, J.; Porter, B.; Spaulding, A.; Tecuci, D.;
and Tien, J. 2010. Project Halo Update—Progress Toward
Digital Aristotle. AI Magazine 33–58.
Heljanko, K., and Niemelä, I. 2003. Bounded LTL model
checking with stable models. Theory and Practice of Logic
Programming 3(4,5):519–550.
Inclezan, D., and Gelfond, M. 2011. Representing biologi-
cal processes in modular action languageALM. In Logical
Formalizations of Commonsense Reasoning, AAAI Spring
Symposium.
Lenat, D. 1995. Cyc: A large-scale investment in knowledge
infrastructure. Communications of the ACM 38(11).

Lifschitz, V., and Turner, H. 1994. Splitting a logic program.
In Van Hentenryck, P., ed., Proceedings of the Eleventh In-
ternational Conference on Logic Programming, 23–38.
Manzano, M. 1993. Introduction to many-sorted logic. In
Many-sorted logic and its applications. Wiley Professional
Computing. 3–86.
Marek, V., and Truszczyński, M. 1999. Stable models and
an alternative logic programming paradigm. In The Logic
Programming Paradigm: a 25-year Perspective, 375–398.
Motik, B.; Grau, B. C.; Horrocks, I.; and Sattler, U. 2009.
Representing ontologies using description logics, descrip-
tion graphs, and rules. Artificial Intelligence 173:1275–
1309.
Niemelä, I. 1999. Logic programming with stable model
semantics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence 25(3,4):241–273.
Simons, P.; Niemelä, N.; and Soininen, T. 2002. Extend-
ing and implementing the stable model semantics. Artificial
Intelligence 138(1–2):181–234.
Tu, P. H.; Son, T. C.; Gelfond, M.; and Morales, R. 2011.
Approximation of action theories and its application to con-
formant planning. Artificial Intelligence Journal 175(1):79–
119.

434

