
Achieving Completeness in Bounded
Model Checking of Action Theories in ASP ∗

Laura Giordano
DiSIT

Università del Piemonte
Orientale, Italy

Alberto Martelli
Dipartimento di Informatica

Università di Torino
Italy

Daniele Theseider Dupré
DiSIT

Università del Piemonte
Orientale, Italy

Abstract

Temporal logics can be used in reasoning about actions for
specifying constraints on domain descriptions and temporal
properties to be verified. In this paper, we exploit bounded
model checking (BMC) techniques in the verification of dy-
namic linear time temporal logic (DLTL) properties of an ac-
tion theory, which is formulated in a temporal extension of
answer set programming (ASP). To achieve completeness,
we propose an approach to BMC which exploits the Büchi
automaton construction while searching for a counterexam-
ple. We provide an encoding in ASP of the temporal action
domain and of bounded model checking of DLTL formulas.

Introduction
Temporal logics are well suited for reasoning about ac-
tions, as they allow for the specification of temporal con-
straints in a domain description as well as for the verifi-
cation of temporal properties of the domain. In planning,
CTL and LTL have been used in the specification of tem-
porally extended goals (e.g., in (Pistore and Traverso 2001;
Baier, Bacchus, and McIlraith 2009)), search control knowl-
edge (Bacchus and Kabanza 2000), and fairness constraints
(De Giacomo, Patrizi, and Sardiña 2010). Claßen and Lake-
meyer (2008) introduced a second order extension of CTL*,
ESG, to reason about non-terminating Golog programs.
The ability to capture infinite computations is important as
agents and robots usually fulfill non-terminating tasks.

In this paper, we exploit Bounded Model Checking
(BMC) techniques in the verification of properties of an ac-
tion theory formulated in a temporal extension of answer set
programming (ASP). BMC, as defined in (Biere et al. 2003),
provides, in general, a partial decision procedure for the ver-
ification of a property, since it searches for a counterexample
of the property as a path of length k, with increasing values
of k; upper bounds for k are determined for some classes of
properties, namely unnested properties. Clarke et al. (2004)
address the problem of completeness with a semantic trans-
lation scheme, based on Büchi automata.

Helianko and Niemelä (2003) developed a compact en-
coding of bounded model checking of LTL formulas as the

∗This work has been partially supported by Regione Piemonte,
Project ICT4Law.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problem of finding stable models of logic programs. Since
ASP naturally accommodates for reasoning about actions,
in (Giordano, Martelli, and Theseider Dupré 2012) this en-
coding is extended to deal with action theories, including
complex actions expressed in Dynamic Linear Time Tempo-
ral Logic (DLTL) (Henriksen and Thiagarajan 1999). DLTL
extends LTL with an until operator Uπ indexed by a pro-
gram π which, as in PDL, is a regular expression of atomic
actions. Next state modalities indexed by single actions can
be defined from Uπ .

The above papers do not address the problem of achieving
completeness; to this end, in this paper we propose an alter-
native encoding of BMC of DLTL formulas in ASP, where
the search for a counterexample exploits the Büchi automa-
ton construction (Gerth et al. 1995) as well as the transi-
tion system. Unlike (Clarke et al. 2004), a “counterexam-
ple” path is searched for, without assuming that the Büchi
automaton is constructed in advance. Our counterexample
is an accepting path of the product Büchi automaton which
can be finitely represented as a (k,l)-loop , i.e., a finite path
of length k terminating in a loop back to a previous state l,
in which the states are all distinct from each other. A coun-
terexample is searched up to a value for k such that in the
product automaton there is no path of length k whose states
are all distinct from each other.

Verification is performed on a transition system provided
by a domain description in a temporal action theory, whose
semantics is defined in terms of temporal answer sets (Gior-
dano, Martelli, and Theseider Dupré 2012). Temporal prop-
erties are proved by combining the construction of tempo-
ral extensions of the domain with the verification of their
properties, according to a tableaux-based procedure which
provides an encoding of BMC in ASP. The correctness and
completeness of this encoding is based on the results in
(Henriksen and Thiagarajan 1999; Giordano and Martelli
2006). The encoding in ASP uses a number of ground atoms
which is linear in the size of the formula and quadratic in k.
Thanks to the completeness result, we provide a decision
procedure for the verification of satisfiability and validity
properties of an action domain.

Temporal action language
In this paper, a domain description Π is a set of laws de-
scribing the effects of actions and their executability pre-

618

Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning



conditions, provided in a first-order extension of the tem-
porally extended logic programming language in (Giordano,
Martelli, and Theseider Dupré 2012), where temporal fluent
literals are used, e.g., [a]l means that after executing a, the
literal l is true;©l means that l is true in the next state. The
following example gives the flavor of the language.

Example 1 A mail delivery agent may check, with the ac-
tion sense, if there is mail in the mailbox of employees, and
may deliver mail to them. The immediate effects, persis-
tency and precondition laws are:

[deliv(E)]¬mail(E)
[sense]mail(E)← not [sense]¬mail(E)
©mail(E)← mail(E), not©¬mail(E)
©¬mail(E)← ¬mail(E), not©mail(E)
[deliv(E)] ⊥← ¬mail(E)
[wait] ⊥← mail(E)

i.e.: after delivering the mail to E, there is no mail for E
any more; sense may (non-monotonically) cause mail(E)
to become true; the fluent mail persists; if there is no mail
for E, deliv(E) is not executable, while, if there is mail for
E, wait is not executable. As a result of the interaction of
persistence and the action law, sense is nondeterministic:
executing it when there is no mail for E, mail(E) may ei-
ther persist false, or become true due to the action law.

We assume that there are only two employees, a and b,
and, in the initial state, there is mail for a and not for b, i.e.
Π includes Init mail(a) and Init ¬mail(b), where the Init
prefix specifies that a law only applies to the initial state.

DLTL formulas may be added as constraints on the possi-
ble executions, or they may encode properties to be verified
on the enriched domain description. For example,
〈begin〉>
2[begin]〈sense; (deliv(a) + deliv(b) +wait); begin〉>

impose that the agent continuously executes a loop where it
senses mail and delivers the mail.

We may want to check that, if there is mail for a, the agent
will eventually deliver it, i.e.: 2(mail(a) ⊃ 3¬mail(a)).
This does not hold, as there is a possible scenario in which
there is always mail for a and for b, but the mail is repeatedly
delivered to b and never to a.

The semantics of a domain description is given, following
(Giordano, Martelli, and Theseider Dupré 2012), via tempo-
ral answer sets, which extend the notion of answer set to
capture the linear structure of temporal models. Although
the answer sets of a domain description Π are partial inter-
pretations, in some cases, e.g., when the initial state is com-
plete and all fluents are inertial, it is possible to guarantee
that the temporal answer sets of Π are total. In case the ini-
tial state is not complete, we consider all the possible ways
to complete the initial state. A domain description with total
answer sets defines a transition system.

Verification of domain descriptions
Given an enriched domain description (Π, C) (where C is a
set of DLTL formulas, the constraints), its extensions are the
temporal answer sets of Π satisfying the constraints C.

Verification may be formulated as satisfiability of a for-
mula ϕ, or, as in the example above, as validity of a formula
ϕ, usually reduced to the unsatisfiability of ¬ϕ, in which
case, a model satisfying ¬ϕ, if any, represents a counterex-
ample to the validity of ϕ.

Satisfiability and validity problems can be solved by
means of model checking techniques. The standard approach
to model checking for LTL is based on Büchi automata. The
satisfiability problem for a LTL formula α can be solved by
constructing a Büchi automaton Bα (Gerth et al. 1995) such
that the language of ω-words accepted by Bα is non-empty
if and only if α is satisfiable.

Given a system modeled by a transition system TS, which
corresponds to a Büchi automaton BTS , model checking ver-
ifies that the property α holds for the system, by constructing
the product automaton of BTS and B¬α, and by checking for
emptiness of the accepted language.

Biere et al. (2003) showed that model checking can be
more efficient if, instead of building the product automaton,
a path of the transition system satisfying ¬α is searched for.
This technique is called bounded model checking (BMC),
since it looks for infinite paths which can be represented as
a finite path of length k with a back loop from state k to a
previous state l in the path (a (k,l)-loop); the search proceeds
iteratively, increasing the length k until a model satisfying α
is found — if one exists.

A BMC problem can be efficiently reduced to a proposi-
tional satisfiability problem or to an ASP problem (Heljanko
and Niemelä 2003). If no model exists and the transition
system contains a loop, the iterative procedure in general
does not stop, i.e., it is a partial decision procedure for va-
lidity. Techniques for achieving completeness are described
in (Biere et al. 2003) for some kinds of LTL formulas.

BMC with Büchi automata
We show now how to adapt the procedure for building
a Büchi automaton corresponding to a given DLTL for-
mula (Giordano and Martelli 2006) to the construction of
a (k,l)-loop corresponding to a run of the product Büchi au-
tomaton.

We assume that, as in (Giordano and Martelli 2006),
until formulas are indexed with finite automata rather than
regular expressions. Thus, we have αUA(q)β instead of
αUπβ, where A(q) a finite automaton with initial state q
and L(A(q)) = [[π]].

The construction of states uses tableau rules which handle
DLTL signed formulas, i.e. formulas prefixed with T or F.

A rule φ⇒ ψ1, ψ2 means that if φ is in a state, ψ1 and ψ2

are added; a rule φ⇒ ψ1|ψ2 means that if φ is in a state, the
state is duplicated, ψ1 is added to a copy and ψ2 to the other
one. The rules for disjunction and the T rules for until are
provided below; other rules are similar, and further rules can
be given for derived connectives and modal operators.

Tor: T(α ∨ β)⇒ Tα|Tβ
For: F(α ∨ β)⇒ Fα,Fβ
TuntilFS: TαUA(q)β ⇒ T(β ∨ (α ∧

∨
a∈Σ〈a〉∨

q′∈δ(q,a) αUA(q′)β)) (q is a final state)

TuntilNFS: TαUA(q)β ⇒ T(α ∧
∨
a∈Σ〈a〉

619



function nextF(F , a)
if F does not contain a formula T〈a〉α then return ∅
else return tableau({Tα|T〈a〉α ∈ F}

∪{Fα|F〈a〉α ∈ F})

Figure 1: Function nextF

function next states((F , w, x, f), a)
return {(F ′, w′, x′, f ′) such that
F ′ ∈ nextF(F , a),
w′ ∈ nextTSstates(w, a),
F ′ ∪ w′ is consistent,
if there exist no T〈a〉αUA(q)

x β ∈ F
then x′ = 1− x; f ′ = X
else x′ = x; f ′ =↓ }

Figure 2: Function next states∨
q′∈δ(q,a) αUA(q′)β)(q is not a final state)

In the construction we use a function tableau which takes
as input a set of signed formulas and returns a set of consis-
tent sets of signed formulas, obtained by repeatedly apply-
ing the above rules until all formulas in all sets have been
expanded. Note that this construction may create new sets,
because of splitting rules such as Tor.

We describe now how to build a path of the product au-
tomaton, which is constructed by the BMC procedure while
searching for a counterexample. Each state s of the path is
a tuple s = (F , w, x, f), where F is an expanded set of for-
mulas, w is a state of the transition system whose literals are
represented as signed formulas, x ∈ {0, 1} and f ∈ {↓,X}
are used to track fulfillment of until formulas.

Given a domain description Π with the associated tran-
sition system TS, and a DLTL formula α describing con-
straints and properties to be proved, the initial states will
have the form (F0, w0, 0,X), where F0 is a set of formulas
obtained by applying function tableau to α, and w0 is an
initial state of TS, such that F0 ∪ w0 is consistent.

Transitions of the product automaton are defined by func-
tion next states(s, a), defined in Figure 2, which returns
the set of successor states of s after a. This function makes
use of the functions nextTSstates(w, a), which returns the
set of the states of the transition system TS reached with a
transition a from state w, and nextF(F , a), which returns
a set of formulas obtained by propagating the formulas in
F through action a. Function nextF is defined in Figure
1. This function first checks whether it is possible to exe-
cute action a from F , then propagates elementary temporal
formulas through a and expands them with tableau.

The fields x and f are used to characterize accepting
states of the product automaton, and to check that all un-
til formulas are fulfilled in a finite number of steps. In order
to do this, all true until formulas are extended with a label
0 or 1, i.e. they have the form TαUA(q)

l β where l ∈ {0, 1}.
Roughly speaking, when an until formula is created, it is
given the label 1− x, while, if it is propagated from a previ-
ous state, it keep the previous label. When there are no more
until formulas with label x, then x switches to 1 − x and f

function BMC(max k)
k := 0
do

path := choose in {s0
a0→ s1

a1→ . . . sk+1 such that
sj 6= sm for 0 ≤ j < m ≤ k,
sl = sk+1 for some l ≤ k,
sacc is an accepting state for some l ≤ acc ≤ k}

k := k + 1
while path = null ∧ k ≤ max k
return path

Figure 3: Function BMC

function max()
i := 0
do

i := i+ 1

path := choose in {s0
a0→ s1

a1→ . . . si such that
sj 6= sm for 0 ≤ j < m ≤ i}

while path 6= null
return i− 1

Figure 4: Function max

is set to X. A state with f = X is an accepting state of the
product automaton, and a run ρ containing infinite accepting
states is an accepting run.

It is an obvious consequence of the construction that:
Proposition 1 (i) Any accepting run of the product automa-
ton corresponds to an infinite path of the transition system
(i.e., a temporal answer set of Π) satisfying the initial DLTL
formula α; (ii) every infinite path of the transition system
which is a model of α corresponds to an accepting run of
the product automaton.
The proof of this proposition, omitted for lack of space, ex-
ploits Theorems 4 and 5 in (Giordano and Martelli 2006).

Our approach to BMC relies on the well known result that
the language accepted by a Büchi automaton is nonempty
iff there is a reachable accepting state with a cycle back
to itself. The construction of the (k,l)-loop is described
by function BMC in Figure 3. The construct choose in
S returns any of the elements of set S or null if S = ∅.
With s0

a0→ s1
a1→ . . . si we represent a finite path of the

product automaton, where s0 is an initial state and si ∈
next states(si−1, ai−1). Given an integer k, we look for a
path of length k + 1, such that sk+1 = sl for some previous
state sl in the path. Furthermore the loop must contain an
accepting state. If such a loop is found, it finitely represents
an accepting run. Otherwise, k is increased until max k is
reached.

Observe that we can consider only simple paths, that is,
paths without repeated states. This property allows to de-
fine a terminating algorithm, thus achieving completeness,
by passing the length of the longest simple path as parame-
ter to BMC.

The length of the longest simple path can be found itera-
tively, searching for a simple path of length i (without loop),
and incrementing i at each step (See Figure 4). Since the
number of different states is finite, this procedure terminates.

620



Encoding bounded model checking in ASP
We now outline a translation into standard ASP of the
above procedure for building a path of the product Büchi
automaton (for more details see (Giordano, Martelli, and
Theseider Dupré 2011)). We use predicates like fluent,
action, state to express the type of atoms. As we are
interested in infinite runs represented as (k,l)-loops, we as-
sume a bound K to the number of states. States are rep-
resented in ASP as integers from 0 to K, where K is
given by the predicate laststate(State). The predi-
cate occurs(Action,State) describes transitions. Oc-
currence of exactly one action per state can be encoded as:
-occurs(A,S):- occurs(A1,S),action(A),

action(A1),A!=A1,state(S).
occurs(A,S):- not -occurs(A,S),action(A),

state(S).
As we have seen, states are associated with a set of flu-

ent literals, a set of signed formulas, and the values of
x and f . Fluent literals are represented with the pred-
icate holds(Fluent, State), T or F formulas with
tt(Formula,State) or ff(Formula,State), x with
the predicate x(Val,State) and f with the predicate
acc(State), which is true if State is an accepting state.

States on the path must be all different, and thus we
need to define a predicate eq(S1,S2) to check whether two
states S1 and S2 are equal.

The following constraint requires all states up to K to be
different:
:- state(S1), state(S2), S1!=S2, eq(S1,S2),

laststate(K), S1<=K, S2<=K.
Furthermore we need constraints stating that there is a

transition from state K to a previous state L, and that there
is a state S, L ≤ S ≤ K, such that acc(S) holds, i.e. S is
an accepting state. To do this we compute the successor of
state K, and check that it is equal to S.
loop(L):- state(L), laststate(K), L<=K,

SuccK=K+1, eq(L,SuccK).
accept:- loop(L), state(S), laststate(K),

L<=S, S<=K, acc(S).
:- not accept.

Given a domain description Π and a set of DLTL for-
mulas, representing constraints or negated properties, we
want to compute the temporal answer sets of the domain
description Π satisfying the temporal formulas, if any. The
rules in Π can be easily translated to ASP, e.g., the effect
rule and precondition for deliv in the example become:
-holds(mail(E),NS):- occurs(deliv(E),S),

fluent(mail(E)), NS=S+1.
:- occurs(deliv(E),S),-holds(mail(E),S).

DLTL formulas are represented as ASP terms. For
instance, in the encoding, each labeled until for-
mula is represented as until(A,Q,Alpha,Beta,Label),
where the automaton A is described by the predi-
cates trans(A,Q1,Act,Q2) defining transitions, and
final(A,Q) defining final states.

The translation of the tableau rules can be formulated by
means of ASP rules such as:

tt(or(F2,and(F1,
diamond(Act,until(Aut,Q1,F1,F2,L)))),S):-

tt(until(Aut,Q,F1,F2,L),S), state(S),
label(L),final(Aut,Q),occurs(Act,S),
choose(until(Aut,Q,F1,F2,L),S,Act,Q1).

tt(and(F1,
diamond(Act,until(Aut,Q1,F1,F2,L))),S):-

tt(until(Aut,Q,F1,F2,L),S), state(S),
label(L),not final(Aut,Q),occurs(Act,S),
choose(until(Aut,Q,F1,F2,L),S,Act,Q1).

The predicate choose non deterministically chooses a
transition Q1 among the ones possible for action Act in the
automaton Aut, and uses that choice in the expansion of the
until formula. The term diamond(Act,alpha) encodes
〈act〉α.

Note that, to express splitting of sets of formulas, as in the
case of disjunction, we can exploit disjunction in the head of
clauses, provided by some ASP languages such as DLV, or
choice constructs available in other languages.

Furthermore, we must add a fact tt(tr(ϕi),0) for each
DLTL formula ϕi to be satisfied in the model, where tr(ϕi)
is the ASP term representing ϕi.

It is easy to see that the (grounding of the) encoding in
ASP is linear in the size of the formula φ to be verified and
in the number f of ground fluents while quadratic in the size
of k.

We can prove that there is a one to one correspondence
between the extensions of a domain description satisfying
a given temporal formula and the answer sets of the ASP
program encoding the domain and the formula.

Proposition 2 Let Π be a domain description whose tempo-
ral answer sets are total, let tr(Π) be the ASP encoding of
Π (for a given k), and let φ be a DLTL formula.

If there is a temporal answer set of Π that satisfies the for-
mula φ, then there exists an answer set of the ASP program
tr(Π)∪ tt(tr(φ), 0) (where tr(φ) is the ASP term represent-
ing φ); and vice versa.

For achieving completeness, the search for the longest
simple path can be done by removing from the above ASP
encoding the rules for defining loops and the rules for defin-
ing the Büchi acceptance condition.

The translation has been run in iClingo (Gebser et al.
2008). For the dining philosophers problems in (Heljanko
and Niemelä 2003), the scalability of the approach in this
paper is similar to the one for the method — without
Büchi automaton — in (Giordano, Martelli, and Theseider
Dupré 2012) and the one in (Heljanko and Niemelä 2003),
when looking for a counterexample. E.g., a counterexam-
ple for DP(12) is found in 183 seconds, wrt 274 seconds
for a Clingo implementation of the method in (Giordano,
Martelli, and Theseider Dupré 2012) — see also Appendix
C in that paper.

The search for the longest simple path is substantially
more costly and practically feasible only for problems where
the action domain is sufficiently constrained.

621



Conclusions
We have presented a bounded model checking approach for
the verification of properties of temporal action theories in
ASP. The temporal action theory is formulated in a temporal
extension of ASP, where DLTL constraints in the domain de-
scription allow for state trajectory constraints to be captured.
The approach provides a uniform ASP metodology for spec-
ifying domain descriptions and for verifying them, which
can be used for several reasoning tasks, including business
process verification (D’Aprile et al. 2010) and planning with
temporal constraints (Bacchus and Kabanza 2000).

Unlike (Heljanko and Niemelä 2003; Giordano, Martelli,
and Theseider Dupré 2012), this paper provides a decision
procedure for BMC, but it does not assume, as in (Clarke et
al. 2004), that a Büchi automaton is computed in advance.

The action language in this paper is related to the logic
programming based planning languageK (Eiter et al. 2004),
which is well suited for planning under incomplete knowl-
edge. Unlike K, the action language in this paper does not
allow for concurrent actions, but it provides temporal con-
straints. DLVK (Eiter et al. 2003), which implements K in
the disjunctive logic programming system DLV, does not al-
low to express and verify temporal properties.
C and C+ (Giunchiglia and Lifschitz 1998; Giunchiglia

et al. 2004) also deal with actions with indirect and non-
deterministic effects and with concurrent actions. Their se-
mantics is based on a nonmonotonic causal logic. Several
kinds of reasoning (prediction, postdiction or planning) can
be performed, however the languages do not exploit standard
temporal logic constructs to reason about actions.
ESG (Claßen and Lakemeyer 2008) is a second order ex-

tension of CTL* for reasoning about nonterminating Golog
programs. The paper presents a method for verification of a
first order CTL fragment of ESG, using model checking and
regression based reasoning. Because of first order quantifi-
cation, this fragment is in general undecidable.

In (Baader, Liu, and ul Mehdi 2010) the verification prob-
lem for action logic programs with nonterminating behavior
is addressed using an action formalism based on a tempo-
ralized description logic, ALCO-LTL, obtained from LTL
by allowing ALCO-assertions in place of propositions. The
behaviors of the program on which verification is performed
are given by a Büchi automaton. As a difference, in our ap-
proach the action domain is given as a temporal ASP action
theory. Concerning the verification language, DLTL does
not allow for first order constructs as ALCO-LTL, while it
allows for the specification of regular expressions.

References
Baader, F.; Liu, H.; and ul Mehdi, A. 2010. Verifying prop-
erties of infinite sequences of description logic actions. In
ECAI, 53–58.
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116(1-2):123–191.
Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferences. Artif. Intell. 173(5-6):593–618.

Biere, A.; Cimatti, A.; Clarke, E. M.; Strichman, O.; and
Zhu, Y. 2003. Bounded model checking. Advances in Com-
puters 58:118–149.
Clarke, E.; Kroening, D.; Ouaknine, J.; and Strichman, O.
2004. Completeness and complexity of bounded model
checking. In VMCAI, 85–96.
Claßen, J., and Lakemeyer, G. 2008. A logic for non-
terminating Golog programs. In Proc. KR 2008, 589–599.
D’Aprile, D.; Giordano, L.; Gliozzi, V.; Martelli, A.; Poz-
zato, G. L.; and Theseider Dupré, D. 2010. Verifying Busi-
ness Process Compliance by Reasoning about Actions. In
CLIMA XI, volume 6245 of LNAI.
De Giacomo, G.; Patrizi, F.; and Sardiña, S. 2010. Gener-
alized planning with loops under strong fairness constraints.
In Proc. KR 2010.
Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres,
A. 2003. A logic programming approach to knowledge-
state planning, II: The DLVk system. Artificial Intelligence
144(1-2):157–211.
Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres, A.
2004. A logic programming approach to knowledge-state
planning: Semantics and complexity. ACM Trans. Comput.
Log. 5(2):206–263.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Thiele, S. 2008. Engineering an incremental
ASP solver. In Proc. ICLP08, volume 5366 of LNCS, 190–
205.
Gerth, R.; Peled, D.; M.Y.Vardi; and Wolper, P. 1995. Sim-
ple on-the-fly automatic verification of linear temporal logic.
In Proc. 15th Work. Protocol Specification, Testing and Ver-
ification.
Giordano, L., and Martelli, A. 2006. Tableau-based au-
tomata construction for dynamic linear time temporal logic.
Annals of Mathematics and AI 46(3):289–315.
Giordano, L.; Martelli, A.; and Theseider Dupré, D. 2011.
Achieving completeness in bounded model checking of ac-
tion theories in ASP . Technical report, TR-INF-2011-12-
04-UNIPMN, Dip. Informatica, Univ. Piemonte Orientale.
Giordano, L.; Martelli, A.; and Theseider Dupré, D. 2012.
Reasoning about actions with temporal answer sets. Theory
and Practice of Logic Programming.
Giunchiglia, E., and Lifschitz, V. 1998. An action lan-
guage based on causal explanation: Preliminary report. In
AAAI/IAAI, 623–630.
Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; ; and
Turner, H. 2004. Nonmonotonic causal theories. Artificial
Intelligence 153(1-2):49–104.
Heljanko, K., and Niemelä, I. 2003. Bounded LTL model
checking with stable models. TPLP 3(4-5):519–550.
Henriksen, J., and Thiagarajan, P. 1999. Dynamic linear
time temporal logic. Annals of Pure and Applied logic 96(1-
3):187–207.
Pistore, M., and Traverso, P. 2001. Planning as model
checking for extended goals in non-deterministic domains.
In Proc. IJCAI 2001, 479–486.

622




