
Conjunctive Query Answering with OWL 2 QL

Stanislav Kikot and Roman Kontchakov and Michael Zakharyaschev
Department of Computer Science and Information Systems

Birkbeck, University of London, U.K.
–kikot,roman,michael˝@dcs.bbk.ac.uk

Abstract

We present a novel rewriting technique for conjunctive
query answering over OWL 2 QL ontologies. In gen-
eral, the obtained rewritings are not necessarily cor-
rect and can be of exponential size in the length of the
query. We argue, however, that in most, if not all, prac-
tical cases the rewritings are correct and of polynomial
size. Moreover, we prove some sufficient conditions,
imposed on queries and ontologies, that guarantee cor-
rectness and succinctness. We also support our claim by
experimental results.

Introduction
OWL 2 QL, one of three profiles of the Web Ontology Lan-
guage OWL 2, was designed with the aim of supporting
ontology-based data access (OBDA). The key idea is that
data, ‘stored in a standard relational database management
system (RDBMS), can be queried through an OWL 2 QL
ontology via a simple rewriting mechanism, i.e., by rewrit-
ing the query into an SQL query that is then answered by
the RDBMS, without any changes to the data’ (www.w3.org/
TR/owl2-profiles). The rewritability property ensures, in par-
ticular, that the data complexity of answering queries over
OWL 2 QL ontologies matches the complexity of database
query answering, which is in AC0.

It has been observed, however, that the available ‘rewrit-
ing mechanisms’ for OWL 2 QL (Calvanese et al. 2007a;
Pérez-Urbina, Motik, and Horrocks 2009; Rosati and Al-
matelli 2010; Chortaras, Trivela, and Stamou 2011; Got-
tlob, Orsi, and Pieris 2011) are actually not so ‘simple.’
In fact, the rewritten queries are often too long to be exe-
cuted by modern RDBMSs, and the question whether ‘short’
rewritings exist has attracted considerable attention over the
last two years. For example, Kikot, Kontchakov, and Za-
kharyaschev (2011) showed that no polynomial algorithm
can construct a ‘pure rewriting’ of a conjunctive query (CQ)
q over an OWL 2 QL ontology T . Here by a pure rewriting
we mean any first-order (FO) rewriting with the same sig-
nature (predicates and constants) as q and T , possibly with
equality. On the other hand, Gottlob and Schwentick (2011)
gave a polynomial-time (‘impure’) rewriting using addi-

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tional constants and predicates. Optimised (but still expo-
nential) pure rewritings to nonrecursive Datalog were sug-
gested by Rosati and Almatelli (2010) and Gottlob, Orsi,
and Pieris (2011). The combined approach of Kontchakov
et al. (2010) was developed for OWL 2 QL without role in-
clusions; it uses a simple polynomial rewriting over the data
expanded by applying the ontology axioms and introducing
a small number of new individuals.

The diversity of approaches to query rewriting prompts
another question: what is the type/shape/size of rewritings
we should aim at to make OBDA with OWL 2 QL efficient?
When trying to answer this question, we should bear in
mind that (i) the OBDA paradigm relies on the proven ef-
ficiency of RDBMSs, but (ii) database query answering is
not tractable in the size of queries (PSPACE-complete for
FO queries and NP-complete for CQs). High efficiency of
RDBMSs in practice appears to indicate only that answering
real-world queries over real-world databases turns out to be
tractable. As rewritings can turn a standard query to some-
thing ‘out of this world,’ a first rule of thumb could be as fol-
lows: the rewritten query should look similar to the original
one. In this respect, as Gottlob and Schwentick (2011) re-
mark, their polynomial rewriting is of rather ‘theoretical na-
ture’ (it uses the extra constants, predicates and existentially
quantified variables to encode, by making nondeterminis-
tic guesses, a relevant part of the chase, aka the canonical
model; see the discussion in Conclusions for more details).

The aim of this paper is to investigate what causes ex-
ponentially long pure rewritings of CQs over OWL 2 QL
ontologies and to check experimentally whether those ‘bad
guys’ occur in real-world queries and ontologies. As a result
of this analysis, we suggest some short (polynomial-size)
rewritings that cover most, if not all, practical cases.

We think of a CQ as a labelled directed multigraph. For
example, the query ‘find x1, x2, x3 for which

∃y1, y2, y3

(
A1(x1) ∧A3(x3) ∧B3(y3) ∧ T (x1, y1) ∧

R(x1, x2) ∧ T (x2, x3) ∧ S(x3, y2) ∧ S(y3, y2)
)

holds’ can be represented as the graph

y1 x1

A1

x2 x3

A3

y2 y3

B3

T R T S S

275

Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning

To answer a CQ q(~x) over data A and ontology T , we seek
homomorphisms from q to the structure, called the canoni-
cal model and obtained by expanding A (extensional data)
with knowledge in T (intensional data). Thus, we have to
find possible cuts of q into a number of pieces: some of
them—say, of type (A)—are mapped to individuals in A,
while the others—of type (B)—may only have some of their
terms (‘roots’) in A, whereas the remaining part is implied
by the knowledge in T . For example, the query above can be
cut, for a suitable T , into 3 pieces of which only the middle
one is of type (A), and the right piece has two roots x3, y3:

y1 x1

A1

x2 x3

A3

y2 y3

B3

T R T S S

If q(~x) does not have existentially quantified variables then
the whole q forms the only possible cut of type (A), because
the answer variables ~x must be mapped to individuals in A.
If T does not contain role inclusion axioms then, as shown
by Kontchakov et al. (2010; 2011), every root determines a
unique piece of type (B). However, in general, q may have
exponentially many pieces of type (B). One can encode the
intuition above as a pure positive existential rewriting qe,
which is, roughly speaking, a disjunction over all possible
cuts of q, and so is exponential in |q| in the worst case.

A slightly different approach to checking possible cuts of
q is to consider, for every edge in q, whether it belongs to
an (A) piece, or generates a (B) piece itself, or lies inside
the (B) piece generated by some other edge. This ‘local’
view gives another rewriting, a conjunction of disjunctions
qc, which may still be exponential as the same edge may
generate exponentially many distinct (B) pieces. (Two (B)
pieces are different if their domains or roots are different.)
Moreover, the new rewriting is not necessarily correct be-
cause some (B) pieces may not be realised together in the
canonical model; we call such pieces conflicting.

We analyse—both theoretically and experimentally—
conditions under which the number of (B) pieces is polyno-
mial and they are not in conflict with each other. In particu-
lar, we develop techniques to ensure that rewritings are not
affected by conflicting pieces. For example, one simple—
but impure—approach involves a single fresh constant to
represent all intensional objects in the canonical model (la-
belled nulls in the chase), but no extra variables.

We show that the number of (B) pieces generated by one
edge in the query q is largely determined by a sophisticated
interaction between role inclusions and inverse roles in the
ontology T , which can produce canonical models with very
complex intensional parts. We give a sufficient condition (on
q and T) which guarantees that one edge in q can generate
at most one piece of type (B) (though the number of ways
this piece can be matched in the canonical model can still
be exponential). This leads to our shortest pure rewriting,
qp, which can be constructed in polynomial time, but is cor-
rect only if q and T satisfy the sufficient condition, which
can also be checked in polynomial time. Trivial examples
where this condition holds are ontologies without inverse
roles, ontologies without role inclusions and qualified exis-
tential quantification, or those without positive occurrences

of existential quantifiers. Our experiments with a number
of standard OWL 2 QL ontologies and queries demonstrate
that the sufficient conditions always apply, the queries nor-
mally contain very few pieces of type (B), if any, and more-
over, these pieces are never in conflict. Thus, in practice the
rewritings qc and qp are both short and correct.

Omitted proofs can be found in the full version of the pa-
per at www.dcs.bbk.ac.uk/˜kikot.

OWL 2 QL
The language of OWL 2 QL contains individual names ai,
concept names Ai, and role names Pi (i ≥ 1). Roles R, ba-
sic concepts B and concepts C are defined by the grammar:

R ::= Pi | P−i ,

B ::= ⊥ | Ai | ∃R,
C ::= B | ∃R.B

A TBox, T , is a finite set of inclusions of the form

B v C, R1 v R2,

B1 uB2 v ⊥, R1 uR2 v ⊥.

(Note that concepts of the form ∃R.B can only occur in the
right-hand side of concept inclusions in OWL 2 QL. An in-
clusion B′ v ∃R.B can be regarded as an abbreviation for
three inclusions: B′ v ∃RB , ∃R−B v B and RB v R,
where RB is a fresh role name.) An ABox, A, is a finite set
of assertions of the form Ak(ai) and Pk(ai, aj). T and A
together constitute the knowledge base (KB) K = (T ,A).
The semantics for OWL 2 QL is defined in the usual way
based on interpretations I = (∆I , ·I); consult (Baader et
al. 2003) for details. The set of individual names in A
will be denoted by ind(A). For concepts or roles E1 and
E2, we write E1 vT E2 if T |= E1 v E2; and we set
[E] = {E′ | E vT E′ and E′ vT E}.

A conjunctive query (CQ) q(~x) is a first-order formula
∃~y ϕ(~x, ~y), where ϕ is constructed, using ∧, from atoms
of the form Ak(t1) and Pk(t1, t2), where each ti is a term
(an individual or a variable from ~x or ~y). Variables in ~x
are called answer variables, and those in ~y bound vari-
ables. A tuple ~a ⊆ ind(A) is a certain answer to q(~x)
over K = (T ,A) if I |= q[~a] for all models I of K;
in this case we write K |= q[~a]. To simplify notation,
we will often identify q with the set of its atoms and use
P−(t, t′) ∈ q as a synonym of P (t′, t) ∈ q; term(q) is the
set of terms in q. We call q tree-shaped if its primal graph
(term(q), {{t, t′} | R(t, t′) ∈ q}) is a tree.

Remark 1 Although the official OWL 2 QL contains the
concept > (for the whole domain), we do not consider it
here as>makes OBDA with OWL 2 QL domain dependent
(Abiteboul, Hull, and Vianu 1995): take, for example, the
query A(x) over the ontology {> v A}. (But we shall use
> as an auxiliary symbol as it is convenient to regard ∃R
as an abbreviation for ∃R.>.) To simplify presentation, we
omit data properties and (ir)reflexivity constraints for roles.

Query answering over OWL 2 QL KBs is based on the
fact that, for any consistent KB K = (T ,A), there is an in-
terpretation CK such that, for all CQs q(~x) and ~a ⊆ ind(A),

276

we have K |= q[~a] iff CK |= q[~a]. The interpretation CK,
called the canonical model of K, can be constructed as fol-
lows. For each pair [R], [B] with ∃R.B in T (recall that
∃R.> is another way of writing ∃R), we introduce a fresh
symbol w[RB] and call it the witness for ∃R.B. We write
K |= C(w[RB]) if ∃R− vT C or B vT C. Define a gener-
ating relation, ;, on the set of these witnesses together with
ind(A) by taking:

– a ; w[RB] if a ∈ ind(A), [R] and [B] are vT -minimal
such that K |= ∃R.B(a) and there is no b ∈ ind(A) with
K |= R(a, b) ∧B(b);

– w[R′B′] ; w[RB] if u ; w[R′B′], for some u, [R] and
[B] are vT -minimal such that K |= ∃R.B(w[R′B′]) and
it is not the case that R′ vT R− and K |= B(u).

If a ; w[R1B1] ; · · · ; w[RnBn], n ≥ 0, then we say
that a generates the path aw[R1B1] · · ·w[RnBn]. Denote by
pathK(a) the set of paths generated by a, and by tail(π) the
last element in π ∈ pathK(a). CK is defined by taking:

∆CK =
⋃

a∈ind(A)

pathK(a), aCK = a, for a ∈ ind(A),

ACK = {π ∈ ∆CK | K |= A(tail(π))},
P CK = {(a, b) ∈ ind(A)× ind(A) | K |= P (a, b)} ∪

{(π, π · w[RB]) | tail(π) ; w[RB], R vT P} ∪
{(π · w[RB], π) | tail(π) ; w[RB], R vT P−}.

∆CK \ ind(A) is called the tree part of CK. The following
result is proved in a standard way (Kontchakov et al. 2010):

Theorem 2 For every OWL 2 QL KB K = (T ,A), every
CQ q(~x) and every ~a ⊆ ind(A), K |= q[~a] iff CK |= q[~a].

Given a TBox T , define a KB KT = (T ,AT) by taking

AT = {R(aRB , bRB), B(bRB) |
∃R.B is a T -consistent concept in T }.

In other words, CKT is the disjoint union of the canoni-
cal models for consistent (T , {R(aRB , bRB), B(bRB)}). To
simplify notation, we use CT in place of CKT . We ex-
tend the generating relation ; in CT by adding to it the
pair aRB ; bRB . The RB-subtree of CT has root aRB
and consists of the full subtree of CT with root bRB ex-
tended with the edge (aRB , bRB). (Note that there may
be other branches starting from aRB in CT , for example,
if ∃R vT ∃S and R 6vT S.)

In the next section, we introduce the naı̈ve exponential
rewriting of CQs over OWL 2 QL ontologies sketched in the
introduction, and analyse whether it can be made shorter.

Two Rewritings
Let q(~x) be a CQ and T an OWL 2 QL ontology. Our task is
to construct an FO query q′(~x), using the predicates and in-
dividuals of q, T and =, such that, for any ABox A and any
~a ⊆ ind(A), we have (T ,A) |= q[~a] iff IA |= q′[~a], where
IA is the interpretation with domain ind(A) given by the
atoms in A. Such a query q′ is called a (pure) rewriting of

q and T . As argued in the introduction, we are interested in
rewritings q′ that are (a) as short as possible (ideally, poly-
nomial in |q| and |T |), (b) look similar to the original CQ q
(in particular, built from the same predicates and terms as q
and T), and (c) can be constructed in reasonable time.

Without loss of generality, we will assume that the primal
graph of q is connected. (If this is not the case, we consider
each of the connected components separately.)

To understand the ingredients required for such a rewrit-
ing, suppose q(~x) = ∃~y ϕ(~x, ~y),K = (T ,A) and CK |=a ϕ,
where a is an assignment of elements of ∆CK to the vari-
ables in ϕ under which a(x) ∈ ind(A) for all x ∈ ~x.
Consider an atom P (z, z′) ∈ q with bound variables z,
z′ and assume that a(t) ∈ ind(A), for some t ∈ term(q).
The assignment a can send z and z′ to four different loca-
tions in CK: (A) a(z), a(z′) ∈ ind(A); (B) a(z) ∈ ind(A),
a(z′) /∈ ind(A); (B−) a(z) /∈ ind(A), a(z′) ∈ ind(A); (O)
a(z), a(z′) /∈ ind(A). Let us see how these alternatives can
be reflected in our rewriting. In all of these cases, we need
formulas of the form

extP (x, y) =
∨

RvT P

R(x, y),

extC(x) =
∨

AvT C

A(x) ∨
∨

∃RvT C

∃y R(x, y).

In case (A) we have CK |=a P (z, z′) iff A |=a extP (z, z′).
Case (B) is possible only if, for some concept ∃R.B, we
have a(z) ; w[RB], R vT P and the atoms of q ‘linked to’
z′ can be mapped into the RB-subtree of CT . To illustrate,
consider an example.

Example 3 Let T = {A v ∃S−.B,B v ∃S.A′, A′ v ∃T}
and q(x) = {S(y, x), S(y, z), T (z, v)}. The answer vari-
able x must be mapped by a to an ABox element. However,
y can be mapped either to an ABox element or to the point
a(x) ·w[S−B] provided that a(x) is an instance of A (and so
of ∃S−.B). In the latter case, we have two possibilities for
mapping z: either to a(x) ·w[S−B] ·w[SA′], in which case we
must further set a(v) = a(x) ·w[S−B] ·w[SA′] ·w[T>], or to
a(x), provided that a(x) is an instance of ∃T . In the picture
below, these two (partial) maps are denoted by f and g.

x

y

z

v

S

S

T

aS−B

B

A′

S−B-subtree of CT

S−

S

T

x

y

z

v

S

S

T

f

f

f

f

g

g

g

q q

The observations made in Example 3 are formalised in
our central definition. Given a pair (t, t′) of adjacent terms
in (the graph of) q, we define a tree witness for (t, t′) to be

277

a homomorphism f (with domain dom f) from the query

qf =
{
S(s, s′) ∈ q | s, s′ ∈ dom f

}
∪{

A(s) ∈ q | s ∈ dom f \ f−1(rf)
}

to the RB-subtree of CT , for some ∃R.B, with root rf =
aRB such that the following conditions hold:
(t1) dom f is the smallest set containing t, t′ and such that

if s ∈ dom f \f−1(rf) and S(s, s′) ∈ q then s′ ∈ dom f ,

(t2) f(t) = rf and if s ∈ dom f \ f−1(rf) then s is bound.
Note that this notion of tree witness is different from the one
used for the description logic DL-LiteNhorn by Kontchakov
et al. (2010), where the structure of the canonical models
ensured uniqueness of a tree witness if it existed. In Exam-
ple 3, there are two tree witnesses, f and q, for (x, y). As we
shall see below, there may be exponentially many of them.

Returning back to case (B), we can say now that there
must exist a tree witness f for (z, z′) such that a(z) satisfies
all A(s) ∈ q with s ∈ f−1(rf). Case (B−) is symmetric,
and in case (O) there must exist R(t, t′) ∈ q for which (B)
holds and P (z, z′) is ‘covered’ by a tree witness for (t, t′)
(as we assumed that a(t) ∈ ind(A), for some t ∈ term(q)).

This analysis suggests the following idea. Given a CQ q
and KBK = (T ,A), we guess pairs of adjacent terms (t, t′)
in q that will be mapped to edges of the tree part of CK start-
ing from ind(A) (as in case (B) above) and, for each such
pair (t, t′), we guess a tree witness for (t, t′). The part of
the query that is not covered by the chosen tree witnesses
will be mapped to ind(A) (as in case (A)). The query repre-
senting these guesses is then evaluated over IA. If q has no
answer variables, then we also have to take account of the
case where the whole q is mapped into the tree part of CK.
Unfortunately, this idea cannot be implemented in a straight-
forward way, as shown by the following example.

Example 4 Let K = (T , {A(a)}), where T = {A v ∃R,
A v ∃R−}. Consider the query

q(x1, x4) = {R(x1, y2), R(y3, y2), R(y3, x4)}

shown in the picture below alongside CK.

x1

y2

y3

x4

R R R
f

g A
a

R−R

CK

We obviously have a tree witness f for (x1, y2) such that
dom f = {x1, y2, y3} and f−1(rf) = {x1, y3}, and also a
tree witness g for (x4, y3) with dom g = {x4, y3, y2} and
g−1(rf) = {x4, y2}. Although these tree witnesses cover
the whole query q, they are only ‘realised’ in CK under con-
flicting maps: f sends x1, y3 to a and y2 to a ·w[R>], while g
sends x4, y2 to a and y3 to a ·w[R−>]; in fact, K 6|= q(a, a).

This example motivates the following definitions. Let Θ
be the set of tree witnesses for q and T . We say that f, g ∈
Θ are compatible if dom f ∩ dom g ⊆ f−1(rf) ∩ g−1(rg).

If f and g are incompatible and neither dom f ⊆ dom g
nor dom g ⊆ dom f , then we call f and g conflicting. In
Example 4, dom f ∩ dom g = {y2, y3}, and so f and g are
conflicting.

We are now in a position to formulate a rewriting based
on the idea discussed above. Given a tree witness f ∈ Θ for
(t, t′) with rf = aRB , we first define a tree-witness formula
twf for f by taking

twf = ext∃R.B(t) ∧
∧

s∈f−1(rf)

(
(t = s) ∧

∧
A(s)∈q

extA(s)
)
.

A (possibly empty) subset Ξ ⊆ Θ is called consistent if all
pairs of tree witnesses in Ξ are compatible. Now, assuming
that ~y is a list of all bound variables in q(~x), we set

qe(~x) = detachedq ∨∨
Ξ⊆Θ

Ξ consistent

∃~y
(∧
f∈Ξ

twf ∧
∧

A(s)∈q
s/∈dom f

for all f∈Ξ

extA(s) ∧
∧

P (s,s′)∈q
{s,s′}6⊆dom f

for all f∈Ξ

extP (s, s′)
)
,

where

– detachedq = ⊥ if q has at least one answer variable;
otherwise detachedq is a disjunction of the sentences
∃x ext∃R.B(x) such that there is a homomorphism from
q to the RB-subtree of CT .

Clearly, qe is a positive existential formula built from the
atoms occurring in q and T together with equality unifying
certain terms; it contains the same variables and constants as
the original CQ q. Moreover, if we consider the predicates
extE for concepts and roles as primitive, then qe is a union
of conjunctive queries (UCQ), where each subquery can be
thought of as the result of folding the respective pieces of q
into the tree witness formulas.

Theorem 5 For every ABox A and every ~a ⊆ ind(A), we
have (T ,A) |= q[~a] iff IA |= qe[~a].

We illustrate the rewriting qe by a simple example.

Example 6 Suppose that q(x) = {Ri(x, yi) | i ≤ n} and
T = {Ai v ∃Ri | i ≤ n}. Each pair (x, yi) gives rise to
one tree witness fi with twfi = Ai(x) ∨ ∃y Ri(x, y), and
qe =

∨
N⊆[0,n] ∃~y (

∧
i∈N twfi ∧

∧
j /∈N Rj(x, yj)).

As all other known pure rewritings for OWL 2 QL , qe is
of exponential size: O((nT ,q + 1)|q| · |T | · |q|2), where
nT ,q is the maximum number of distinct tree witness for-
mulas twf for tree witnesses containing a pair (t, t′) of ad-
jacent terms in q. Two recent results may help to shed some
light on whether this exponential blowup is unavoidable in
OWL 2 QL.

One of them shows that no polynomial-time algorithm
can construct pure rewritings for CQs over OWL 2 QL on-
tologies, unless P = NP (Kikot, Kontchakov, and Za-
kharyaschev 2011, Theorem 2). The idea of the proof is
as follows. First, we encode any CNF χ =

∧m
j=1Dj over

propositional variables p1, . . . , pn as an OWL 2 QL TBox,

278

Tχ, containing the axioms, for 1 ≤ i ≤ n, 1 ≤ j ≤ m and
k = 0, 1,

Ai−1 v ∃P−.Xk
i , Xk

i v Ai, Cj v ∃P.Cj ,
X0
i v ∃P.Cj if ¬pi ∈ Dj , X1

i v ∃P.Cj if pi ∈ Dj ,

and consider the CQ

q(y0) = A0(y0) ∧
∧n
i=1 P (yi, yi−1) ∧An(yn) ∧∧m

j=1

(
P (yn, z

j
0) ∧

∧n
i=1 P (zji−1, z

j
i) ∧ Cj(zjn)

)
.

Now, suppose q′(y0) is a rewriting of q(y0) and Tχ that does
not use any constants. Consider the ABox A = {A0(a)}. It
is not hard to see that (Tχ,A) |= q[a] iff χ is satisfiable. On
the other hand, checking whether IA |= q′[a] can be done in
polynomial time in |q′| because the domain of IA is a sin-
gleton. Thus, constructing the rewriting q′ must be at least
as hard as deciding satisfiability of χ. (See the Conclusions
for a further discussion and results.)

The argument above does not go through if databases are
assumed to have two special constants, say 0 and 1, which
can be employed in rewritings q′. Indeed, as shown by Gott-
lob and Schwentick (2011), using 0 and 1, 6= and fresh predi-
cates of arityO(log(|q|·|T |)), one can construct a nonrecur-
sive Datalog rewriting q′ for any given CQ q and OWL 2 QL
ontology T in polynomial time. Intuitively, q′ uses the extra
resources to encode a part of the canonical model, which
is enough to provide all certain answers to q, to guess a
map from q into this part and then check whether it is a ho-
momorphism. As argued in the introduction, RDBMSs do
not appear to be best suitable for tasks of that sort, although
thorough experiments are required to confirm or refute this
claim.

Very often, however, there are other ways to construct
polynomial rewritings. Let us assume for a moment that the
following condition holds:

(conf) there are no conflicting tree witnesses in Θ.

In this case, the query qe can be transformed into the query

qc(~x) = detachedq ∨

∃~y
∧
{t,t′}
t and t′
adjacent

[(∧
A(s)∈q
s∈{t,t′}

extA(s) ∧
∧

R(t,t′)∈q

extR(t, t′)
)
∨
∨
f∈Θ

t,t′∈dom f

twf
]
.

If q does not contain binary predicates then there cannot be
any tree witnesses and we set qc = qe.

Theorem 7 If T and q satisfy (conf) then, for any ABox A
and ~a ⊆ ind(A), we have (T ,A) |= q[~a] iff IA |= qc[~a].

The size of qc is O(nT ,q · |T | · |q|2). Thus, if every
pair (t, t′) of adjacent terms in q gives rise to polynomi-
ally many distinct tree-witness formulas twf and condition
(conf) holds then qc is a polynomial rewriting of q and T .
(If (conf) does not hold then qc may return wrong answers.)

Example 8 The exponential query qe in Example 6 reduces
to polynomial qc = ∃~y

∧
i≤n(Ri(x, yi) ∨ twfi).

A good illuminative example of a CQ with exponentially
many tree witness formulas is q(y0) over the TBox Tχ con-
structed above for a CNF χ. One can show that the pairs
(zji , z

j
i−1) give rise to exponentially many different tree wit-

ness formulas twf for a suitable χ.

y0
A0

y1 y2
A2

z10

z20

z11

z21

z12

z22

C1

C2

To illustrate, consider the CQ q(y0) for n = m = 2 and sup-
pose that χ is such that the P−X1

1 -subtree of CTχ contains
the fragment as shown in the picture below.

r0 r1

X1
1

r2

X1
2

C2 C2

C2 C2

P− P−

P

P

P

P

We can construct a tree witness f for (z1
1 , z

1
0) by taking

f(z1
1) = r0, f(z1

0) = r1, f(y2) = r2, after which we have
three different options for defining f(z2

1) and f(z2
0): go back

to r0, go to r1 and then take the C2-branch, or take the C2-
branch starting from r2. The last two tree witnesses give the
same tree witness formula, which is different from that given
by the first tree witness. Imagine now some large n and m.
It is this fact that makes it ‘hard’ to construct a rewriting for
q(y0) and Tχ.

The TBox Tχ and CQ q(y0) involve a very complex inter-
play between role inclusions (or concepts of the form ∃R.C)
and inverse roles, which appears to be rather artificial com-
pared to how roles are used in real-world ontologies. The
experiments to be reported later on in the paper demonstrate
that real-world ontologies and queries generate very few tree
witnesses, which are never in conflict, and so the rewriting
qc is both short and correct.

In the next section we analyse conflicting tree witnesses
in more detail.

Conflicting Tree Witnesses
One simple way to tackle the problem of conflicting tree
witnesses, identified in Example 4, would be to introduce a
fresh constant symbol, say ν, representing all the non-ABox
elements of the canonical models. We then use the following
variant of the tree witness formula twf for (t, t′):

twνf = twf ∧
∧

s∈ dom f\f−1(rf)

(s = ν).

We denote the resulting ‘impure’ rewriting by qνc . Given
an ABox A, denote by IνA the interpretation IA extended
with a new domain element (interpreting) ν. Thus, ν is not
involved in the interpretation of any predicate in IA, and so,
of any predicate extE .

279

Example 9 In the context of Example 4, twνg would contain
the conjuncts ext∃R−.>(x4) and (y2 = x4), which cannot
be satisfied in IνA at the same time as the conjunct (y2 = ν)
of twνf . Thus, IνA 6|= qνc (a, a).

The following result shows that qνc is a correct rewriting
over this interpretation.
Theorem 10 For any ABoxA and any~a ⊆ ind(A), we have
(T ,A) |= q[~a] iff IνA |= qνc [~a].

The rewriting qνc can be viewed as a step in the direction
of the combined approach (Lutz, Toman, and Wolter 2009;
Kontchakov et al. 2010), though without expanding the
ABox by applying the TBox axioms. Roughly, in both
cases the RDBMS has to guess whether a bound variable is
mapped to ind(A) or to the tree part of the canonical model.

There is another way to ‘suppress conflicts’ in qc for
the majority of practical cases, while keeping the resulting
rewriting ‘pure.’ For a CQ q, let q+

c be the rewriting ob-
tained from qc by replacing every twf in it with the follow-
ing formula tw+

f :

tw+
f = twf ∧

∧
f,g conflicting

(qg\f)+
c ,

where qg\f denotes the restriction of the query q to the set
dom g \ (dom f \ f−1(rf)) (i.e., all terms in g that are not
non-root terms in f) and (qg\f)+

c , in turn, is the rewriting (as
defined above) of the query qg\f in which all the variables
in f−1(rf) ∪ g−1(rg) are regarded to be answer variables.
Example 11 In the context of Example 4, the rewriting q+

c
is constructed in two steps as follows: first, we obtain a rep-
resentation of q+

c as the following formula:

∃y2, y3

((
R(x1, y2) ∨ tw+

f

)
∧(

R(y3, y2) ∨ tw+
f ∨ tw+

g

)
∧
(
R(y3, x4) ∨ tw+

g

))
,

where

tw+
f = ext∃R(x1) ∧ (x1 = y3) ∧ (R(y3, x4))+

c ,

tw+
g = ext∃R−(x4) ∧ (x4 = y2) ∧ (R(x1, y2))+

c ,

with R(y3, x4) and R(x1, y2) being two new queries, which
have only answer variables. Then, the rewritings of these
two queries coincide with the queries themselves: R(y3, x4)
and R(x1, y2), respectively. So, for example, the modi-
fied tree witness formula tw+

f for f contains the conjunct
R(y3, x4), which cannot be satisfied in the interpretation IA
with A = {A(a)}.
Theorem 12 Suppose that q and T satisfy the condition
(conf1) for every f ∈ Θ, if there are g, h ∈ Θ such that

the pairs f , g and f , h are both conflicting, then either
dom g ⊆ domh or domh ⊆ dom g.

Then, for every ABox A and every ~a ⊆ ind(A), we have
(T ,A) |= q[~a] iff IA |= q+

c [~a].
We do not know any cases where q+

c is not correct. It is
to be noted, however, that the rewriting q+

c can be of expo-
nential size even if every pair (t, t′) in q gives rise to at most
one tree witness.

Example 13 Given a word R1 . . . Rm over roles, define the
CQ

qR1...Rm(x0, xm) = {Ri(xi−1, xi) | 1 ≤ i ≤ m}.

Let σn be the following sequence of words of roles:

σ1 = T1T
−
1 , σn+1 = SnTn+1T

−
n+1S

−
n σnSn, for n ≥ 1.

Now, consider the CQs qn = qσn(x0, xn) and TBoxes Tn =
{An v ∃Rn, An+1 v ∃Sn.An}. It is not hard to see that
qn contains conflicting tree witnesses f and g as shown in
the picture below, the query qn−1 is a subquery of qg\f , and
so (qn−1)+

c occurs in (qn)+
c four times. On the other hand,

there is a constant c such that |qn| = |qn−1|+ c.

x0 y1

y2

y3 y4 y5

y6

y7 y8

y9

y10 y11 x12

S2

T3 T3

S2 S1

T2 T2

S1

T1 T1

S1 S2

f

g

qn−1

Sufficient Conditions for Polynomial
Rewriting

The rewriting qc is exponentially long if there are exponen-
tially many tree witness formulas twf for some pair (t, t′)
of adjacent terms in q. Each twf is determined by the RB-
subtree of CT (containing the range of f), the domain dom f
of f and the set f−1(rf); the terms in this set will be called
the roots of f . Now we show that, for a large class of CQs
q and OWL 2 QL TBoxes T , all tree witnesses for the same
pair (t, t′) in q have the same domain and roots. As the num-
ber of distinct RB-subtrees of CT is polynomial in the size
of T , the rewriting qc in this case is also polynomial; more-
over, we show that it can be constructed in polynomial time
in |q| and |T |. Roughly, Theorem 19 to be proved below
demonstrates that this can be done if condition (conf) holds
and there are no roles T , S and a tree witness f for which
f(q) and CT simultaneously contain fragments of the form

T S T

S

T

S

f(q)

CT

Here, by f(q) we mean the quotient qf/∼ of qf modulo
the equivalence relation ∼ defined by taking s ∼ s′ iff
f(s) = f(s′). Roles T and S are called adjacent in f(q)
if T (s1, s2), S(s2, s3) ∈ f(q), for some si ∈ term f(q)
such that s2 /∈ f−1(rf).

We say that a role S is forward in T if u ; v for all
(u, v) ∈ SCT . If neither S nor its inverse S− is forward then
S is said to be a twisty role in T .

A tree witness f is called perfect if, for every pair T , S of
adjacent roles in f(q) such that S is twisty in T , we have

280

(perf) CT 6|= inv(T, S) ∧ suc(T, S),
where

inv(T, S) = ∃x, y (T (x, y) ∧ S(y, x)),

suc(T, S) = ∃x, y, z (T (x, y) ∧ S(y, z) ∧ (x 6= z)).

Example 14 Consider T1 = {A v ∃T, T v S−} and
q(x) = {T (x, y), S(y, z)}. We have CT1 |= inv(T, S) and
CT1 |= inv(R,R−), for every role R. Both T and S− are
forward roles in T1. The homomorphism f shown below is
a perfect tree witness for (x, y):

x

y

z

T

S

T S−

f

f

f

CT1q

Consider now T2 = {A v ∃T, T v S−, ∃T− v ∃S.A′}.
As CT2 contains the following fragment

A′T

S− S

S is a twisty role in T2, and CT2 |= inv(T, S) ∧ suc(T, S).
Thus, there is no perfect tree witness for (x, y) in q and T2,
though there are two ‘imperfect’ tree witnesses.

It turns out that if all tree witnesses f for a pair of terms
in q are perfect then all of them have the same domain and
roots, and so (i) the tree-witness formulas twf occur in the
disjunctions for the same edges (t, t′) and (ii) the twf may
differ only in their ext∃R.B(t) conjuncts. In the following
example, exponentially many different tree witnesses give
rise to the same tree witness formula.

Example 15 Let q(x) = {S(x, y), R(y, zi) | 1 ≤ i ≤ n}
and T = {A v ∃S, ∃S− v ∃R.B1, ∃S− v ∃R.B2}.
There are 2n (perfect) tree witnesses for (x, y), as each zi
can be mapped either to a B1- or a B2-point in CT . All
these tree witnesses have the same domain (all terms in q)
and only one root (x). They define the same tree-witness
formula ext∃S(x).

The notion of universal tree witness we are about to in-
troduce will serve as a compact representation for all such
similar tree witnesses.

For a pair (t, t′) of adjacent terms in q, a tree-shaped CQ
f is called a universal tree witness for (t, t′) in q and T if
there is a partial homomorphism f from q onto f such that,
for every tree witness g for (t, t′) in q and T ,
– dom g = term(f), and
– there exists a forward homomorphism f ′ from f to CT

such that g(s) = f ′(f(s)), for every s ∈ term(f),
where by a forward homomorphism with understand a ho-
momorphism that preserves the distance from the root (re-
call that both f and CT are tree-shaped).

Lemma 16 (i) If all tree witnesses for a pair (t, t′) of terms
in q and T are perfect, then there is a unique (up to isomor-
phism) universal tree witness for (t, t′) in q and T .

(ii) There is a polynomial-time algorithm which, given q,
T and a pair (t, t′) of adjacent terms in q, checks whether
all the tree witnesses for (t, t′) in q and T are perfect, and
if this is the case, returns a universal tree witness for (t, t′)
in q and T .

As a consequence of this lemma we obtain that, if all tree
witnesses for (t, t′) are perfect, then all of them share the
same domain and roots.

Example 17 In Example 15, a universal tree witness for
(x, y) coincides with the whole query q(x).

In the proof of Lemma 16, we construct a finite sequence
f i of tree-shaped CQs f i such that the final fn is a univer-
sal tree witness for (t, t′). We begin by taking all the atoms
with terms t, t′ and then try to satisfy the tree witness condi-
tion (t1) by adding atoms with new terms to the current f i.
Condition (perf), which is being checked during the con-
struction, allows us to decide whether we have to add a new
term to f i or reuse an existing one. To illustrate, we give
one more example.

x0

y1

y2

y3

y4

S

R′ R

T

q

A

S

R,R′ T−

B

S, T

R,R′

CT

Example 18 Consider T = {A v ∃S.C, C v ∃T−,
∃S− v ∃R, R v R′, B v ∃T ′, T ′ v T, T ′ v S}
and q(x0) = {S(x0, y1), R′(y1, y2), R(y3, y2), T (y4, y3)}
in the picture above. A universal tree witness for (x0, y1)
must contain S(x0, y1). As the role inR′(y1, y2) is forward,
the universal tree witness must contain this atom too. The
role R in R−(y2, y3) is also forward, so we add this atom
and identify y1 with y3. This gives three approximations of
the universal tree witness we are constructing:

x0

y1

S

f1

x0

y1

y2

S

R′

f2

x0

y1 y3

y2

y4

S

R′ R

T

f3

In T (y4, y3), the role T is twisty in T . The canonical model
CT suggests two alternative ways of treating T (y4, y3): ei-
ther to add it as it is, or to identify y4 with root x0. Thus,
no universal tree witness for (x0, y1) exists. This is also sig-
nalled by the fact that condition (perf) fails: by identifying
y1 and y3, we make S and T adjacent, while both suc(S, T)
and inv(S, T) hold in CT . Note that S and T were not adja-
cent in the original query q; that is why (perf) is checked for
the image f(q) of every tree witness f . As the number of
tree witnesses can be exponential, this complication might
suggest that (perf) cannot be checked efficiently. The proof

281

of Lemma 16 shows that this check can be done in polyno-
mial time without constructing all tree witnesses.

Strictly speaking, a universal tree witness is not a tree wit-
ness in the sense of our original definition, but rather a con-
venient structure representing all tree witnesses for (t, t′),
even if there are exponentially many of them. Universal tree
witnesses can be used to further simplify the rewriting qc.
Namely, all formulas twf for (t, t′) are merged into a single
tree-witness formula twf for the universal tree witness f for
(t, t′), which is defined by taking:

twf =
[∨

∃R.B such that there is
a homomorphism h : f→CT

h(t)=aRB
h(t′)=bRB

ext∃R.B(t)
]
∧
∧

s is root of f

(
(t = s) ∧

∧
A(s)∈q

A(s)
)
.

As a universal tree witness is unique for each pair (t, t′)
of adjacent terms, let us denote it by q(t,t′). We are now in a
position to define our polynomial rewriting qp for q and T :

qp(~x) = detachedq ∨

∃~y
∧
{t,t′}
t and t′
adjacent

[(∧
A(s)∈q
s∈{t,t′}

extA(s)∧
∧

R(t,t′)∈q

extR(t, t′)
)
∨
∨

s and s′ adjacent
t,t′∈term(q(s,s′))

twq(s,s′)

]
.

Theorem 19 If all tree witnesses for q and T are perfect
and condition (conf) is satisfied then, for any ABox A and
any ~a ⊆ ind(A), we have (T ,A) |= q[~a] iff IA |= qp[~a].
Moreover, qp is constructed in time polynomial in |q|, |T |.

Theorem 19 can be substantially sharpened by taking ac-
count of the ‘types’ of terms in q.

Example 20 Consider again the TBox T2 from Example 14
and the CQ q1(x) = {T (x, y), S(y, z), A′′(z)}. This time
we have only one tree witness for (x, y). It is not per-
fect; yet, it is type-perfect because the ‘typed’ suc formula
∃x, y, z

(
T (x, y)∧S(y, z)∧A′′(z)∧(x 6= z)

)
does not hold

in CT2 .

If an ontology T does not contain any twisty roles, then
all tree witnesses in any CQ q over T are clearly perfect.
On the other hand, all examples of conflicting tree witnesses
given above involve twisty roles. The following theorem
shows that this is no accident:
Theorem 21 Suppose that q is a CQ and T an OWL 2 QL
ontology without twisty roles. Then there are no conflicting
tree witnesses for q and T . Thus, the rewriting qp for q and
T is correct and can be constructed in polynomial time.

It may be worth noting that OWL 2 EL (Baader, Brandt,
and Lutz 2005; 2008) ontologies satisfy this sufficient con-
dition, and so a polynomial rewriting similar to qp can also
be used for conjunctive query answering over such ontolo-
gies provided that the ABoxes are complete (or saturated)
with respect to the ontologies.

Experiments
To understand how the rewriting qp looks like in real-
world practice, we have run experiments with three known

QuOnto Requiem Presto Nyaya tw/ ext non
size of size of size of size of utw rules ext

UCQ UCQ Datalog UCQ rules
A Q1 783 402 69 249 8/1 53 3

Q2 1,812 103 52 94 1 30 3
Q3 4,763 104 55 104 0 30 1
Q4 7,251 492 93 456 4/1 42 3
Q5 78,885 624 71 624 0 36 1

U Q1 5 2 6 2 0 2 1
Q2 287 148 1 1 0 0 1
Q3 1,260 224 8 4 0 4 1
Q4 5,364 1,628 6 2 0 2 1
Q5 9,245 2,960 11 10 0 7 1
Q6 588 42 19 26 1 16 5
Q7 5,950 630 37 39 2 16 7

S Q1 6 6 7 6 0 6 1
Q2 204 160 3 2 0 2 1
Q3 1,194 480 5 4 0 4 1
Q4 1,632 960 5 4 0 4 1
Q5 11,487 2,880 7 8 0 6 1
Q6 588 564 12 36 1 24 3
Q7 118 106 14 29 1 19 5

OWL 2 QL ontologies—Adolena (A), University (U) and
Stockexchange (S)—using the same conjunctive queries as
in (Pérez-Urbina, Motik, and Horrocks 2009; Rosati and Al-
matelli 2010; Gottlob, Orsi, and Pieris 2011) and two new
ones (Q6 and Q7); the ontologies and queries are available at
www.dcs.bbk.ac.uk/˜roman/query-rewriting. The results of the
experiments are collected in the table above.

The most important conclusion we can draw from these
experiments is that, in practice, queries and ontologies gen-
erate very few tree witnesses, if any; they are never in con-
flict with each other, the sufficient condition of Theorem 19
is satisfied, and so the rewritings qc and qp are both short
and correct.

To describe how the rewritten queries look like and ex-
plain the figures in the table, assume first that a given CQ
q contains no tree witnesses with respect to a given ontol-
ogy T . In this case, qp is obtained from q by replacing
each unary atom A(s) with extA(s) and each binary atom
R(s, s′) with extR(s, s′). Roughly, the extE contain those
concepts/roles that are located under E in the classification
of T by an ontology reasoner. It will be convenient for us to
represent the extE as nonrecursive Datalog programs. For
example, Adolena gives the rules:

extaffects(x, y) :– affects(x, y).

extaffects(x, y) :– isAffectedBy(y, x).

extDevice(x) :– Device(x).
. . .

The column ‘ext rules’ in the table refers to the number of
such Datalog rules for the given CQ and ontology.

Consider now a query containing tree witnesses, for in-
stance the following query Q4 over Adolena:

q(x) = ∃y
(
Device(x) ∧ assistsWith(x, y) ∧

PhysicalAbility(x, y)
)
.

This CQ contains a tree witness f with root
f(x) = aassistsWith,MovementAbility.

282

In this case, for each pair (s, s′) of adjacent terms in q, we
introduce a fresh predicate, say edges,s′ , and define it by
means of a nonrecursive Datalog program such as

edgex,y(x, y) :– extDevice(x), extassistsWith(x, y),
extPhysicalAbility(x, y).

edgex,y(x, y) :– extDevice(x),
ext∃assistsWith.MovementAbility(x).

where the first rule corresponds to choosing both x and y
among the ABox individuals and the second rule comes
from a single universal tree witness for (x, y). Then we re-
place by edges,s′ all the atoms in the CQ that are ‘covered’
by the terms s and s′. In our running example, we obtain

q(x) :– edgex,y(x, y).

The column ‘non-ext rules’ in the table refers to the number
of such rules (one rule for the whole q plus the rules defining
the edges,s′); ‘tw’ gives the number of tree witnesses in the
CQ, and ‘utw’ the number of universal tree witnesses.

In theory, a correct rewriting of a CQ q and an OWL 2 QL
ontology T can be exponential only if q and T give rise to
exponentially many tree witnesses, in which case the canon-
ical model CT must be extremely complex. Our experiments
indicate that, in practice, the contribution of tree witnesses
does not look essential at all, especially in comparison with
the contribution of the definitions of extE , which reflects the
depth and width of the concept and role hierarchies in T
rather than the complexity of CT . Note also that the same
predicates extE are used in all queries, which makes these
predicates an ideal target for optimisations. The ways to
minimise the influence of these rules depend on how we
store the data.

There are two main approaches to storing data in OBDA.
Suppose first that an ABox A is stored in a local database
and the system has a certain degree of control over the data.
In this case, one can saturate A with the intensional data
that is implied by the TBox axioms (more precisely, con-
struct the ABox part of the canonical model). Having done
so, we do not need the extE predicates any more and can
replace them with the corresponding E. The ABox satura-
tion (more precisely, a finite encoding of the whole canoni-
cal model) was suggested in the combined approach (Lutz,
Toman, and Wolter 2009; Kontchakov et al. 2010). How-
ever, the downside of the ABox saturation is a significant
increase of the storage space required for the data (and a
slowdown of updates). One solution to this problem was
found by Rodriguez Muro and Calvanese (2011a; 2011b). In
a nutshell, the idea is to build a ‘semantic index’ by assign-
ing numerical identifiers to the concept names, used in the
ontology, in such a way that all subclasses of a given con-
cept are associated with an interval (or a few intervals) of
numbers. The semantic index allows one to encode the def-
initions of any of the extE predicates as a single query that
selects all instances with concept identifiers falling into the
respective interval(s). In this case, the classical database in-
dexing techniques are employed to ensure efficiency of these
interval queries.

In the other typical OBDA scenario, ABoxes do not come
as sets of triples stored in a single database. Instead, the sets

of individuals that belong to concepts and roles are defined
by means of queries (mappings) to a number of (relational)
data sources (Lenzerini 2002; Calvanese et al. 2007b). Con-
sider, for instance, the rules for the role affects above.
One can clearly expect mappings to be defined in such a
way that affects(a, b) ∈ A iff isAffectedBy(b, a) ∈ A
in every ABoxA. This suggests that, in fact, there is no need
for two separate rules, so that the predicate extaffects can
be eliminated altogether (replaced by affects(x, y), which
halves the number of CQs produced). It is also quite fea-
sible that information about all devices is stored in a single
database relation and mappings for each of the 26 subclasses
of the concept Device select appropriate devices from the
same database relation. In such a case, every ABox A de-
fined by these mappings will be complete for all subclasses
A of Device in the sense thatA(a) ∈ A iff (T ,A) |= A(a).
Therefore, with this information at hand, one can replace
the 26 rules defining extDevice(x) with just a single rule
extDevice(x) : −Device(x), or even eliminate the predi-
cate extDevice(x) altogether.

Conclusions
In this paper, we considered pure (positive existential)
rewritings of conjunctive queries over OWL 2 QL ontolo-
gies and analysed why such rewritings can be lengthy. We
showed that the length of a rewriting is related to the num-
ber of tree witnesses in the query, which reflect how vari-
ous parts of the query can be homomorphically mapped to
the tree (‘intensional’) part of the canonical model. Thus, a
rewriting can be lengthy if the original query is sufficiently
long and the intensional part of the canonical model for the
ontology is sufficiently complex. We proved that by restrict-
ing the interaction between inverse roles and role inclusion
axioms in ontologies and queries, we can guarantee transpar-
ent polynomial rewritings. Moreover, we also demonstrated
that real-world ontologies and queries contain very few tree
witnesses, satisfy the above mentioned restrictions, and so
enjoy polynomial rewritings.
Remark 22 When the final version of this paper was ready
for submission, we obtained some new results that shed
more light on the size of pure rewritings. Below is a brief
summary of these results; for details consult the preliminary
report (Kikot, Kontchakov, Podolskii and Zakharyaschev
2012).
(1) An exponential blow-up is unavoidable for pure positive

existential rewritings (PE) and pure nonrecursive Datalog
(NDL) rewritings; pure FO-rewritings can blow-up super-
polynomially unless NP ⊆ P/poly.

(2) Pure NDL-rewritings are in general exponentially more
succinct than pure PE-rewritings.

(3) Pure FO-rewritings can be superpolynomially more suc-
cinct than pure PE-rewritings.

(4) Impure PE-rewritings can always be made polynomial,
and so they are exponentially more succinct than pure PE-
rewritings.

(1)–(3) are proved by first establishing connections between
pure rewritings for CQs over OWL 2 QL ontologies and cir-
cuits for monotone Boolean functions, and then using known

283

lower bounds and separation results for the circuit com-
plexity of such functions as CLIQUE(n, k) ‘a graph with
n nodes contains a k-clique’ and MATCHING(2n) ‘a bi-
partite graph with n vertices in each part has a perfect
matching’ (Razborov 1985; Borodin, von zur Gathen, and
Hopcroft 1982; Raz and Wigderson 1992; Raz and McKen-
zie 1997)

The polynomial PE-rewriting in (4) is similar to the NDL-
rewriting of Gottlob and Schwentick (2011): using two
extra constants, = and (polynomially-many) new existen-
tially quantified variables, one can encode a relevant part
of the canonical model of T in the rewritten query. The
difference between the resulting impure PE-rewritings and
the exponential-size pure PE-rewritings is of the same kind
as the difference between deterministic and nondetermin-
istic Boolean circuits. As shown by Razborov (1985), no
polynomial-size deterministic monotone circuit can com-
pute CLIQUE(n, k); however, it can be computed by a
polynomial-size nondeterministic circuit (or a QBF), where
the existentially quantified variables guess k vertices and
the circuit checks whether they form a k-clique in the given
graph. In the polynomial impure PE-rewriting (4), the extra
constants, variables and = are used to nondeterministically
guess a part of the canonical model into which the query
can be mapped. (We conjecture that there does not exist an
impure polynomial-size rewriting if the number of new ex-
istentially quantified variables is bounded.)

Acknowledgments
The work on this paper was supported by the U.K. EPSRC
grant EP/H05099X/1.

We are grateful to G. Gottlob, G. Orsi, R. Rosati and
D. Tsarkov who helped us to run the experiments.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P., eds. 2003. The Description Logic Hand-
book: Theory, Implementation and Applications. Cambridge
University Press.
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
envelope. In Proc. of the 19th Int. Joint Conf. on Artificial
Intelligence, IJCAI-05, 364–369. Professional Book Center.
Baader, F.; Brandt, S.; and Lutz, C. 2008. Pushing the EL
envelope further. In Clark, K., and Patel-Schneider, P. F.,
eds., Proc. of the OWLED 2008 DC Workshop on OWL: Ex-
periences and Directions.
Borodin, A.; von zur Gathen, J.; and Hopcroft, J. E. 1982.
Fast parallel matrix and GCD computations. In Proc. of the
23rd Annual Symp. on Foundations of Computer Science,
FOCS’82, 65–71. IEEE Computer Society.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007a. Tractable reasoning and efficient
query answering in description logics: The DL-Lite family.
J. of Automated Reasoning 39(3):385–429.

Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
Poggi, A.; and Rosati, R. 2007b. Ontology-based database
access. In Proc. of the 15th Ital. Conf. on Database Systems,
SEBD 2007, 324–331.
Chortaras, A.; Trivela, D.; and Stamou, G. 2011. Goal-
oriented query rewriting for OWL 2 QL. In Proc. of the 24th
Int. Workshop on Description Logics, DL 2011, vol. 745 of
CEUR Workshop Proceedings. CEUR-WS.org.
Gottlob, G., and Schwentick, T. 2011. Rewriting ontological
queries into small nonrecursive datalog programs. In Proc.
of the 24th Int. Workshop on Description Logics, DL 2011,
vol. 745 of CEUR Workshop Proceedings. CEUR-WS.org.
Gottlob, G.; Orsi, G.; and Pieris, A. 2011. Ontological
queries: Rewriting and optimization. In Proc. of the the 27th
Int. Conf. on Data Engineering, ICDE 2011, 2–13. IEEE
Computer Society.
Kikot, S.; Kontchakov, R.; and Zakharyaschev, M. 2011.
On (In)Tractability of OBDA with OWL 2 QL. In Proc.
of the 24th Int. Workshop on Description Logics, DL 2011,
vol. 745 of CEUR Workshop Proceedings. CEUR-WS.org.
Kikot, S.; Kontchakov, R.; Podolskii, V.; and Zakhary-
aschev, M. 2012. Exponential lower bounds and separation
for query rewriting. CoRR, arXiv:1202.4193, 2012.
Kontchakov, R.; Lutz, C.; Toman, D.; Wolter, F.; and Za-
kharyaschev, M. 2010. The combined approach to query
answering in DL-Lite. In Proc. of the 12th Int. Conf. on
Principles of Knowledge Representation and Reasoning, KR
2010. AAAI Press.
Kontchakov, R.; Lutz, C.; Toman, D.; Wolter, F.; and Za-
kharyaschev, M. 2011. The combined approach to ontology-
based data access. In Proc. of the 20th Int. Joint Conf. on Ar-
tificial Intelligence, IJCAI-2011, 2656–2661. AAAI Press.
Lenzerini, M. 2002. Data integration: A theoretical perspec-
tive. In Proc. of the 21st ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems, PODS 2002, 233–
246.
Lutz, C.; Toman, D.; and Wolter, F. 2009. Conjunctive
query answering in the description logic EL using a rela-
tional database system. In Proc. of the 21st Int. Joint Conf.
on Artificial Intelligence, IJCAI 2009, 2070–2075. AAAI
Press.
Pérez-Urbina, H.; Motik, B.; and Horrocks, I. 2009. A
comparison of query rewriting techniques for DL-Lite. In
Int. Workshop on Description Logics, DL 2009, vol. 477 of
CEUR Workshop Proceedings. CEUR-WS.org.
Raz, R., and McKenzie, P. 1997. Separation of the monotone
nc hierarchy. In Proc. of the 38th Annual Symp. on Founda-
tions of Computer Science, FOCS’97, 234–243. IEEE Com-
puter Society.
Raz, R., and Wigderson, A. 1992. Monotone circuits for
matching require linear depth. J. ACM 39(3):736–744.
Razborov, A. 1985. Lower bounds for the monotone com-
plexity of some Boolean functions. Dokl. Akad. Nauk SSSR
281(4):798–801.
Rodriguez Muro, M., and Calvanese, D. 2011a. Depen-
dencies to optimize ontology based data access. In Proc.

284

of the 24th Int. Workshop on Description Logics, DL 2011,
vol. 745 of CEUR Workshop Proceedings. CEUR-WS.org.
Rodriguez Muro, M., and Calvanese, D. 2011b. Semantic
index: Scalable query answering without forward chaining
or exponential rewritings. In Proc. of the 10th Int. Semantic
Web Conf., ISWC 2011.
Rosati, R., and Almatelli, A. 2010. Improving query an-
swering over DL-Lite ontologies. In Proc. of the 12th Int.
Conf. on Principles of Knowledge Representation and Rea-
soning, KR 2010. AAAI Press.

285

