
Declarative Entity Resolution via Matching
Dependencies and Answer Set Programs

Zeinab Bahmani and Leopoldo Bertossi
Carleton University, Ottawa, Canada.

zbahmani@connect.carleton.ca, bertossi@scs.carleton.ca
and

Solmaz Kolahi and Laks V. S. Lakshmanan
University of British Columbia, Vancouver, Canada.

{solmaz,laks}@cs.ubc.ca

Abstract
Entity resolution (ER) is an important and common
problem in data cleaning. It is about identifying and
merging records in a database that represent the same
real-world entity. Recently, matching dependencies
(MDs) have been introduced and investigated as declar-
ative rules that specify ER. An ER process induced by
MDs over a dirty instance leads to multiple clean in-
stances, in general. In this work, we present disjunc-
tive answer set programs (with stable model semantics)
that capture through their models the class of alterna-
tive clean instances obtained after an ER process based
on MDs. With these programs, we can obtain clean
answers to queries, i.e. those that are invariant under
the clean instances, by skeptically reasoning from the
program. We investigate the ER programs in terms of
expressive power for the ER task at hand. As an im-
portant special and practical case of ER, we provide a
declarative reconstruction of the so-called union-case
ER methodology, as presented through a generic ap-
proach to ER (the so-called Swoosh approach).

1 Introduction
Entity resolution (ER) is a classical, common and diffi-
cult problem in data cleaning. It deals with identifying
and merging database records in a database that refer to
the same real-world entity [Bleiholder and Naumann 2008;
Elmagarmid, Ipeirotis and Verykios 2007]. In this way,
duplicates are eliminated via a matching process. Match-
ing dependencies (MDs) are declarative rules that gener-
alize entity resolution tasks. They assert in declarative
terms that certain attribute values in relational tuples have
to be matched, i.e. made the same, when certain similar-
ity conditions hold between possibly other attribute values
in those tuples. MDs were first introduced in [Fan 2008;
Fan et al. 2009].

Example 1. Consider the relational schema R =
{R(A,B)}, with a predicateR with attributesA andB. The
following symbolic expression

R[A] ≈ R[A] −→ R[B]
.
= R[B],

is an MD requiring that, if for any two database tuples
R(a1, b1), R(a2, b2) in an instance D of the schema, when

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the values for attributesA are similar, i.e. a1 ≈ a2, then their
values for attribute B have to be made equal (matched), i.e.
b1 or b2 (or both) have to be changed to a value in common.

Let us assume that ≈ is reflexive and symmetric, and that
a2 ≈ a3, but a2 6≈ a1 6≈ a3. The table on the left-hand side
(LHS) below provides the extension for predicate R in D.
In it some duplicates are not resolved, since, e.g. the tuples
(with tuple identifiers) t1 and t2 have similar – actually equal
– values for attribute A, but the values for B are different.

R(D) A B
t1 a1 b1
t2 a1 b2
t3 a2 b3
t4 a3 b4

R(D′) A B
t1 a1 b1
t2 a1 b1
t3 a2 b5
t4 a3 b5

D does not satisfy the MD, and is a dirty instance. Af-
ter applying the MD, we could get the instance D′ on the
right-hand side (RHS), where values forB have been identi-
fied. In principle, nothing prevents us from choosing a new
value b5 from the domain to do the matching. D′ is sta-
ble in the sense that the MD holds in the traditional sense
of an implication on D′. We call D′ a clean instance. In
general, for a dirty instance and a set of MDs, multiple
clean instances may exist. Notice that if we add the MD
R[B] ≈ R[B] → R[A]

.
= R[A], creating a set of inter-

acting MDs, a matching based on one MD may create new
similarities that could enable a different MD in the set. �

A dynamic semantics for MDs was introduced in [Fan et
al. 2009], that requires a pair of instances: a first one where
the similarities hold and second one where the matchings
are enforced, like D and D′ in Example 1. The MDs, as in-
troduced in [Fan et al. 2009], do not specify how to match
values. As we did in the example, we could even pick up
a new value, e.g. b5 above, for the value in common. This
semantics was refined and extended in [Bertossi, Kolahi and
Lakshmanan 2011] (cf. also [Bertossi, Kolahi and Laksh-
manan 2012]), using a matching function (MF) to guide the
matchings, for each of the participating attribute domains.
The MFs induce a lattice-theoretic structure on the latter
[Bertossi, Kolahi and Lakshmanan 2011]. An alternative dy-
namic semantics was introduced in [Gardezi, Bertossi and
Kiringa 2011]. It does not appeal to MFs, but matchings
have to be mandatory (as also in [Bertossi, Kolahi and Lak-
shmanan 2011]) and minimal, i.e. a minimum number of

380

Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning



changes to attribute values is applied to satisfy the MDs.
In this work we revisit the approach to ER via MDs in-

troduced in [Bertossi, Kolahi and Lakshmanan 2011], that
uses MFs. In that scenario, a “dirty” instance D w.r.t. a
set Σ of MDs may lead to several different clean and sta-
ble solutions D′, each of which can be obtained by means
of a provably terminating, but non-deterministic, chase-like
procedure [Bertossi, Kolahi and Lakshmanan 2011]. The
latter involves enforcing MDs iteratively by means of apply-
ing MFs. The set of all such clean instances is denoted by
C(D,Σ). Our goal in this paper is to provide a declarative
specification to this procedural data cleaning semantics.

In [Bertossi, Kolahi and Lakshmanan 2011], the clean an-
swers to a query were introduced, as those that are (essen-
tially) certain, i.e. true of all the clean instances (cf. Section
2 for details). They are invariant across the class C(D,Σ),
and then are intrinsically “clean”. The problem of deciding,
computing and approximating clean answers was also in-
vestigated. Clearly, computing clean answers via an explicit
and materialized computation of all clean instances is pro-
hibitively expensive and should be avoided whenever possi-
ble. Indeed, for a given initial instance D, we could have
exponentially many clean instances (in the size of D).

Answer set programming is a relatively new declara-
tive programming paradigm [Gelfond and Lifschitz 1991;
Brewka, Eiter and Truszczynski 2011]. It has been suc-
cessfully used to implicitly specify in general logical terms,
say G, all the solutions of a general, usually combinatorial
problem. In this work, we introduce answer set programs
(ASPs), in the form of disjunctive Datalog with stable model
semantics [Eiter, Gottlob and Mannila 1997], to specify the
class C(D,Σ) of clean instances for D w.r.t. Σ. For each in-
stanceD and set Σ of MDs, we show how to build an answer
set program Π(D,Σ) whose stable models are in one-to-one
correspondence with the instances in C(D,Σ).

The cleaning program Π(D,Σ) axiomatizes the class
C(D,Σ). Hence reasoning from/with the program amounts
to reasoning with the full class C(D,Σ). In particular, clean
query answers can be obtained from the original instance D
by skeptical (aka. cautious) reasoning on the program.

Answer set programs have been used before in consistent
query answering (CQA) [Arenas, Bertossi, and Chomicki
1999; Bertossi 2006; Chomicki 2007; Bertossi 2011], in
the form of repair programs, that specify the repairs of a
database instance w.r.t. a set of integrity constraints (ICs)
[Arenas, Bertossi, and Chomicki 2003; Greco, Greco and
Zumpano 2003; Barcelo, Bertossi and Bravo 2003; Eiter et
al. 2008; Caniupan and Bertossi 2010; Franconi et al. 2001].
However, MDs cannot be treated as classical ICs. In particu-
lar, the matching functions and the lattice-theoretic structure
of the domains, with the induced domination order, create a
substantially different scenario, where new challenges arise.
Furthermore, the semantics of MDs is quite different from
that of classical ICs, and repair techniques for CQA can-
not be straightforwardly used for ER via MDs or for clean
query answering (cf. [Gardezi, Bertossi and Kiringa 2011]
for a discussion).

We statically analyze the cleaning programs, in terms of
syntactic structure and complexity. In particular, we show

that their expressive power is appropriate for our applica-
tion in ER, and is in line with the computational complex-
ity of computing clean instances and clean query answers
[Bertossi, Kolahi and Lakshmanan 2011]. We also show
how to use cleaning programs with the skeptical seman-
tics for the computation of clean answers from the original
database, with a data complexity that matches the intrinsic
data complexity of clean query answering.

The Swoosh approach to ER was proposed in [Benjelloun
et al. 2009], as a generic and procedural specification of ER
mechanisms. Special attention receives the common “union-
case” of ER, that treats individual records as sets of triples
of the form (id , attr , value), i.e. as objects. An ER step
basically matches values by producing their union; and the
resulting value dominates the original values w.r.t. informa-
tion contents. In [Bertossi, Kolahi and Lakshmanan 2011],
the Swoosh’s union-case was reconstructed in terms of MDs.
In this work, we provide, as an additional contribution, a
declarative version of the union-case of Swoosh via MDs
and their cleaning programs.

This paper is structured as follows. Section 2 introduces
the necessary background on relational databases, matching
dependencies and their semantics, and disjunctive Datalog
programs. In Section 3, we introduce the cleaning programs
that specify the clean instances w.r.t. a set of MDs. They are
used in Section 4 to do clean query answering. In Section 5
we analyze and transform the cleaning programs, addressing
some complexity issues. In Section 6 we present a declara-
tive version of the union case of Swoosh. In Section 7, we
obtain a few final conclusions. Many more details in gen-
eral, full proofs of results, and also examples with the DLV
system [Leone et al. 2006], can be found in the extended
version of this paper [Bahmani et al. 2011].

2 Preliminaries
We consider relational schemas R with a possibly infinite
data domain U , a finite set of database predicates, e.g. R,
and a set of built-in predicates, e.g. =, 6=. Each R ∈ R
has attributes, say A1, . . . , An, each of them with a domain
DomAi ⊆ U . We may assume that the Ais are different,
and different predicates do not share attributes. However,
different attributes may share the same domain.

An instance D forR is a finite set of ground atoms (or tu-
ples) of the form R(c1, . . . , cn), with R ∈ R, ci ∈ DomAi

.
We will assume that tuples have identifiers, as in Example
1. They allow us to compare extensions of the same pred-
icate in different instances, and trace changes of attribute
values. Tuple identifiers can be accommodated by adding
to each predicate R ∈ R an extra attribute, T , that acts as
a key. Then, tuples take the form R(t, c1, . . . , cn), with t
a value for T . Most of the time we leave the tuple identi-
fier implicit, or we use it to denote the whole tuple. More
precisely, if t is a tuple identifier in an instance D, then tD
denotes the entire atom, R(c̄), identified by t. Similarly, if
A is a list of attributes of predicate R, then tD[A] denotes
the tuple identified by t, but restricted to the attributes in A.
We assume that tuple identifiers are unique across the entire
instance.

Schema R determines a language L(R) of first-order

381



(FO) predicate logic. A conjunctive query is a formula of
L(R) of the form Q(x̄) : ∃ȳ(P1(x̄1) ∧ · · · ∧ Pm(x̄m)),
where Pi ∈ R, x̄ = (∪ix̄i) r ȳ is the list free variables of
the query, say x̄ = x1 · · ·xk. An answer to Q in instance
D is a sequence 〈a1, . . . , ak〉 ∈ Uk that makes Q true in D,
denoted D |= Q[a1, . . . , ak]. Q(D) denotes the set of an-
swers to Q in D, and can be seen and treated as an instance
for an “answer” relational schema, possibly different from
the original one.

For a schemaRwith predicatesR1[L̄1], R2[L̄2], with lists
of attributes L̄1, L̄2, resp., a matching dependency (MD)
[Fan et al. 2009] is an expression of the form

ϕ : R1[X̄1] ≈ R2[X̄2] −→ R1[Ȳ1]
.
= R2[Ȳ2]. (1)

Here, X̄1, Ȳ1 are sublists of L̄1, and X̄2, Ȳ2 sublists of L̄2.
The lists X̄1, X̄2 (also Ȳ1, Ȳ2) are comparable, i.e. the at-
tributes in them, sayXj

1 , X
j
2 , are pairwise comparable in the

sense that they share the same data domain Domj on which
a binary similarity (i.e. reflexive and symmetric) relation≈j
is defined.

The MD (1) intuitively states that if, for an R1-tuple t1
and an R2-tuple t2 in an instance D the attribute values in
tD1 [X̄1] are similar to attribute values in tD2 [X̄2], then the val-
ues tD1 [Ȳ1] and tD2 [Ȳ2] have to be made identical. This up-
date results in another instanceD′, where tD

′

1 [Ȳ1] = tD
′

2 [Ȳ2]
holds. W.l.o.g., we may assume that the list of attributes on
the RHS of MDs contain only one conjunct (attribute).

For a set Σ of MDs, a pair of instances (D,D′) satisfies Σ
if whenever D satisfies the antecedents of the MDs, then D′
satisfies the consequents (taken as equalities). If (D,D) 6|=
Σ, we say that D is “dirty” (w.r.t. Σ). On the other hand, an
instance D is stable if (D,D) |= Σ [Fan et al. 2009].

In order to enforce an MD on two tuples, making values
of attributes identical, we assume that for each comparable
pair of attributes A1, A2 with domain (in common) DomA,
there is a binary matching function (MF) mA : DomA ×
DomA → DomA, such that mA(a, a′) is used to replace two
values a, a′ ∈ DomA whenever necessary. We expect MFs
to be idempotent, commutative, and associative [Bertossi,
Kolahi and Lakshmanan 2011; Benjelloun et al. 2009].

The structure (DomA,mA) forms a join semilattice, that
is, a partial order with a least upper bound (lub) for every
pair of elements. The induced partial order �A on DomA
is defined by: a �A a′ whenever mA(a, a′) = a′. The lub
coincides with mA: lub�A

{a, a′} = mA(a, a′). We also as-
sume the existence of the greatest lower bounds, glb(a, a′)
(cf. [Bertossi, Kolahi and Lakshmanan 2011] for a discus-
sion). In the rest of this work, we will assume by default
that similarity relations and MFs are built-in relations.

A chase-based semantics for data cleaning (or entity res-
olution) with MDs is given in [Bertossi, Kolahi and Lak-
shmanan 2011]: starting from an instance D0, we iden-
tify pairs of tuples t1, t2 that satisfy the similarity condi-
tions on the left-hand side of a matching dependency ϕ, i.e.
tD0
1 [X̄1] ≈ tD0

2 [X̄2] (but not its RHS), and apply an MF on
the values for the right-hand side attribute, tD0

1 [A1], tD0
2 [A2],

to make them both equal to mA(tD0
1 [A1], tD0

2 [A2]). We keep
doing this on the resulting instance, in a chase-like proce-
dure, until a stable instance is reached.

Definition 1. LetD,D′ be database instances with the same
set of tuple identifiers, Σ be a set of MDs, and ϕ : R1[X̄1] ≈
R2[X̄2] → R1[Ȳ1]

.
= R2[Ȳ2] be an MD in Σ. Let t1, t2 be

anR1-tuple and anR2-tuple identifiers, respectively, in both
D and D′. Instance D′ is the immediate result of enforcing
ϕ on t1, t2 in instance D, denoted (D,D′)[t1,t2] |= ϕ, if

(a) tD1 [X̄1] ≈ tD2 [X̄2], but tD1 [Ȳ1] 6= tD2 [Ȳ2];

(b) tD
′

1 [Ȳ1] = tD
′

2 [Ȳ2] = mA(tD1 [Ȳ1], tD2 [Ȳ2]); and

(c) D,D′ take the same values on every other tuple and
attribute. �

Definition 2. For an instance D0 and a set Σ of MDs , an
instanceDk is (D0,Σ)-clean ifDk is stable, and there exists
a finite sequence of instances D1, . . . , Dk−1 such that, for
every i ∈ [1, k], (Di−1, Di)[ti1,t

i
2] |= ϕ, for some ϕ ∈ Σ and

tuple identifiers ti1, t
i
2. �

An instance D0 may have several (D0,Σ)-clean in-
stances. C(D0,Σ) denotes the set of clean instances for D0

w.r.t. Σ.
The domain-level relations a �A a′ can be thought of

in terms of relative information contents [Bertossi, Kolahi
and Lakshmanan 2011]. They can be lifted to a tuple-level
partial order, defined by: t1 � t2 iff t1[A] �A t2[A], for
each attribute A. This in turn can be lifted to a relation-level
partial order: D1 v D2 iff ∀t1 ∈ D1 ∃t2 ∈ D2 t1 � t2.

When a tuple tD in instance D is updated to tD
′

in in-
stance D′ by enforcing an MD and applying an MF, it holds
that tD � tD′

; and the instances D and D′ satisfy: D v D′.
If instances are all “reduced” by eliminating tuples that are
dominated by others, the set of reduced instances with v
forms a lattice. That is, we can compute the glb and the lub
of every finite set of instances w.r.t.v. This is a useful result
that allows us to compare sets of query answers w.r.t. v. In-
deed, the set of clean answers to a queryQ from instance D
w.r.t. Σ is formally defined by CleanDΣ (Q) := glb

v
{Q(D′) |

D′ ∈ C(D,Σ)} [Bertossi, Kolahi and Lakshmanan 2011].
We will use logic programs Π in Datalog∨,not , i.e. dis-

junctive Datalog programs with weak negation [Gelfond and
Lifschitz 1991; Eiter, Gottlob and Mannila 1997], and a fi-
nite number of rules of the form
A1 ∨ . . . ∨An ← P1, . . . , Pm, not N1, . . . , not Nk,

where 0 ≤ n,m, k, and Ai, Pj , Ns are (positive) atoms. All
the variables in the Ai, Ns appear among those in the Pj .
The constants in program Π form the (finite) Herbrand uni-
verse H of the program. The ground version of program Π,
gr(Π), is obtained by instantiating the variables in Π in all
possible ways using values from H . The Herbrand base HB
of Π consists of all the possible atoms obtained by instanti-
ating the predicates in Π with constants in H .

A subset M of HB is a model of Π if it satisfies gr(Π),
i.e.: For every ground rule A1 ∨ . . . ∨ An ← P1, . . . , Pm,
not N1, . . . , not Nk of gr(Π), if {P1, . . . , Pm} ⊆ M and
{N1, . . . , Nk} ∩ M = ∅, then {A1, . . . , An} ∩ M 6= ∅.
M is a minimal model of Π if it is a model of Π, and Π
has no model that is properly contained in M . MM (Π)
denotes the class of minimal models of Π. Now, for

382



S ⊆ HB(Π), transform gr(Π) into a new, positive pro-
gram gr(Π)S (i.e. without not), as follows: Delete every
ruleA1∨ . . .∨An ← P1, . . . , Pm, not N1, . . . , not Nk for
which {N1, . . . , Nk}∩S 6= ∅. Next, transform each remain-
ing ruleA1∨. . .∨An ← P1, . . . , Pm, not N1, . . . , not Nk
intoA1∨ . . .∨An ← P1, . . . , Pm. Now, S is a stable model
of Π if S ∈ MM (gr(Π)S). Every stable model of Π is also
a minimal model of Π.

3 Declarative MD-Based ER
We start by showing that clean query answering is a non-
monotonic process.

Example 2. Consider the instance D and the MD φ:
R(D) name phone addr
t1 John Doe (613)7654321 Bank St.
t2 Alex Smith (514)1234567 10 Oak St.

φ : R [phone, addr] ≈ R [phone, addr] →
R [addr]

.
= R [addr].

D is a stable, clean instance w.r.t. φ. Now consider the query
Q(z) : ∃yR(John Doe, y, z), asking for the address of John
Doe. In this case, CleanD{φ}(Q) = Q(D) = {〈Bank St .〉}.

Now, suppose that D is updated into D′:
R(D′) name phone addr
t1 John Doe (613)7654321 Bank St .
t2 Alex Smith (514)1234567 10 Oak St .
t3 J .Doe 7654321 25 Bank St .

Assuming that “(613)7654321” ≈ “7654321”, Bank St . ≈
25 Bank St ., and also maddr(Bank St., 25 Bank St.) =
25 Bank St., then D′′ below is the only clean instance:

R(D′′) name phone addr
t1 John Doe (613)7654321 25 Bank St.
t2 Alex Smith 6131234567 10 Oak St.
t3 J.Doe 7654321 25 Bank St.

Now, CleanD
′

{φ}(Q) =Q(D′′) = {〈25 Bank St .〉}. Clearly,
Q(D) 6⊆ Q(D′), even though D ⊆ D′. �

This example shows that a non-monotonic logical formal-
ism is required to capture the clean instances as its models.
Intuitively, when an MD is enforced on two tuples of an in-
stance in a single step of the chase procedure, the tuples are
updated to newer versions. The older versions of the tuples
should no longer be available during the rest of the chase.

We use answer set programs as the basic formalism to
capture this non-monotonic chase procedure. More pre-
cisely, given an instanceD0 and a set Σ of MDs, we propose
a logic program Π(D0,Σ) whose stable models correspond
to the (D0,Σ)-clean instances.

Program Π(D0,Σ) should have rules to implicitly simu-
late a chase sequence, i.e. rules that enforce MDs on pairs of
tuples that satisfy certain similarities, create newer versions
of those tuples by applying matching functions, and make
the older versions of the tuples unavailable for other rules.
The idea is to have the stable models of the program corre-
spond to valid chase sequences leading to clean instances.

Π(D0,Σ) explicitly eliminates, using program con-
straints, instances that are the result of illegal applications

of MDs. A set of matching applications is illegal if we can-
not put them in a chronological order to represent the steps
of a chase. That is, there are some matchings that use old
versions of tuples that have been replaced by new versions.

To ensure that the matchings are enforced according to an
order that correctly represents a chase, we will record pairs
of matchings in an auxiliary relation, Prec, in the cleaning
program, and explicitly impose an order on Prec via pro-
gram constraints.

3.1 Cleaning programs for MDs
Let D0 be a given, possibly dirty initial instance w.r.t. a set
Σ of MDs. The cleaning program, Π(D0,Σ), that we will
introduce here, contains an (n + 1)-ary predicate R′i, for
each n-ary database predicate Ri. It will be used in the form
R′i(T, Z̄), where T is a variable for the tuple identifier at-
tribute, and Z̄ is a list of variables standing for the (ordinary)
attribute values of Ri.

For every attribute A in the schema, with domain DomA,
the built-in ternary predicate MA represents the MF mA, i.e.
MA(a, a′, a′′) means mA(a, a′) = a′′. X �A Y is used
as an abbreviation for MA(X,Y, Y ). When an attribute
A (or its domain) does not have a matching function, be-
cause it is not affected by an MD, then �A becomes the
equality, =A. For lists of variables Z̄1 = 〈Z1

1 , . . . Z
n
1 〉

and Z̄2 = 〈Z1
2 , . . . Z

n
2 〉, Z̄1 � Z̄2 denotes the conjunction

Z1
1 �A1

Z1
2∧. . .∧Zn1 �An

Zn2 . Moreover, for each attribute
A, there is a built-in binary predicate ≈A. For two lists of
variables X̄1 = 〈X1

1 , . . . X
l
1〉 and X̄2 = 〈X1

2 , . . . X
l
2〉 repre-

senting comparable attribute values, X̄1 ≈ X̄2 denotes the
conjunction X1

1 ≈1 X
1
2 ∧ . . . ∧X l

1 ≈l X l
2.

The program Π(D0,Σ) contains the rules in 1.-7. below:
1. For every tuple (id) tD0 = Rj(ā), the fact R′j(t, ā).

2. For each MD φj : R1[X1] ≈ R2[X2] → R1[A1]
.
=

R2[A2], the program rules:
Matchφj(T1, X̄1, Y1, T2, X̄2, Y2) ∨

NotMatchφj(T1, X̄1, Y1, T2, X̄2, Y2) ←
R′1(T1, X̄1, Y1), R′2(T2, X̄2, Y2), X̄1 ≈ X̄2, Y1 6= Y2.

OldVersionRi(T1, Z̄1) ← R′i(T1, Z̄1), R′i(T1, Z̄
′
1),

Z̄1 � Z̄′1, Z̄1 6= Z̄′1. (i = 1, 2)

← NotMatchφj(T1, Z̄1, T2, Z̄2),

not OldVersionR1(T1, Z̄1),not OldVersionR2(T2, Z̄2).

In these rules, the X̄is are lists of variables corresponding to
lists of attributes on the LHS of the MD, whereas the Yis are
single variables corresponding to the attribute on the RHS
of the MD. Also, the Z̄is are lists of variables corresponding
to all attributes in a tuple. We use this notation to make the
association with attributes or lists thereof in MDs easier.

These rules are used to enforce the MDs whenever the
necessary similarities hold for two tuples. The first rule in 2.
specifies that in that case, a matching may or may not take
place, but the latter is acceptable only if one of the involved
tuples is used for another matching, and replaced by a newer
version. This is enforced using the third rule, actually a pro-
gram constraint, that has the effect of filtering out stable
models where the conjunction in its body becomes true.

383



More precisely, predicate OldVersionRi contains differ-
ent versions of every tuple (id) in relationRi which has been
replaced by a newer version (during the ER process). For
each tuple identifier t there could be many atoms of the form
R′i(t, ā) corresponding to different versions of the tuple as-
sociated with t that represent the evolution of the tuple dur-
ing the enforcement of MDs. The second rule specifies when
an atom R′i(t, ā) for a tuple identifier t has been replaced by
a newer version R′i(t, ā

′), with ā � ā′, due to a matching.
The program constraint in 2. above states that if: (a) we

have “live”, never replaced versions of two tuples (ids) t1
and t2 from relations R1 and R2, respectively, (b) the sim-
ilarity conditions holds for them according to an MD, and
(c) both are not matched (together or with some other tu-
ples), then the model should be rejected. That is, t1 and t2
have to be either matched together, or be replaced by newer
versions (becoming unavailable). This constraint enforces at
least one match for a tuple that satisfies some match condi-
tion.

For convenience, below we refer to the various atoms as-
sociated with a given tuple identifier t as versions of the tu-
ple identifier t.

When the two predicates appearing in φj are the same,
say R1, the first rule becomes symmetric w.r.t. every two
atoms R′1(t1, ā1) and R′1(t2, ā2) that satisfy the body of the
rule. We need to make sure that if the matching takes place
for these two tuples, then both Matchφj

(t1, ā1, t2, ā2) and
Matchφj

(t2, ā2, t1, ā1) exist. Thus, for every such MD, we
need a rule of the following form

Matchφj(T2, X̄2, Y2, T1, X̄1, Y1) ←
Matchφj(T1, X̄1, Y1, T2, X̄2, Y2).

3. Rules to insert new tuples into R1, R2, as a result of
enforcing φj (Mj stands for the MF for the RHS of φj):

R′1(T1, X̄1, Y3) ← Matchφj(T1, X̄1, Y1, T2, X̄2, Y2),

Mj(Y1, Y2, Y3).

R′2(T2, X̄2, Y3) ← Matchφj(T1, X̄1, Y1, T2, X̄2, Y2),

Mj(Y1, Y2, Y3).

4. For every two matchings applicable to different versions
of a tuple with a given identifier, we record in Prec the rel-
ative order of the matchings. The matching applied to the
smaller version of the tuple w.r.t. � has to precede the other.
Prec(T1, Z̄1, T2, Z̄2, T1, Z̄

′
1, T3, Z̄3) ←

Matchφj(T1, Z̄1, T2, Z̄2),Matchφk(T1, Z̄
′
1, T3, Z̄3),

Z̄1 � Z̄′1, Z̄1 6= Z̄′1.

We need similar rules (four in total) for the cases where
the common tuple identifier variable T1 appears in different
components of the two Match predicates.
5. Each version of a tuple identifier can participate in more
than one matching only if at most one of them changes
the tuple. For every two matchings applicable to a single
version of a tuple identifier, we record in Prec the relative
order of the two matchings. The matching that produces
a new version for the tuple has to come after the other
matching. If both of the matchings do not produce a new
version of the tuple, they can be applied in any order,

making unnecessary to record their relative order in Prec.

Prec(T1, X̄1, Y1, T2, X̄2, Y2, T1, X̄1, Y1, T3, X̄3, Y3) ←
Matchφj(T1, X̄1, Y1, T2, X̄2, Y2),

Matchφk(T1, X̄1, Y1, T3, X̄3, Y3),Mk(Y1, Y3, Y4), Y1 6= Y4.

This rule says that, in case (a ground version of) a tuple
〈T1, X̄1, Y1〉 participates in two matching, via MDs φj and
φk, and the tuple changes according to φk, as captured by
the last two body atoms that use φk’s matching functionMk,
then the matching via φk must come after the matching via
φj . By this same rule, the reverse Prec-order could also be
true, but we will disallow having both by imposing condi-
tions on Prec, making it a partial order (see below). By the
first rule(s) in 2. above, a stable model can always choose be-
tween doing a matching or not, and then choosing between
one of the two possible Prec-orders.

As in rule 4. above, we need four rules of this form, for
different possible appearances of the common variable T1.
This rule disallows two matchings that produce incompara-
ble versions of a tuple w.r.t.�, because Prec is antisymmet-
ric (due to rules 6. below). As a consequence, every two
matchings applicable to a given tuple identifier will fire one
of the two rules 4. or 5., and they will have a relative order
recorded in Prec, unless they both do not change the tuple.
6. Rules for making Prec a reflexive, antisymmetric and
transitive relation, respectively:

Prec(T1, Z̄1, T2, Z̄2, T1, Z̄1, T2, Z̄2) ←
Matchφj(T1, Z̄1, T2, Z̄2).

← Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′
1, T3, Z̄3),

Prec(T1, Z̄
′
1, T3, Z̄3, T1, Z̄1, T2, Z̄2),

(T1, Z̄1, T2, Z̄2) 6= (T1, Z̄
′
1, T3, Z̄3).

← Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′
1, T3, Z̄3),

Prec(T1, Z̄
′
1, T3, Z̄3, T1, Z̄

′′
1 , T4, Z̄4),

not Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′′
1 , T4, Z̄4).

Notice that we do not use Prec in body conditions. In con-
sequence, the main rules around it are the last two program
constraints. They are used to to eliminate instances (models)
that result from illegal applications of MDs.
7. Finally, rules to collect in Rc

i the latest version of each
tuple for every predicate Ri ; they are used to form the clean
instances.

Rci (T1, Z̄1) ← R′i(T1, Z̄1), not OldVersionRi(T1, Z̄1).

Notice that the rules in 2. above are the only ones that de-
pend on an essential manner on the particular MDs at hand.
Rules 1. are just the facts that represent the initial, underly-
ing database. All the other rules are basically generic, and
could be used by any cleaning program, as long as there is
a correspondence between the predicates Matchϕ with the
MDs ϕ, for which the former have subindices for the latter.

Notice that, given a relational schema and a set of MDs
on it, a program like the one above can be automatically
created, and can be used for that schema and MDs. Only the
facts of the program depend on the actual relational instance
at had. An alternative to our approach would be to build a
single program that can be used with any schema and finite

384



set of MDs associated to it. Such a program is bound to
be much more complex than those, specific but still generic,
that we are proposing here.

Example 3. Consider relation R(A,B), and set Σ with:

φ1 : R [A] ≈ R [A]→ R [B]
.
= R [B],

φ2 : R [B] ≈ R [B]→ R [B]
.
= R [B].

Assume that exactly the following similarities hold: a1 ≈
a2, b2 ≈ b3; and the MFs are as follows:

MB(b1, b2, b12),
MB(b2, b3, b23),
MB(b1, b23, b123).

R(D0) A B
t1 a1 b1
t2 a2 b2
t3 a3 b3

Enforcing Σ on D0 according to Definition 2 results in two
chase sequences, each enforcing the MDs in a different or-
der, and two final stable clean instances D1 and D′2.

D0 A B
t1 a1 b1
t2 a2 b2
t3 a3 b3

⇒φ1

D1 A B
t1 a1 b12
t2 a2 b12
t3 a3 b3

D0 A B
t1 a1 b1
t2 a2 b2
t3 a3 b3

⇒φ2

D′1 A B
t1 a1 b1
t2 a2 b23
t3 a3 b23

⇒φ1

D′2 A B
t1 a1 b123
t2 a2 b123
t3 a3 b23

The cleaning program Π(D0,Σ) has the following rules:
(skipping rules 6.)

1. R′(t1, a1, b1). R′(t2, a2, b2). R′(t3, a3, b3).

2. Matchφ1(T1, X1, Y1, T2, X2, Y2) ∨
NotMatchφ1(T1, X1, Y1, T2, X2, Y2) ←
R′(T1, X1, Y1), R′(T2, X2, Y2), X1 ≈ X2, Y1 6= Y2.

Matchφ2(T1, X1, Y1, T2, X2, Y2) ∨
NotMatchφ2(T1, X1, Y1, T2, X2, Y2) ←
R′(T1, X1, Y1), R′(T2, X2, Y2), Y1 ≈ Y2, Y1 6= Y2.

Matchφ1(T1, X1, Y1, T2, X2, Y2) ←
Matchφ1(T2, X2, Y2, T1, X1, Y1). (similarly for Matchφ2 )

OldVersionR(T1, Z̄1) ← R′(T1, Z̄1), R′(T1, Z̄
′
1),

Z̄1 � Z̄′1, Z̄1 6= Z̄′1.

← NotMatchφ1(T1, X1, Y1, T2, X2, Y2),

not OldVersionR(T1, X1, Y1),

not OldVersionR(T2, X2, Y2). (similarly for NotMatchφ2 )

3. R′(T1, X1, Y3) ← Matchφ1(T1, X1, Y1, T2, X2, Y2),

MB(Y1, Y2, Y3).

R′(T1, X1, Y3) ← Matchφ2(T1, X1, Y1, T2, X2, Y2),

MB(Y1, Y2, Y3).

4. Prec(T1, X1, Y1, T2, X2, Y2, T1, X1, Y
′
1 , T3, X3, Y3) ←

Matchφj(T1, X1, Y1, T2, X2, Y2),

Matchφk(T1, X1, Y
′
1 , T3, X3, Y3),

Y1 � Y ′1 , Y1 6= Y ′1 . (with 1 ≤ j, k ≤ 2)

5. Prec(T1, X1, Y1, T2, X2, Y2, T1, X1, Y1, T3, X3, Y3) ←
Matchφj(T1, X1, Y1, T2, X2, Y2),

Matchφk(T1, X1, Y1, T3, X3, Y3), MB(Y1, Y3, Y4),

Y1 6= Y4. (with 1 ≤ j, k ≤ 2)
7. Rc(T1, X1, Y1) ← R′(T1, X1, Y1),

not OldVersionR(T1, X1, Y1).

Program Π(D0,Σ) has two stable models, whose Rc-atoms
are shown below:
M1 = {..., Rc(t1, a1, b12), Rc(t2, a2, b12), Rc(t3, a3, b3)},
M2 = {..., Rc(t1, a1, b123), Rc(t2, a2, b123),

Rc(t3, a3, b23)}.
From them we can read off the two clean instances D1, D′2
for D0 that were obtained from the chase. The stable mod-
els of the program can be computed using the DLV system
[Leone et al. 2006]. The DLV code for this example can be
found in [Bahmani et al. 2011, appendix B]. �

Theorem 1. There is a one-to-one correspondence between
C(D0,Σ) and the set SM (Π(D0,Σ)) of stable models of
the cleaning program Π(D0,Σ). More precisely, the clean
instances for D0 w.r.t. Σ are exactly the restrictions of the
elements of SM (Π(D0,Σ)) to schemaRc. �

The restriction of the stable models to the relational
schema Rc is due to the fact that they also have extensions
for the auxiliary predicates used in the programs.
Proof sketch. The proof of the theorem consists of two parts.
1. We need to show that for every (D0,Σ)-clean instanceDk

(obtained through a chase as in Definition 2), we can con-
struct a set of atoms SDk

that is a stable model for the logic
program Π(D0,Σ). Let D1, . . . , Dk−1 be the instances in
the chase sequence that leads to clean instance Dk. The tu-
ples in these instances will give us different versions of each
tuple identifier that come to existence due to the matchings,
and hence we can populate predicates R′i, OldVersionRi ,
and Rci of the logic program. The MDs enforced in this
chase, the relative order of enforcing them, and the tuples in-
volved in each MD application will let us populate the predi-
cates Matchφj

, NotMatchφj
, and Prec. Then, we show that

the set SDk
consisting of all these ground atoms satisfies the

program and it is a minimal model.
2. We need to show that, for every stable model S of the
program Π(D0,Σ), we can construct a (D0,Σ)-clean in-
stance DS . To construct DS , we let tDS = ā for every
relation Ri and every tuple identifier t of relation Ri such
that Rci (t, ā) ∈ S. Then using the Matchφj atoms in S
and also the relative order of these matchings in Prec, we
identify which MDs are applied to which tuples and in what
order; and therefore we can construct the sequence of in-
stances D1, . . . , Dk that reflect enforcing these MDs in the
same order imposed by Prec. Then, we show that this is ac-
tually a valid chase sequence, and the resulting instance Dk

is a stable instance that is equal to DS . �

4 Query Answering
We can use the cleaning program Π(D0,Σ) to compute the
clean answers to a query Q posed to D0, as defined in Sec-
tion 2. The clean answers were defined by taking into ac-
count the underlying lattices, as the glb of all the sets of

385



answers that can be obtained by evaluating the query on a
clean instance. This is not the same as certain (or skeptical)
answers, i.e. the set-theoretic intersection of all the answers
from every clean instance, and therefore it is not equivalent
to skeptical answer of the logic program. In this section
we provide a mechanism for computing clean answers while
still using skeptical query answering.

Given an FO query Q(x1, . . . , xn), with free variables
standing for attributes A1, . . . , An of R, and defined by a
formula ϕ(x̄), (with x̄ = x1, . . . , xn), a non-disjunctive and
stratified query program Π(Q) can be obtained from ϕ, us-
ing a standard transformation [Lloyd 1987]. It contains an
answer predicate AnsQ(x̄) to collect the answers to Q, and
rules defining it, of the form AnsQ(x̄) ← B(x̄′), where the
Bs are conjunctions of literals (i.e. atoms or negations not A
thereof). The R-atoms in Q, with R ∈ R, are replaced in
Π(Q) by Rc-atoms.

We can obtain reduced answer sets (cf. Section 2) by
adding two new rules to Π(Q):1

AnsrQ(x̄) ← AnsQ(x̄), not DominatedQ(x̄).

DominatedQ(x̄) ← AnsQ(ȳ), x̄ � ȳ, x̄ 6= ȳ.

The stable models S of Π(D0,Σ,Q) := Π(D0,Σ) ∪
Π(Q) are the stable models of Π(D0,Σ) expanded with
extensions AnsrQ(S) for predicate AnsrQ. Those exten-
sions, as database instances, are already reduced. Assume
that SM (Π(D0,Σ,Q)) = {S1, . . . , Sm}. It holds that
CleanD0

Σ (Q) = glbv{AnsrQ(Si) | i = 1, . . . ,m} = Redv(
{glb�{ā1, . . . , ām} | āi ∈ AnsrQ(Si), i = 1, . . . ,m}), where
Redv produces the reduced version of a set.

Now we show how the program Π(D0,Σ,Q) can be mod-
ified, so that the clean answers to queryQ can be obtained by
running the program under the skeptical semantics. Given
AnsrQ(Si), i.e. the set of answers to Q from the clean in-
stance corresponding to the stable model Si, we define its
downward expansion by:
AnsexpQ (Si) := {b̄ | b̄ � ā, for some ā ∈ AnsrQ(Si)}.

AnsexpQ (Si) contains all the atoms in AnsrQ(Si) and every-
thing below w.r.t. the � lattice. Since AnsrQ(Si) is finite,
AnsexpQ (Si) is also finite, because we consider finite lattices.

Proposition 1. Let D0 be an instance, Σ be a set of
MDs, and Q be a query. Let SM (Π(D0,Σ,Q)) =
{S1, . . . , Sm}, then glbv{AnsrQ(Si) | i = 1, . . . ,m} =

Redv(
⋂
{AnsexpQ (Si) | i = 1, . . . ,m}). �

As a consequence of this result, the clean answers can be
obtained by taking the (set-theoretic) intersection of all sets
AnsexpQ (Si) (followed by a final reduction) instead of taking
the glb over all sets AnsrQ(Si). This can be achieved directly
through Π(D0,Σ,Q) by adding to it the following rule:

AnsexpQ (ȳ)← AnsrQ(x̄), ȳ � x̄, DomL(ȳ). (2)
Here, DomL(·) is stands for the cartesian product of the fi-
nite domains DomA for the local lattices LA.

The new rule will expand each stable model by adding
finitely many AnsexpQ (b̄) atoms for every AnsrQ(ā) atom,

1Notice that� in the second rule is defined in terms of the built-
in relations MA.

where b̄ � ā. The values for ȳ are taken from DomL. Then
each stable model will contain the atoms in the glb of all sta-
ble models, restricted to the AnsexpQ predicate, and therefore
the intersection of all stable models will contain the glb. In
this way we can obtain the clean answers to query Q.

We have just described a way to compute, by means of
the downward expanded programs, the clean answers to a
query Q. In this way we avoid a separate and off-line gath-
ering of query answers from each of the stable models for
later combination via the glb. The manifold programs (MF)
[Faber and Woltran 2011] offer another alternative for using
a single ASP for the whole task. Here we will just sketch the
way they can be used in this direction, actually in combina-
tion with an extension of ASP with sets and unions thereof
[Calimeri et al. 2009]. More details on this extension will
be given in Section 6.1.

Given a program Π, an MF program for Π, say MF (Π),
extends Π by collecting brave or skeptical atomic conse-
quences from what would have been Π -now a part of
MF (Π)- and using them for further processing by MF (Π).

In our case, properly marked brave consequences from
Π(D0, Σ, Q) of the form AnsQ(ā)S , with S ∈ SM (Π(D0,
Σ, Q)), can be further used by MF (Π(D0,Σ,Q)) to com-
pute the glbs. For this, MF (Π(D0,Σ,Q)) includes rules of
the form (we give a high-level description of them):

glb�(x̄, U) ← U = #Union({ȳ}, U ′), glb�(ū, U ′),
x̄ = glbt�(ū, ȳ).

glb�(x̄, {x̄}) ← Dom(x̄).

PAnsQ(x̄) ← glb�(x̄, {x̄1, . . . , x̄m}),AnsQ(x̄1)S1,

. . . ,AnsQ(x̄m)Sm.

DominatedpQ(x̄) ← PAnsQ(ȳ), x̄ � ȳ, x̄ 6= ȳ.

CAns(x̄) ← PAnsQ(x̄), not DominatedpQ(x̄).

Here, glb�(x̄, U) is a binary predicate that says that tuple x̄
is the glb� of set U ; and is defined by recursion and associa-
tivity: glb�({ȳ} ∪ U ′) = glbt�(ȳ, glb�(U

′)). glbt�(ū, ȳ) is a
function that produces the glb� of two tuples. The first two
rules use the extension of ASP with sets and operations with
them (as in Section 6.1). They recursively compute the glb
of a set. The domain predicate, Dom, is associated to the
cartesian product of the finite attribute domains involved.

The third rule computes the pre-answers by combina-
tion into the glb x̄ of braves answers obtained from the
AnsQ(x̄i)

Si . The next rule computes the dominated an-
swers. The last one computes clean answers by discarding
pre-answers that are dominated by other pre-answers. No-
tice that the “manifold part” of the program above is used to
form a set of values for a higher-level aggregation. The sets
and the aggregation do no appear in the properly manifold
part.

5 Analysis of Cleaning Programs
In this section we investigate the properties of the cleaning
programs in terms of their syntactic structure, and by doing
so, shedding some light of their expressive power and com-
putational complexity. At the same time, this analysis will
provide upper-bounds for natural computational problems in

386



relation to entity resolution via MDs. In this direction, we
first review the main classes of Datalog programs, and some
known complexity results for them.

With Datalog∨,not,s, we denote the subclass of programs
in Datalog∨,not that have stratified negation [Eiter and Got-
tlob 1995]. If a program is stratified, then its stable models
can be computed bottom-up by propagating data upwards
from the underlying extensional database (that corresponds
to the set of facts of the program), and making sure to mini-
mize the selection of true atoms from the disjunctive heads.
Since the latter introduces a form of non-determinism, a pro-
gram may have several stable models. If the program is
non-disjunctive, there is a single stable model, and it can be
computed in polynomial time in the size of the extensional
database.

Datalog∨,not extends the classes Datalog , Datalognot,s,
and Datalognot of non-disjunctive, classical Datalog pro-
grams, Datalog programs with stratified negation, and Dat-
alog programs with negation, resp. [Abiteboul, Hull, and
Vianu 1995; Ceri, Gottlob and Tanca 1989]. Datalog∨,not,s

extends Datalognot,s. Programs in Datalog and Datalognot,s

have a single stable model that can be computed in a bottom-
up manner starting from the extensional database (EDB), i.e.
from the set of facts. In general, disjunctive Datalog pro-
grams and those in Datalognot (without stratified negation)
may have multiple stable models.

The (likely) higher expressive power of Datalog∨,not

w.r.t. Datalog and Datalognot,s is reflected in, or caused
by, the (probable) difference in computational complexity.
The problem of deciding if a ground atom A is entailed by a
program Π ∈ Datalog∨,not , i.e. if A is true in all the stable
models of Π, is ΠP

2 -complete in the size of the EDB. This
decision problem is also referred to as skeptical (cautious)
query answering. The same problem can be solved in poly-
nomial time for programs in Datalog and Datalognot,s (cf.
[Dantsin et al. 2001] for more details).

Proposition 2. The cleaning programs Π(D,Σ) belong to
the class Datalog∨,not,s. �

As a consequence of this result, the stable models of the
programs introduced in Section 3.1 can be obtained with a
bottom-up computation, which is in line with the chase pro-
cedure of Definition 2, that defines the clean instances.

It is worth noticing that the data complexity of skeptical
query evaluation for programs in Datalog∨,not,s is the same
as for programs with unstratified negation, i.e. for the class
Datalog∨,not, i.e. ΠP

2 -complete [Eiter and Gottlob 1995;
Dantsin et al. 2001; Gelfond and Leone 2002].

Repair programs for CQA under ICs, also belong to the
class Datalog∨,not,s [Caniupan and Bertossi 2010]; and their
relatively high expressive power is really needed to spec-
ify database repairs, because the intrinsic data complexity
of CQA is provably ΠP

2 -complete (cf. [Bertossi 2011] for a
survey of complexity results in CQA). In the case of clean-
ing programs two natural questions arise. First, whether they
provide an expressive power that exceeds the one needed for
clean query answering. Secondly, whether we can obtain an
informative upper bound on the complexity of clean query
answering.

These questions are closely related to the properties of the
cleaning programs as determined by their syntactic struc-
ture. Actually, it turns out that their syntactic structure can
be simplified. More precisely, a cleaning program can be
transformed into one that that is non-disjunctive. To under-
take this task, we need some terminology.

Let Π ∈ Datalog∨,not, and Πg be its ground version.
The dependency graph, DG(Πg), is a directed graph whose
nodes are literals of Πg . There is an arc from L1 to L2 iff
there is a rule in Πg where L1 appears positive in the body
and L2 appears in the head. Π is head-cycle free (HCF) iff
DG(Πg) has no cycle through two literals that belong to the
head of a same rule [Ben-Eliyahu and Dechter 1994].

HCF programs in Datalog∨,not can be transformed into
equivalent non-disjunctive programs, i.e. with the same sta-
ble models [Ben-Eliyahu and Dechter 1994]. That is, they
can be written as programs in Datalognot. We have:
Proposition 3. Every cleaning program Π(D0,Σ) is HCF,
and hence can be transformed into an equivalent non-
disjunctive program in Datalognot. �

The transformation is standard. Each disjunctive rule gen-
erates as many non-disjunctive rules as atoms in the head, by
keeping one at a time in the head, and moving the others in
negated form to the body.

In general, for a HCF program, checking if a set of atoms
is a stable model can be done in polynomial time [Gelfond
and Leone 2002]. However, checking if a set of atoms is
contained in a stable model becomes an NP -complete prob-
lem [Ben-Eliyahu and Dechter 1994]. In our case, checking
if an instanceD′ is a clean instance (forD0 and Σ), amounts
to checking if D′ is contained in stable model of Π(D0,Σ),
since the stable models also contain atoms other than R-
atoms. Equivalently, D′ does not contain the “cleaning-
history” (chase steps) as represented by those other atoms in
a stable model. That cleaning-history seems to be necessary
to check if D′ is a clean instance (just checking stability, i.e.
if (D′, D′) |= Σ is the easy part). In consequence, directly
from Proposition 3 we can only obtain that checking if an
instance is a clean instance belongs to NP .

The data complexity of skeptical query answering from
program in Datalognot is co-NP -complete [Dantsin et al.
2001]. In consequence, the decision problem of skeptical
query answering from Π(D0,Σ) belongs to the class co-NP .
From this result and Theorem 1, we obtain
Proposition 4. For a set Σ of MDs, and a FO query Q(x̄),
deciding if a tuple c̄ is a clean answer to Q from an instance
D0 belongs to the class co-NP (in the size of D0).2 �

This result should be contrasted with the co-NP -complete
data complexity of deciding clean query answers presented
in [Bertossi, Kolahi and Lakshmanan 2011, Theorem 3].
We have reobtained the membership of co-NP via cleaning
programs, but, more importantly, we can conclude that our
cleaning programs are not overkilling the problem of clean
query answering, and that we need all the expressive power
that they provide.

2To be precise, we have to use program Π(D0,Σ,Q) expanded
with rule (2), which actually adds to D0 the extension of DomL.
However, the latter could be left as a fixed parameter.

387



The proof of co-NP -hardness for clean query an-
swering in [Bertossi, Kolahi and Lakshmanan 2011]
can be easily modified to prove that certain query an-
swering [Imielinski and Lipski 1984], i.e. truth in all
clean instances (as opposed to taking the glb), is also
co-NP -hard. This result, combined with the reduction pro-
vided by Theorem 1, tells us that, among the HCF programs
in Datalog∨,not, the cleaning programs are hard.
Proposition 5. Skeptical query answering from cleaning
programs is co-NP -complete. �

It is possible to obtain a non-disjunctive, stratified clean-
ing program when matching functions are similarity pre-
serving or MDs are non-interacting. In these cases, the
cleaning program has a single stable model, computable in
polynomial time, which confirms via cleaning programs a
similar result in [Bertossi, Kolahi and Lakshmanan 2011].

6 Declarative Swoosh ER: The Union Case
Swoosh, a generic approach to entity resolution [Benjel-
loun et al. 2009], considers a general match function,
Match(·, ·), taking values true or false; and a general merge
function, µ (that would be the matching function of the pre-
vious sections). They mostly work at the record level, but
the approach can be presented in terms of database tuples
[Bertossi, Kolahi and Lakshmanan 2011, section 7].

More precisely, we consider a finite set Rec of tuples, i.e.
ground atoms of the form R(ā), for a relational predicate
R(A1, . . . , An), where the Ai are attributes, with domains
DomAi

. For r1, r2 ∈ Rec, Match(r1, r2) takes the value
true if the r1, r2 match; otherwise, false. In the former case,
the actual matching is the tuple µ(r1, r2) ∈ Rec.

When Match and µ have the ICAR properties (idem-
potency, commutativity, associativity and representativity),
there is a natural domination partial order on Rec, the
merge domination: r1 ≤s r2 iff Match(r1, r2) = true and
µ(r1, r2) = r2 [Benjelloun et al. 2009], as we did in Sec-
tion 2. Similarly, domination can be extended to a partial
order �S on database instances. Given an instance D, its
entity resolution is defined as the (unique) instance D′ that
satisfies the conditions: (a) D′ ⊆ D̄. (b) D̄ �s D′. (c) No
strict subset of D′ satisfies the first two conditions [Benjel-
loun et al. 2009]. Here, D̄ is the merge closure of D, i.e.
the smallest set of tuples such that includes D, and for every
r1, r2 ∈ D̄, when M(r1, r2) = true, also µ(r1, r2) ∈ D̄.

There is a particular, but still common and broad, class
of match and merge functions that is based on union of val-
ues. This is the union-case for Swoosh (UC Swoosh), on
which we concentrate in the rest of this section. In it, at-
tribute values are represented as sets of finer granularity val-
ues, like objects. If S1, S2 are (sets of) values for attribute
A, they are merged via a local merge function µA defined
by µA(S1, S2) := S1 ∪ S2. The “global” merge function
µ can be defined in terms of the local merge functions µA.
The match function can also be defined in terms of local,
component-based match functions. The resulting merge and
match functions satisfy the ICAR properties [Benjelloun et
al. 2009; Bertossi, Kolahi and Lakshmanan 2011].
Example 4. Consider the instance D below. Attribute
A takes as values finite sets of elements from the domain

of an underlying, lower-level attribute A. E.g. a1, a2 ∈
DomA, {a1, a2} ∈ DomA. (Similarly for attribute B.)
Two tuples match when the values for attribute A match,
which happens when there is a pair of values in the A-sets
that match: For values S1, S2 for A, MatchA(S1, S2) holds
when there are v1 ∈ S1, v2 ∈ S2 with MatchA(v1, v2) =
true, where MatchA is a lower-level match function.

R(D) A B
{a1} {b1}
{a2} {b2}
{a3} {b3}

Assume MatchA(a1, a2),
MatchA(a2, a3) are true.
The following is an ER
process starting from D:

R(D′) A B
{a1, a2} {b1, b2}
{a2, a3} {b2, b3}

⇒

ER(D) A B
{a1, a2, a3} {b1, b2, b3}

Here, we are not using tuple identifiers and we are also get-
ting rid of dominated tuples, as Swoosh does. However, if
we had tuple identifiers, keeping them along the ER pro-
cess, the final instance above would have had three identical
tuples, modulo the tuple id. �

6.1 Special cleaning programs for UC-Swoosh
In this section we use ASPs for the declarative specification
of UC Swoosh. In this union case, an attribute, say A, can
take as a value a whole, finite set of values for an under-
lying, lower-level attribute, A. Consequently, in this case
the ASPs have to be able to represent sets and sets opera-
tions, such as set union. For this purpose we use an exten-
sion of disjunctive logic programs with stable model seman-
tics that supports function terms and set terms, with built-
in functions for their manipulation [Calimeri et al. 2008;
Calimeri et al. 2009].

In this extension of ASP, basic terms are constants and
variables, and complex terms, like functional, list and set
terms are inductively defined: for terms t1, ..., tn: 1. A
functional term is of the form f(t1, ..., tn), where f is a
function symbol. 2. A list term has any of the forms: (a)
[t1, ..., tn]; (b) [h|t], where h is a term, and t is a list term.
3. A set term is of the form {t1, ..., tn}, where the ti do not
contain any variables. Some functional terms, called built-
in functions, have predefined meaning. They are prefixed
with #, and we use them below, for sets, lists, membership,
and union [Calimeri et al. 2009].

Given a database instance D, the swoosh-program
ΠUCS(D) that follows captures UC Swoosh. It contains the
rules 1.-4. below:
1. For every atom R(s̄) ∈ D, ΠUCS(D) contains a fact of
the form R′(s̄). For every attribute A of R, that takes finite
sets of values from an underlying domain DomA, facts of the
form MatchA(a1, a2), with a1, a2 ∈ DomA (cf. Example 4).
2. Two tuples in R match whenever for attributes Ai of R,
1 ≤ i ≤ n, there exists a pair of values, one in each of the
set values for Ai that match. Hence, for every attribute Ai,
the rule:
R′(#Union(S̄1, S̄2)) ← R′(S̄1), R′(S̄2),#Member(A1, S

1
i )

#Member(A2, S
2
i ),MatchAi(A1, A2), S̄1 6= S̄2.

388



Here, S̄1 = [S1
1 , . . . , S

1
n], a list of variables; similarly

for S̄2. R′(#Union(S̄1, S̄2)) is an abbreviation for the
componentwise union, namely: R′(#Union(S1

1 , S
2
1), . . . ,

#Union(S1
n, S

2
n)). The S1

j , S
2
j , A1, A2 are variables,

whereas in Ai, the attribute is fixed. Notice that these rules
both specify the match function based on the elements of the
set values for attributes, and also the result of the merge.
3. A rule defining tuple domination:

Dominated(S̄1) ← R′(S̄1), R′(S̄2),
#Union(S̄1, S̄2) = S̄2, S̄1 6= S̄2.

4. A predicate that collects the result of the ER process:

Er(S̄) ← R′(S̄), not Dominated(S̄).

The facts in 1. correspond to the elements of the initial
instance, and the pairs of low-level attributes values that
match. The merge closure of the instance is obtained with
rules in 2. By the properties of match and merge functions
for the UC, dominated tuples in the merge closure of D can
be eliminated via merge domination, which is specified by
rule 3. Rule 4. collects those tuples of the merge closure D̄
that are not dominated.

It is easy to verify that the program ΠUCS(D) is strati-
fied. Then, it has a single stable model that can be computed
bottom-up in polynomial time in the size of D. This model,
restricted to predicate Er , coincides with the ER procedu-
rally computed in [Benjelloun et al. 2009], where it was
shown that the ICAR properties make the ER computation
tractable. In consequence, our declarative approach to UC
Swoosh is in line with the results in [Benjelloun et al. 2009].

Example 5. (example 4 continued) The specific rules are:

1. R′({a1} , {b1}). R′({a2} , {b2}). R′({a3} , {b3}).
MatchA(a1, a2). MatchA(a2, a3).

2. R′(#Union(S1
1 , S

2
1),#Union(S1

2 , S
2
2)) ← R′(S1

1 , S
1
2),

R′(S2
1 , S

2
2),#Member(A1, S

1
1),#Member(A2, S

2
1),

MatchA(A1, A2), (S1
1 , S

1
2) 6= (S2

1 , S
2
2).

In this case we are matching via attribute A. If we also used
B, we would have a similar, additional rule for it.

3. Dominated(S1
1 , S

1
2) ← R′(S1

1 , S
1
2), R′(S2

1 , S
2
2),

(#Union(S1
1 , S

2
1),#Union(S1

2 , S
2
2)) = (S2

1 , S
2
2),

(S1
1 , S

1
2) 6= (S2

1 , S
2
2).

4. Er(S1, S2) ← R′(S1, S2), not Dominated(S1, S2).

This program, containing set terms and operations, can be
run with DLV-Complex [Calimeri et al. 2009].3 �

The answer set programs for UC Swoosh we just intro-
duced are rather ad hoc for this case. However, it is possible
to obtain them as special cases of our general ASP approach
to ER via MDs developed in Section 3.1 (c.f. [Bahmani et al.
2011, appendix C]). The connection is made possible by the
treatment of the UC Swoosh as a special case of MD-based
ER developed in [Bertossi, Kolahi and Lakshmanan 2011].

3http://www.mat.unical.it/dlv-complex. Cf. [Bahmani et al.
2011, appendix B] for the DLV code.

7 Conclusions
In this work we have introduced and developed a declarative
approach to ER. It is based on MDs, that can be used to
specify details related to ER objectives, like matchings of
attribute values when other values are similar. Our work
provides a declarative, model-theoretic specification of the
process of enforcement of those MDs. The intended clean
instances obtained from a dirty instance, become the stable
models of a specification given by a cleaning ASP.

We provided a declarative specification for a usually pro-
cedural process. It can be executed for ER and clean query
answering using a standard ASP solver. Our focus has been
on fundamental questions, e.g. required expressive power,
complexity issues, and capturing of clean instances. We
have made important steps towards those goals, and created
the basis for further improvements, e.g. for clean query an-
swering.

Our ASPs can be automatically generated from MDs,
and run on ASP solvers. Indeed, we used DLV and DLV-
Complex. The programs run and terminate as expected. Our
current solution is correct and executable, but there is room
for further optimizations.

Optimizations can be of two kinds, “methodological” and
“program-related”. In the former category we find, e.g. the
development of a more efficient alternative to our approach
to clean query answering that computes the glb via rule (2),
which involves the free cartesian product of the attribute do-
mains. In this direction, we mentioned “manifold programs”
just as a conceptually interesting approach to investigate. In
the second category of optimizations we find possible trans-
formations of our ASPs that may lead to more efficient ex-
ecutions. Optimizations of this kind have been developed
for repair programs for CQA [Caniupan and Bertossi 2010;
Eiter et al. 2008].

We should emphasize that data cleaning and CQA are dif-
ferent problems. For the former, the main goal is to com-
pute a clean instance, as determined by MDs. For the latter,
the main goal is obtaining semantically correct query an-
swers. Furthermore, MDs are not (static) ICs. In principle,
we could see clean instances as repairs, treating MDs sim-
ilarly to static FDs. However, none of the existing repair
semantics captures the matchings based on MDs with MFs.

We are not aware of any other declarative, ASP-based ap-
proach to ER. It should be mentioned that in [Arasu, Ré, and
Suciu 2009], Datalog is used for identifying groups of tuples
that could be merged. However, they do not do the merging
(a main contribution in our approach) or use MDs.

Interesting extensions and applications of our work are
discussed in [Bahmani et al. 2011, section 7], e.g. to:
(a) virtual data integration systems, (b) combination of ER
and database repairs, and (c) Swoosh with negative rules
[Whang, Benjelloun and Garcia-Molina 2009].
Acknowledgements: Research funded by NSERC Discovery,
NSERC/IBM CRDPJ/371084-2008, and the BIN NSERC Strate-
gic Network on BI (ADC05). We are grateful to Wolfgang Faber,
Francesco Calimeri, Paul Fodor, Francesco Ricca, and Alex Brik
for valuable information on extensions of ASP. We appreciate the
excellent feedback received from anonymous reviewers.

389



References
Abiteboul, S., Hull, R. and Vianu, V. Foundations of
Databases. Addison-Wesley, 1995.
Arasu, A., Ré, Ch. and Suciu, D. Large-Scale Deduplication
with Constraints Using Dedupalog. Proc. ICDE 2009, pp.
952-963.
Arenas, M., Bertossi, L. and Chomicki, J. Consistent Query
Answers in Inconsistent Databases. Proc. PODS 1999, pp.
68-79.
Arenas, M., Bertossi, L. and Chomicki, J. Answer Sets
for Consistent Query Answering in Inconsistent Databases.
Theory and Practice of Logic Programming, 2003, 3(4-
5):393-424.
Bahmani, Z., Bertossi, L., Kolahi, S. and Lakshmanan, L.
Declarative Entity Resolution via Matching Dependencies
and Answer Set Programs (Extended Version). 2001.
http://www.scs.carleton.ca/∼bertossi/papers/extZeinab11.pdf

Barcelo, P., Bertossi, L. and Bravo, L. Characterizing and
Computing Semantically Correct Answers from Databases
with Annotated Logic and Answer Sets. In Semantics in
Databases, Springer LNCS 2582, 2003, pp. 7-33.
Ben-Eliyahu, R. and Dechter, R. Propositional Semantics for
Disjunctive Logic Programs. Annals of Mathematics in Ar-
tificial Intelligence, 1994, 12:53-87.
Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q.,
Euijong Whang, S. and Widom, J. Swoosh: A Generic
Approach to Entity Resolution. VLDB Journal, 2009,
18(1):255-276.
Bertossi, L. Consistent Query Answering in Databases.
ACM Sigmod Record, 2006, 35(2):68-76.
Bertossi, L. Database Repairing and Consistent Query An-
swering. Synthesis Lectures on Data Management, Morgan
& Claypool, 2011.
Bertossi, L., Kolahi, S. and Lakshmanan, L. Data Clean-
ing and Query Answering with Matching Dependencies and
Matching Functions. Proc. ICDT 2011, 12 pages.
Bertossi, L., Kolahi, S. and Lakshmanan, L. Data Clean-
ing and Query Answering with Matching Dependencies and
Matching Functions. To appear in Theory of Computing Sys-
tems journal, 2012.
Bleiholder, J. and Naumann, F. Data Fusion. ACM Comput-
ing Surveys, 2008, 41(1).
Brewka,G., Eiter, T. and Truszczynski, M. Answer Set Pro-
gramming at a Glance. Comm. of the ACM, 2011, 54(12),
pp. 93-103.
Calimeri, F. Cozza, S. Ianni, G. and Leone, N. Computable
Functions in ASP: Theory and Implementation. Proc. ICLP
2008, Springer LNCS 5366, pp. 407-424.
Calimeri, F. Cozza, S. Ianni, G. and Leone, N. An ASP Sys-
tem with Functions, Lists, and Sets. Proc. LPNMR 2009,
Springer LNCS 5753, pp. 483-489.
Caniupan, M. and Bertossi, L. The Consistency Extrac-
tor System: Answer Set Programs for Consistent Query
Answering in Databases. Data & Knowledge Engineering,
2010, 69(6):545-572.

Ceri, S., Gottlob, G. and Tanca, L. Logic Programming and
Databases. Springer, 1989.
Chomicki, J. Consistent Query Answering: Five Easy
Pieces. Proc. ICDT 2007, Springer LNCS 4353, pp. 1-17.
Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. Com-
plexity and Expressive Power of Logic Programming. ACM
Comput. Surv., 2001, 33(3):374-425.
Eiter, T., Gottlob, G. and Mannila, H. Disjunctive Datalog.
ACM Trans. Database Syst., 1997, 22(3):364-418.
Eiter, T. and Gottlob, G. On the Computational Cost of Dis-
junctive Logic Programming: Propositional Case. Annals of
Math. and Artif. Intell., 1995, 15(3-4):289-323.
Eiter, T., Fink, M., Greco, G. and Lembo, D. Repair Local-
ization for Query Answering from Inconsistent Databases.
ACM Trans. Database Syst., 2008, 33(2).
Elmagarmid, A., Ipeirotis, P. and Verykios, V. Duplicate
Record Detection: A Survey. IEEE Transactions in Knowl-
edge and Data Engineering, 2007, 19(1):1-16.
Faber, W. and Woltran, S. Manifold Answer-Set Programs
and Their Applications. In Gelfond Festschrift, Springer
LNAI 6565, 2011, pp. 44-63.
Fan, W. Dependencies Revisited for Improving Data Qual-
ity. Proc. PODS 2008, pp. 159-170.
Fan, W., Jia, X., Li, J. and Ma, S. Reasoning about Record
Matching Rules. PVLDB, 2009, 2(1):407-418.
Franconi, E., Laureti Palma, A., Leone, N., Perri, S. and
Scarcello, F. Census Data Repair: a Challenging Applica-
tion of Disjunctive Logic Programming. Proc. LPAR 2001,
Springer LNCS 2250, pp. 561-578.
Gardezi, J., Bertossi, L. and Kiringa, I. Matching Depen-
dencies with Arbitrary Attribute Values: Semantics, Query
Answering and Integrity Constraints. Proc. EDBT/ICDT In-
ternational Workshop on Logic in Databases (LID 2011).
Gelfond, G. and Lifschitz, V. Logic Programs with Classical
Negation. Proc. ICLP 1990, pp. 579-597.
Gelfond, M. and Lifschitz, V. Classical Negation in Logic
Programs and Disjunctive Databases. New Generation Com-
puting, 1991, 9(3/4):365-386.
Gelfond, M. and Leone, N. Logic Programming and Knowl-
edge Representation - The A-Prolog Perspective. Artificial
Intelligence, 2002, 138(1-2):3-38.
Greco, G., Greco, S. and Zumpano, E. A Logical Framework
for Querying and Repairing Inconsistent Databases. IEEE
Trans. Knowledge and Data Eng., 2003, 15(6):1389-1408.
Imielinski, T. and Lipski, W. Incomplete Information in Re-
lational Databases. Journal ACM, 1984, 31(4):761-791.
Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri,
S. and Scarcello, F. The DLV System for Knowledge Repre-
sentation and Reasoning. ACM Trans. Comput. Log., 2006,
7(3):499-562.
Lloyd, J. Foundations of Logic Programming. Springer,
1987, 2nd. edition.
Whang, S.E., Benjelloun, O. and Garcia-Molina, H. Generic
Entity Resolution with Negative Rules. VLDB Journal,
2009, 18(6):1261-1277.

390




