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Abstract

Given a 4-tuple of Boolean variables (a, b, c, d), log-
ical proportions are modeled by a pair of equivalences
relating similarity indicators (a∧b and a∧b), or dissim-
ilarity indicators (a∧ b and a∧ b) pertaining to the pair
(a, b), to the ones associated with the pair (c, d). Log-
ical proportions are homogeneous when they are based
on equivalences between indicators of the same kind.
There are only 4 such homogeneous proportions, which
respectively express that i) “a differs from b as c differs
from d” (and “b differs from a as d differs from c”),
ii) “a differs from b as d differs from c” (and “b differs
from a as c differs from d”), iii) “what a and b have in
common c and d have it also”, iv) “what a and b have in
common neither c nor d have it”. We prove that each of
these proportions is the unique Boolean formula (up to
equivalence) that satisfies groups of remarkable proper-
ties including a stability property w.r.t. a specific per-
mutation of the terms of the proportion. The first one (i)
is shown to be the only one to satisfy the standard postu-
lates of an analogical proportion. The paper also studies
how two analogical proportions can be combined into a
new one. We then examine how homogeneous propor-
tions can be used for diverse prediction tasks. We partic-
ularly focus on the completion of analogical-like series,
and on missing value abduction problems. Finally, the
paper compares our approach with other existing works
on qualitative prediction based on ideas of betweenness,
or of matrix abduction.

Introduction
Proportions, understood as the identity of relations between
two ordered pairs of entities, say (A,B) and (C,D), play a
crucial role in the way the human mind perceives the world
and tries to make sense of it. Proportions thus involve four
terms, which may not be all distinct. In mathematics, a pro-
portion is a statement of equality between the result of op-
erations involving numerical quantities (i.e., A,B,C,D are
numbers). The geometric proportion amounts to state the
equality of two ratios, i.e., A/B = C/D, while the arith-
metic proportion compares two pairs of numbers in terms
of their differences, i.e., A − B = C − D. In these equali-
ties, which emphasize the symmetric role of the pairs (A,B)
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and (C,D), geometric or arithmetic ratios have an implicit
comparative flavor, and the proportions express the invari-
ance of the ratios. Note that by cross-product for geometric
proportion, or by addition for the arithmetic one, the two
proportions are respectively equivalent to AD = BC and to
A+D = B+C, which makes clear that B and C, or A and
D, can be permuted without changing the validity of the pro-
portion. Moreover, mathematical proportions are at the basis
of reasoning procedures that enable us to “extrapolate” the
fourth value knowing three of the four quantities. Indeed, as-
suming that D is unknown, one can deduce D = C × B/A
in the first case, which corresponds to the well-known “rule
of three”, or D = C + (B−A) in the second case. Besides,
so-called continuous proportions where B = C are directly
related to the idea of averaging, since taking B = C as the
unknown respectively yields the geometric mean (AD)1/2

and the arithmetic mean (A+D)/2.
Already in Ancient Greek time, numerical proportions

were used at the conceptual level for discussing philosoph-
ical matters. For instance, in the Book 5 about Justice of
his Nicomachean Ethics, Aristotle makes explicit reference
to geometric proportions when discussing what is “fair”.
Since Aristotle’s time, analogical reasoning has received a
lot of attention from researchers in many areas, and in par-
ticular from scholars in philosophy, anthropology, cognitive
psychology and linguistics (see, e.g., (Hesse 1959; Durren-
berger and Morrison 1977; Gick and Holyoak 1980; Gentner
1983; Gentner, Holyoak, and Kokinov 2001; Holyoak and
Thagard 1989; French 2002; Lepage, Migeot, and Guillerm
2009)), including artificial intelligence more recently (Hel-
man 1988). However, strangely enough, it seems that there
has been no attempt at providing some logical model of ana-
logical proportions up to two noticeable exceptions, which
have been however fully ignored by the mainstream litera-
ture. The first exception is a proposal by the psychologist
Jean Piaget (1953) (pp. 35–37), where the following defini-
tion of a so-called logical proportion is given: 4 propositions
A, B, C, and D make a logical proportion if the two follow-
ing conditions hold A ∧D = B ∧ C and A ∨D = B ∨ C.
This logical proportion turns out, as we shall see, to be one
among the possible (equivalent) definitions of an analogical
proportion, usually denoted A : B :: C : D, which reads
“A is to B as C is to D” . The second exception is provided
by Sheldon Klein (1982), a computer scientist with a strong
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background in anthropology and linguistics, who introduced
a so-called ATO operator (where ATO stands for “Apposi-
tional Transformation Operator”). This Boolean-like oper-
ator, which is based on the logical equivalence connective,
amounts to compute the 4th argument of an analogical pro-
portion between Boolean vectors (describing the items in
terms of binary features) by applying D = C ≡ (A ≡ B)
componentwise. However, strictly speaking, this calculation
does not always fit with the correct definition of an analogi-
cal proportion, as we shall see.

Motivated by Klein’s proposal, a logical definition of the
analogical proportion expressing that “A differs from B as
C differs from D and B differs from A as D differs from
C” has been justified in (Miclet and Prade 2009). More re-
cently, the authors of this paper, before rediscovering (Pi-
aget 1953), have introduced the idea of logical proportions
defined as 2 joint equivalences between indicators pertain-
ing to the similarity or the dissimilarity of A and B, and
of C and D respectively (Prade and Richard 2010c). More
precisely, the conjunction of two positive or two negative
atoms, by modeling their common truth or common fal-
sity, expresses similarity, while the conjunction of a posi-
tive atom and a negative atom expresses dissimilarity. The
analogical proportion then appears as a particular logical
proportion, still especially remarkable, in company of two
other companion proportions obtainable through permuta-
tions. Among a rather large number of logical proportions
(Prade and Richard 2010c; 2010a), a subset of 15 logical
proportions acknowledging that (A,A) and (A,A) should
make a proportion (“full identity”), has been singled out.

In this paper, we provide new steps in this study, first by
showing that a subset of 4 logical proportions, called homo-
geneous are the only ones to satisfy symmetry together with
a property of independency with respect to encoding. These
4 proportions are the analogical proportion and its two com-
panions, together with a new one violating “full identity”.
This latter proportion expresses that “what A and B have in
common, neither C nor D have it, and conversely what C
and D have in common, neither A nor B have it”. We shall
show that it is the only logical proportion that is invariant un-
der any permutation of its four components, while the three
other proportions are characterized by distinct permutation
properties. Secondly, we exploit the extrapolation power of
logical proportions for discussing the missing value abduc-
tion problem, which amounts to complete empty cells in a
table on the basis of (a usually small number of) complete
examples.

The paper is organized as follows. After a background
gathering the previous results needed for the study, we
identify homogeneous logical proportions, and characterize
them in different ways, by laying bare their remarkable prop-
erties, and emphasizing their semantics. We then show how
the patterns of homogeneous proportions are useful for com-
pleting empty cells in tables, using both IQ test (including
Raven’s test) and commonsense prediction problems for il-
lustrating the extrapolation and interpolation power of these
proportions. The approach is compared to the few existing
approaches attacking the same plausible prediction problem.

Background on logical proportions
We first introduce the similarity and dissimilarity indicators
used for defining logical proportions, from which we iden-
tify the 4 homogeneous proportions that can be defined.

Similarity and dissimilarity indicators Generally speak-
ing, the comparison of two items A and B relies on the rep-
resentation of these items. For instance, if an item is rep-
resented as a subset of a referential of binary features X
(Tversky 1977), a precise meaning can be given to common
features and specificities, then to similarities and dissimilar-
ities by simply using set operators. Nevertheless, since we
are not looking for any global measure, we adopt a logical
setting that we explain now. Let ϕ be a property, which can
be seen as a predicate: ϕ(A) may be true (in that case ¬ϕ(A)
is false), or false. When comparing two items A and B w.r.t.
ϕ, it makes sense to consider A and B similar (w.r.t. ϕ):

- when ϕ(A) ∧ ϕ(B) is true or
- when ¬ϕ(A) ∧ ¬ϕ(B) is true.

In the remaining cases:
- when ¬ϕ(A) ∧ ϕ(B) is true or
- when ϕ(A) ∧ ¬ϕ(B) is true,

we can consider A and B as dissimilar w.r.t. property ϕ.
ϕ(A) and ϕ(B) being ground formulas, they can be con-
sidered as Boolean variables, denoted a and b by abstract-
ing w.r.t. ϕ. Then A,B,C,D can be viewed as represented
respectively by vectors (a1, ..., an), (b1, ..., bn), (c1, ..., cn),
(d1, ..., dn), where ai = ϕi(A), bi= ϕi(B), ci= ϕi(C), di=
ϕi(D) are instances of a set of Boolean variables encoding
the truth value of n properties ϕi applicable to A,B,C,D. If
the conjunction a∧ b is true, the property is satisfied by both
items A and B, while the property is satisfied by neither A
nor B if a ∧ b1 is true. This leads us to call such a conjunc-
tion of Boolean literals an indicator, and for a given pair of
Boolean variables (a, b), we have 4 distinct indicators:

• a ∧ b and a ∧ b that we call similarity indicators,

• a ∧ b and a ∧ b that we call dissimilarity indicators.

In a logical proportion, 4 items are involved: A, B, C, and
D. The simplest way for expressing a comparison between
the pair (A,B) and the pair (C,D) appears to consider an
equivalence between 2 indicators, like for instance a ∧ b ≡
c ∧ d. For the remaining of the paper, we stick to the lower
case notation when a, b, c and d denote Boolean variables.

Analogical and other logical proportions Following the
introductory discussion, it makes sense to encode an analog-
ical proportion with the conjunction

(a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)

as it is the logical counterpart of “a differs from b as c differs
from d”, and conversely. As a consequence, it is legitimate
to consider all the conjunctions of 2 equivalences between
indicators: such a conjunction is called a logical proportion
(Prade and Richard 2010c; 2010a). More formally, let I(a,b)

1The overline denotes Boolean negation.
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and I ′(a,b)
2 (resp. I(c,d) and I ′(c,d)) denote 2 indicators for

(a, b) (resp. (c, d)).
Definition 1 A logical proportion T (a, b, c, d) is the con-
junction of 2 distinct equivalences between indicators of the
form

(I(a,b) ≡ I(c,d)) ∧ (I ′(a,b) ≡ I ′(c,d))

Since we have to choose 2 distinct equivalences among
4 × 4 = 16 possible ones for defining a logical propor-
tion, we have [162 ] = 120 such proportions and it has been
shown that they are all semantically distinct. Consequently,
if two proportions are semantically equivalent, they have the
same expression as a conjunction of two equivalences be-
tween indicators (up to the symmetry of the conjunction).
This formal definition goes beyond what may be expected
from the informal idea of “logical proportion”, since equiva-
lences may be put between things that are not homogeneous,
i.e., mixing similarity and dissimilarity indicators in various
ways. An example of such an “heterogenous” proportion is

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d)).

The 4 homogeneous logical proportions When we add
the constraint of considering fully homogeneous equiva-
lences only, i.e., considering logical proportions that involve
only dissimilarity, or only similarity indicators, 4 logical
proportions remain which are listed below with their name:
• analogy: A(a, b, c, d), defined by

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

• reverse analogy: R(a, b, c, d), defined by

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

• paralogy: P (a, b, c, d), defined by

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

• inverse paralogy: I(a, b, c, d), defined by

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

Reverse analogy expresses that “a differs from b as d dif-
fers from c”, and conversely; paralogy expresses that “what
a and b have in common, c and d have it also”. The truth ta-
bles of these homogeneous proportions are recalled in Table
1, where we only show the lines leading to truth value 1. For
them, we observe that only 6 lines among 24 = 16 lead to
truth value 1. It can be proved that this is a general property
of any of the 120 logical proportions. When we realize that,
among all the [166 ] = 8008 Boolean formulas involving 4
variables and having exactly 6 lines leading to true, we have
120 logical proportions, it makes these proportions all the
more singular. The following proposition, easily deducible
from the definition, establishes a link between analogy, re-
verse analogy and paralogy (while inverse paralogy I is not
related to the 3 others through a simple permutation):

2Note that I(a,b) (or I ′(a,b)) refers to one element in the set {a∧
b, a∧ b, a∧ b, a∧ b}, and should not be considered as a functional
symbol: I(a,b) and I(c,d) may be indicators of two different kinds.
Still, we use this notation for the sake of simplicity.

Table 1: Analogy, Reverse analogy, Paralogy, Inverse Paral-
ogy truth tables

A R
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0
0 1 0 1 0 1 1 0
1 0 1 0 1 0 0 1

P I
0 0 0 0 1 1 0 0
1 1 1 1 0 0 1 1
1 0 0 1 1 0 0 1
0 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

Proposition 1 A(a, b, c, d)↔ R(a, b, d, c)
and A(a, b, c, d)↔ P (a, d, c, b).

It is not the aim of this paper to go deeper in a global inves-
tigation of the whole set of logical proportions: we focus on
the 4 homogeneous proportions A,R, P, I and we show that
they stand out of the logical proportions.

Semantics of homogeneous proportions and
their uniqueness

It is interesting to take a closer look at the truth tables of
the four homogeneous proportions. First, one can observe
in Table 1, that 8 possible valuations for (a, b, c, d) never
appear among the patterns that make A, R, P , or I true:
these 8 valuations are of the form x x x y, x x y x, x y x x,
or y x x x with x 6= y and (x, y) ∈ {0, 1}2. As can be seen,
it corresponds to situations where a = b and c 6= d, or a 6= b
and c = d, i.e., similarity holds between the components
of one of the pairs, and dissimilarity holds in the other pair.
Moreover, the truth table of each of the four homogeneous
proportions, is built in the same manner:

• 1) two lines of the table correspond to the characteristic
pattern of the proportion; namely the two lines where one
of the two equivalences in its definition holds true under
the form 1 ≡ 1 (rather than 0 ≡ 0). Thus,

– A is characterized by the pattern x y x y (corresponding
to valuations 1 0 1 0 and 0 1 0 1), i.e. we have the same
difference between a and b as between c and d;

– R is characterized by the pattern y x x y (corresponding
to valuations 1 0 0 1 and 0 1 1 0), i.e. the differences
between a and b and between c and d are in opposite
directions;

– P is characterized by the pattern x x x x (correspond-
ing to valuations 1 1 1 1 and 0 0 0 0), i.e. what a and b
have in common, c and d have it also;

– I is characterized by the pattern x x y y (corresponding
to valuations 1 1 0 0 and 0 0 1 1), i.e. what a and b
have in common, c and d do not have it, and conversely.
Thus, the six lines of the truth table of A that makes
it true are induced by the characteristic patterns of A,
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P , and I 3, the six valuations that makes P true are
induced by the characteristic patterns of P , A, and R,
and so on for R and I .

• 2) the four other lines of the truth table of an homoge-
neous proportion T are generated by the characteristic
patterns of the two other proportions that are not opposed
to T (in the sense that A and R are opposed, as well as
P and I). For these four lines, the proportion holds true
since its expression reduces to (0 ≡ 0) ∧ (0 ≡ 0).

As can be seen, starting from analogical proportion, we have
extended the well known notion of numerical proportion to
the idea of logical proportions, and identify four homoge-
neous proportions. We now investigate what could be ex-
pected from homogeneous proportions, which would be the
logical counterpart of properties observed for numerical pro-
portions. We start with the property of independency with
respect to the encoding, which is implicitly at work in the
above analysis in terms of patterns, where we did not distin-
guish between the values 1 or 0 for x, and for y 6= x.

Code independency Just as a numerical proportion a
b =

c
d holds independently of the base used for encoding num-
bers, it seems natural to expect that the logical proportions
should be independent of the way we encode items in terms
of the truth or the falsity of properties. For instance a ∧ b
represents what is specific to a w.r.t. b, without any consider-
ation about the way we represent the truth and the falsity. As
a consequence, the formula defining that proportion should
be valid when we switch 0 to 1 and 1 to 0 in the coding of a
valuation. The formal expression of this requirement is:

T (a, b, c, d)→ T (a, b, c, d)

and we call this property “code independency”. Another rea-
son to look for the above property is to consider that the
negation is the counterpart for logical proportions of the in-
verse (resp. opposite) in geometric (resp. arithmetic) pro-
portions, where we have a

b = c
d implies

1
a
1
b

=
1
c
1
d

and

a − b = c − d implies −a − (−b) = −c − (−d)4. The
“code independency” property appears to be a very restric-
tive property since we have the following result:
Proposition 2 There are exactly 8 proportions satisfying
the code independency property including the 4 homoge-
neous proportions A,R, P, I .

Proof: Since both T (a, b, c, d) and T (a, b, c, d) are logical
proportions (in the sense of Definition 1), code indepen-
dency tells us that they have the same truth table so the 2
proportions should be identical (up to a permutation of the
2 equivalences). This exactly means that the second (resp.

3The measure of analogical dissimilarity introduced in (Miclet,
Bayoudh, and Delhay 2008) is 0 for the valuations corresponding
to the characteristic patterns of A, P , and I , maximal for the valu-
ations corresponding to the characteristic patterns of R, and takes
the same intermediary value for the 8 valuations characterized by
one of the patterns x x x y, x x y x, x y x x, or y x x x.

4For arithmetic proportions between numbers in [0, 1], and the
complementation to 1 as a pseudo inverse, we have: if a−b = c−d
then (1− a)− (1− b) = (1− c)− (1− d).

first) equivalence is obtained from the first (resp. second)
one by negating all the variables. Since we have 4×4 equal-
ities between indicators, we can build exactly 16/2 = 8 pro-
portions satisfying code independency property: each time
we choose an equivalence, we use it and its negated form to
build up a suitable proportion. 2

Symmetry In the numerical case, due to the symmetry of
the = operator, when a

b = c
d holds, then c

d = a
b holds as

well. Its counterpart for logical proportions is formally ex-
pressed via the following “symmetry property”:

T (a, b, c, d)→ T (c, d, a, b)

A very remarkable result is then:
Proposition 3 A,R, P, I are the only logical proportions to
satisfy code independency and symmetry.
Proof: Obviously, A,R, P, I satisfy both properties. The fact
that the 4 other proportions satisfying code independency
are not symmetric can be easily checked. 2

It means that, despite the fact we have many options for
defining a logical proportion in terms of equivalences, only
4 of them really fit with the natural concept of proportion.

Transitivity Another property that we might expect for a
proportion is the transitivity coming from the equality: a

b =
c
d and c

d = e
f entails a

b = e
f . For a logical proportion T , this

is formally translated into:

T (a, b, c, d) ∧ T (c, d, e, f)→ T (a, b, e, f)

We have the following result (easy to check on truth tables):
Proposition 4 A and P are transitive, R and I are not tran-
sitive. Moreover,

R(a, b, c, d) ∧R(c, d, e, f)→ A(a, b, e, f)
I(a, b, c, d) ∧ I(c, d, e, f)→ P (a, b, e, f)

Thus two reverse analogies in cascade make an analogy. The
last property fits with the intuition that paralogy expresses a
form of logical parallelism, while inverse paralogy expresses
a form of logical orthogonality (taking two times orthogonal
directions in a two dimension space builds a parallel).

Permutations In the numerical setting, there is a famous
property known as “the permutation of extremes and means
property”, which in fact covers a pair of properties:
• means’s permutation: if a

b = c
d holds then a

c = b
d holds

• extremes’s permutation: if a
b = c

d holds then d
b = c

a holds
Investigating the same idea in the logical setting, we may
look for the logical proportions satisfying a permutation of
the means for instance, i.e., a property such as:

T (a, b, c, d)→ T (a, c, b, d)

Since we have 4 variables involved, we have a set of
24 permutations, but we are only interested here in per-
mutations exchanging the place of two elements, the so-
called transpositions. There are exactly 6 such permu-
tations, and we denote them with obvious notations by
p12, p13, p14, p23, p24, p34. Thus, p23 is the permutation
of the means and p14 is the permutation of the extremes.
The property above is just the stability of a proportion T
w.r.t. p23. We have the following results:
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Proposition 5 • A and I are the only logical proportions
satisfying symmetry and being stable for permutation p23,
i.e. the permutation of the means. The same result holds
replacing p23 by p14 (permutation of extremes).
• P and I are the only logical proportions satisfying sym-

metry and being stable for permutation p12. The same
result holds replacing p12 by p34.
• R and I are the only logical proportions satisfying sym-

metry and being stable for permutation p24. The same
result holds replacing p13 by p24.

Moreover, the following amazing result holds:

Proposition 6 I is the only logical proportion stable for
each of the 6 transpositions.

Proof: It is easy to check that these permutations induce a
partition of the set of valuations into 5 classes, each of them
being closed for these 6 permutations:

• the class {0000} and the class {1111}
• the class {0111, 1011, 1101, 1110}
• the class {1000, 0100, 0010, 0001}
• the class {0101, 1100, 0011, 1010, 1001, 0110}
Taking into account that a logical proportion is true for
only 6 valuations, we only have 3 options: a proportion
valid for {0000}, {1111} and {0111, 1011, 1101, 1110}, or
for {0000}, {1111} and {1000, 0100, 0010, 0001}, or for
{0101, 1100, 0011, 1010, 1001, 0110}. It appears that the
latter class is just the truth table of inverse paralogy. Now
let us consider an equivalence between indicators

l1 ∧ l2 ≡ l3 ∧ l4

validated by the class {0111, 1011, 1101, 1110}. The 2 last
valid valuations show that the truth value of l3 ∧ l4 does
not change when we exchange 0 and 1. There are only 2 in-
dicators for (c, d) satisfying this property: c ∧ d and c ∧ d.
The same reasoning applies considering the 2 first valuations
showing that an equivalence between indicators satisfying
this class of 4 valuations should be of the type a∧b ≡ c∧d or
a∧b ≡ c∧d, which obviously are not satisfied by the 4 valua-
tions {0111, 1011, 1101, 1110}. In fact, we have proved that
the class {0111, 1011, 1101, 1110} cannot validate an equiv-
alence between indicators, and thus not a logical proportion
(which requires two such equivalences). The same reasoning
applies to {1000, 0100, 0010, 0001}, achieving the proof. 2

Trivial proportions For numerical proportions, we obvi-
ously have a

b = a
b and a

a = b
b , whose translation for logical

proportions means:

T (a, b, a, b) and T (a, a, b, b) are true.

We have the following result:

Proposition 7 A is the unique proportion satisfying
T (a, b, a, b) and p23 (and thus also T (a, a, b, b)).
P is the unique proportion satisfying T (a, b, a, b) and p34

(and thus also T (a, b, b, a)).
R is the unique proportion satisfying T (a, a, b, b) and p24

(and thus also T (a, b, b, a)).

Proof: Similar to the proof of Proposition 6. Let us con-
sider the first statement for instance. T (a, b, a, b) implies
that T (0, 0, 0, 0), T (1, 1, 1, 1), T (1, 0, 1, 0) and T (0, 1, 0, 1)
hold. Adding the fact that T is stable for the permutation
of the mean p23, we get that T (1, 1, 0, 0) and (T (0, 0, 1, 1)
hold as well, leading to the truth table of A. 2

Inverse and negation Proposition 2 has established a first
link between the 4 homogeneous proportions A,R, P, I and
the negation operator, namely code independency:

T (a, b, c, d)→ T (a, b, c, d).

When we deal with the arithmetic or geometric proportions
between real numbers, we respectively have the opposite
of a number a, namely −a, and the multiplicative inverse,
namely 1

a (when a 6= 0), as inverse. Then, we have the fol-
lowing trivial numerical proportions:

a− b = (−b)− (−a) (1);
a

b
=

1
b
1
a

(2)

whose Boolean counterpart is T (a, b, b, a). These concerns
lead to the following result (just checking the definitions):
Proposition 8 Among the homogeneous proportions (i.e.
A,R, P, I),
A and I are the only ones satisfying T (a, b, b, a),
R and I are the only ones satisfying T (a, b, a, b),
P and I are the only ones satisfying T (a, a, b, b).

The four homogeneous proportions A,R, P, I can be related
through permutations and negation as follows (trivial proof):
Proposition 9

A(a, b, c, d)↔ R(a, b, c, d),
A(a, b, c, d)↔ P (a, b, c, d),
A(a, b, c, d)↔ I(a, b, c, d).

Only the analogical proportion A sticks to the properties of
arithmetic or geometric numerical proportions. Indeed in-
verse paralogy I misses one basic requirement, namely full
identity, i.e. T (a, a, a, a). We have seen that among all the
logical proportions, the homogeneous ones are made sin-
gular by the remarkable properties they enjoy, while being
closely related in different ways. Then it should not come as
a surprise that A,R, P, I play an important role in diverse
prediction activities as we shall see in the next sections.

Completing an analogical pattern
As previously mentioned, the notion of proportion is closely
related to the idea of extrapolation, i.e. to guess/compute a
new value on the ground of existing values. In other words,
if for some reason, it is believed or known that a proportion
holds between 4 binary items, 3 of them being known, then
one may kook for the value of the 4th one. For geometric
proportions, it leads to solve the equation a

b = c
x when the

last item is missing. This may be considered as a simple ab-
duction principle: knowing that d should be in proportion
with a, b and c, we can take d as being the solution of the
equation a

b = c
x (i.e. b∗c

a ) where x is the unknown. This is
nothing but the “rule of three”. The counterpart of such an
equation solving process can be easily adapted to homoge-
neous logical proportions as we shall see in the next section.

406



Logical proportions and equation solving
In the context of logical proportions, the equation solving
problem can be stated as follows. Given a logical proportion
T and a valuation v such that v(a), v(b), v(c) are known,
does it exist a Boolean value x such that v(T (a, b, c, d)) = 1
when v(d) = x, and in that case, is this value unique? For
the sake of simplicity, a propositional variable a is denoted
as its truth value v(a), and we use the equational notation
T (a, b, c, x) = 1, where x ∈ {0, 1} is unknown. First of
all, it is easy to see that there are always cases where the
equation has no solution. Indeed, the triple a, b, c may take
23 = 8 values, while any proportion T is true only for 6
distinct valuations, leaving at least 2 cases with no solution.
For instance, when we deal with analogy A, the equations
A(1, 0, 0, x) and A(0, 1, 1, x) have no solution. When con-
sidering the homogeneous proportions A,R, P, I , we have
the following result (already shown in (Prade and Richard
2010c) except for I):

Proposition 10
The analogical equation A(a, b, c, x) is solvable iff (a ≡
b) ∨ (a ≡ c) holds.
The reverse analogical equation R(a, b, c, x) is solvable iff
(b ≡ a) ∨ (b ≡ c) holds.
The paralogical equation P (a, b, c, x) is solvable iff (c ≡
b) ∨ (c ≡ a) holds.
In each of the three above cases, when it exists, the unique
solution is given by x = c ≡ (a ≡ b), i.e. x = a ≡ b ≡ c.
The inverse paralogical equation I(a, b, c, x) is solvable iff
(a 6≡ b) ∨ (b 6≡ c) holds. In that case, the unique solution is
x = c 6≡ (a 6≡ b).

As we can see, the first 3 homogeneous proportions A,R, P
behave similarly. Still, their conditions of equation solvabil-
ity differ. Moreover, it can be checked that at least 2 of
these proportions are always simultaneously solvable. Be-
sides, when they are solvable, there is a common expression
that yields the solution. This again points out a close rela-
tionship between A, R, and P . This contrasts with propor-
tion I which in some sense behaves in an opposite manner.

This simple equation-solving process allows us to com-
plete a sequence of 3 Boolean values, but we can do much
more than that, just by extending the notion of proportion
from B to Boolean vectors in Bn as follows:

T (→a ,
→
b ,→c ,

→
d ) iff ∀i ∈ [1, n], T (ai, bi, ci, di).

The solving process is still effective: instead of getting one
Boolean value, we get a Boolean vector, by solving equa-
tions componentwise. If we consider a Boolean vector as the
bitmap description of a picture (thus considered at the pixel
level), solving an equation A(→a ,

→
b ,→c ,→x ) is just about

trying to complete a sequence of 3 pictures as it is often the
case in IQ tests. In fact, a noticeable part of the IQ tests are
based on providing incomplete analogical proportions (see,
e.g., (French 2002)): the 3 first items a, b, c are given and the
4th item d has to be chosen among several plausible options.
When the items are pictures, our method applies, possibly
leading to a solution as it is the case for Figure 1. This tech-

Figure 1: IQ test: Graphical analogy

nique5 automatically builds triangles, circles, and more gen-
erally any geometric figures without having any knowledge
of what a triangle or a circle is, or of any geometric concept,
just by considering the objects at a pixel level, as recently
pointed out in (Prade and Richard 2011).

This agrees with a logical encoding of items A, B, C
described respectively, in the example of Figure 1 by vec-
tors (1, 0, 1, 0, 1), (1, 0, 0, 1, 1), (0, 1, 1, 0, 1), where the vec-
tor components refer respectively to the presence (or not)
of a square, of a triangle, of a star, of a circle, of a black
point. By the componentwise solving of the analogical pro-
portion equations expressing that A(ai, bi, ci, xi) holds true
for i = 1, 5, we easily get X = (0, 1, 0, 1, 1), which cor-
responds to the result exhibited in Figure 1. Note that X is
directly computed with this method, not chosen among a set
of more or less “distant” potential solutions. It is not diffi-
cult to build sequences of 4 pictures, where the display of
squares, triangles, stars, circles and black dots is different,
and where the fourth picture would be obtained via one of
the three other homogeneous proportions R,P , or I .

However, such a basic process, based on a straightforward
extension of logical proportions to a multiple-dimensional
setting, is not powerful enough to complete more sophis-
ticated sequences of pictures or proportions like “abc is to
abd what ijk is to ?”, where a vectorial representation is not
suitable. We need a more general approach.

Extensions of the analogical proportion patterns
The above example suggests that it is advisable to extend
the notion of analogical proportion beyond Boolean lattices
and to take into account the underlying structure if any. We
may do that in two manners:

i) Let us start from a typical example to understand the
matter: let us suppose we have to complete the sequence 1 :
2 :: 7 :? in an analogical way. In that case, we are naturally
led to try to apply to the third item 7 the function which may
have been applied to 1 to get 2. This is equivalent to take as
granted an analogical pattern such as

A(~x, ~f(x), ~y, ~f(y)) (3)

where f is a function from X to X ′, including x and y in its
domain X , and f(x) and f(y) in its co-domain X ′. Having
X 6= X ′ gives the freedom to handle items from different
types in the same analogical proportion. In fact, a purely

5It is clear that the analogical proportion-based technique ap-
plied at the pixel level would fail to work unless all the geometric
shapes (squares, triangles, stars, circles) use exactly the same pixels
in all cases.
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presence of x y f

x 1 0 0
f(x) 1 0 1
y 0 1 0
? ? ? ?

Figure 2: A Boolean representation of A(~x, ~f(x), ~y, ?)

Boolean vector interpretation as in Figure 2 (namely x is
represented by ~x = (1, 0, 0), y by ~y = (0, 1, 0), and f(x)

by ~f(x) = (1, 0, 1)) exhibits the fact that we get the vec-
tor (0, 1, 1) that represents f(y) as solution of the analogical
equation, componentwise. This shows the full agreement of
the logical view with the pattern (3). Thus, this pattern pro-
vides a Boolean representation of the informal analogical
proportion pattern x : f(x) :: y : f(y). ii) Another option
is to consider existing composition laws and to compose 2
analogical proportions to build up a new one. For instance, a
simple result can be proved within our Boolean framework:
Proposition 11

A(a, b, c, d)→ A(a ∨ e, b ∨ e, c ∨ e, d ∨ e)

A(a, b, c, d)→ A(a ∧ e, b ∧ e, c ∧ e, d ∧ e)

These properties express a restrictive form of compatibil-
ity of the analogical proportion with the 2 internal laws
of the Boolean lattice. Namely, the analogical propor-
tion A(a, b, c, d) is composed with the trivial proportion
A(e, e, e, e) using ∧ or ∨, and we get a new analogical pro-
portion. A general form of such a rule would be:
A(a, b, c, d) ∧A(a′, b′, c′, d′)→ A(a.a′, b.b′, c.c′, d.d′)

where . denotes an internal law on a Boolean lattice. In fact,
as soon as we have an algebraic structure over the underly-
ing universe X , the notion of analogical proportion can be
defined and the inductive principle, based on the equation
solving process, can be generalized. We refer to (Stroppa
and Yvon 2005; 2006) for a detailed investigation of such
an idea. When we have an internal composition law, which
is associative, it is possible to introduce the notion of factor-
ization of an element of the underlying set. Starting from this
factorization, the authors provide a definition for analogical
proportion which is “factor-wise” in some sense. This defini-
tion applies to lattices since they are equipped with commu-
tative and associative laws. However, the definition of ana-
logical proportions that they obtain in the case of Boolean
lattice structure turns out to be much less restrictive than
ours since then A(a, b, c, d) holds true not only for the 6 val-
uations (shown in Table 1) characterizing the analogical pro-
portion, but also for the valuations 0111, 1011, 1101, 1110.6
We summarize in Table 2 the generic analogical patterns that
we have defined. The letters a, b, c, d now represent items of
a general universe, which is not necessarily a Boolean struc-
ture, f denotes a function, and . a binary operator (we omit
the symbol A).

6In fact, the definition given in (Stroppa and Yvon 2006)
amounts, for distributive lattices, to defining A(a, b, c, d) only by
the equivalence (a ∨ b) ≡ (c ∨ d), which holds true for 10 distinct
valuations over 16.

a b a b or a a b b (1) basic patterns

a f(a) b f(b) (2) functional extension

→a
→
b→c
→
d (3) vector extension

a b c d | → a.a′ b.b′ c.c′ d.d′ (4) compositional extension
a′ b′ c′ d′|

Table 2: Generic analogical patterns

Copycat example If instead of dealing with a Boolean lat-
tice, we extend analogical proportions to the set of strings,
we are able to deal with analogical proportion puzzles like
the following one taken from the work (known as the Copy-
cat project) of (Hofstadter and Mitchell 1995),

if abc−− > abd then ijk −− >?

In that case, we proceed as follows:

• ab ab ij ij (pattern 1)

• c succ(c) k succ(k) (pattern 2) where succ is the suc-
cessor function on the Latin alphabet

• ab.c ab.succ(c) ij.k ij.succ(k) (pattern 4) where the .
operator is the string concatenation

Then we get ? as ijl. Let us note that abc abd ijk ijk,
sometimes suggested since c does not appear in ijk is sim-
ply not an option if we admit that we have to follow the
pattern of an analogical proportion: indeed, a b c c is not
an analogical pattern when a 6= b.

Analogical proportions in Raven’s tests
A mine of examples is coming from the IQ tests litera-
ture. As in the previous case, some IQ tests are based on
sequences of letters or words (or sentences) to be com-
pleted. Nevertheless, in order to avoid the bias of a cultural
background, a lot of IQ tests are picture-based instead of
vocabulary-based. There is a set of well-known IQ tests,
the so-called Raven’s Progressive Matrices (Raven 2000),
which are picture-based, and are considered as a reference
for measuring the reasoning component of “the general in-
telligence”. Moreover, recently (Lovett, Forbus, and Usher
2010) have investigated a computational model for solving
Ravens Progressive Matrices. This model combines qualita-
tive spatial representations with analogical comparison via
structure-mapping (Gentner 1983). In the following, we sug-
gest that the Boolean approach can be also used for solving
such a test (see (Prade and Richard 2011) for another exam-
ple).

Each test is constituted with a 3x3 matrix pic[i, j] of pic-
tures where the last picture pic[3, 3] is missing and has to be
chosen among a panel of 8 candidate pictures. An example
is given in Figure and its solution in Figure 4. We assume
that the Raven matrices can be understood in the following
way, with respect to rows and columns:

∀i ∈ [1, 2],∃f such that pic[i, 3] = f(pic[i, 1], pic[i, 2])
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Figure 3: Raven test

Figure 4: Raven test: the solution

∀j ∈ [1, 2],∃g such that pic[3, j] = g(pic[1, j], pic[2, j])

The two complete rows (resp. columns) are supposed
to help to discover f (resp. g) and to predict the
missing picture pic([3, 3]) as f(pic[3, 1], pic[3, 2]) (resp.
g(pic[1, 3], pic[2, 3])).

Obviously, these tests do not fit the standard equation
solving scheme, but they follow an extended one. Indeed, the
extended analogical scheme (pattern (2)) has to be applied
for telling us that A((a, b), f(a, b), (c, d), f(c, d)) holds for
lines and A((a, b), g(a, b), (c, d), g(c, d)) for columns, i.e.

A((pic[1, 1], pic[1, 2]), pic[1, 3], (pic[2, 1], pic[2, 2]), pic[2, 3])

A((pic[1, 1], pic[2, 1]), pic[3, 1], (pic[1, 2], pic[2, 2]), pic[3, 2])

Thus, in that case, we have to consider a pair of cells
(pic[i, 1], pic[i, 2]) as the first element of an analogical
proportion, and then the pair ((pic[i, 1], pic[i, 2]), pic[i, 3])
provides the 2 first element a and b of the analogical propor-
tion we are considering. In terms of coding, in the example
of Figure 3, we may consider the pictures as represented
by a pair (or vector) (hr, vr) with one horizontal rectangle
hr and a vertical one vr, each of these rectangles having
one color among Black,White,Grey, we have then the
following obvious encoding of the matrix in Table 3. It leads
to the following analogical patterns (using the traditional
notation):

(WB,GG) : BW :: (GW, BB) : WG (1st and 2nd rows)
(WB,GG) : BW :: (BG,WW) : ?i?ii (1st and 3rd rows)
where BW = f(WB,GG) and WG = f(GW,BB).

(WB,GW) : BG :: (GG, BB) : WW (1st and 2nd columns)
(WB,GW) : BG :: (BW,WG) : ?i?ii (1st and 3rd columns)
where BG = f(WB,GW) and WW = g(GG,BB),

1 2 3
1 WB GG BW
2 GW BB WG
3 BG WW ?i?ii

Table 3: A coding of the Raven matrix example

or if we prefer, since analogical proportions holds compo-
nentwise, we have the following proportions

- for the horizontal bars:
(W,G) : B :: (G, B) : W (horizontal analysis)
(W,G) : B :: (B,W) : ?i (horizontal analysis)
(W,G) : B :: (G, B) : W (vertical analysis)
(W,G) : B :: (B,W) : ?i (vertical analysis)
- for the vertical bars:
(B,G) : W :: (W, B) : G (horizontal analysis)
(B,G) : W :: (G,W) : ?ii (horizontal analysis)
(B,W) : G :: (G, B) : W (vertical analysis)
(B,W) : G :: (W,G) : ?ii (vertical analysis)

One can observe that the item (B,W ) appears only in
the analogical proportions with question marks for horizon-
tal bars, while the items (G,W ) and (W,G) appear only
in the analogical proportions with question marks for verti-
cal bars. Analogical proportions coming from both horizon-
tal or vertical analysis are insufficient for concluding here.
However, we can consider the Raven matrix provides a set
of analogical associations without any distinction between
those ones coming from the horizontal bars and those ones
coming from vertical bars. In other words, we now relax the
componentwise reading by considering that what applies to
horizontal bars, may apply to vertical bars, and vice-versa.
With this viewpoint, it appears that the pair (B,W ) and the
pair (W,G) are respectively associated to G (vertical associ-
ation for vertical bar) and B (horizontal association for hor-
izontal bar), which encodes the expected solution GB (as
pictured in Figure 4). Note that (G,W ) cannot help predict-
ing ?ii.

Matrix abduction
The problem of completing a matrix where some values are
missing is not new and there are diverse techniques to deal
with this issue, generally linked to the characteristics of the
problem:

- we can deal with large matrices or small matrices: in the
case of large matrices, statistical approaches are applicable;

- the values to be computed could be real, symbolic or
discrete;

- the meaning of a cell (i, j) may be the value of an at-
tribute j for the item i, or may express a relation between
the item i and the item j (for instance the distance between
i and j, or still in a preference matrix, it may express how i
is preferred to / is more important than j, etc.).

Whatever the technique, the main question is to know if
the extra knowledge that we may have about the problem,
and the available data carry sufficient information for an ac-
curate reconstruction of the missing cells. This is not always
the case, especially when we have very few available data. In
the following, we focus on a particular case, called “matrix
abduction problem”, using (Abraham, Gabbay, and Schild
2009)’s terminology. It consists in guessing plausible values
for cells having empty information in a matrix where each
line corresponds to a situation described according to differ-
ent binary features (so each column corresponds to a partic-
ular feature). Such a problem may be encountered in dayly
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P C I R D S

screen1 0 1 0 1 0 1

screen2 0 0 1 1 0 1

screen3 0 0 0 0 1 ?

screen4 1 1 0 0 1 1

Table 4: The screen example

life, where you want to compare incompletely described sit-
uations (e.g., the characteristics of objects to be sold on the
web), or for judging a new situation on the basis of other (in-
completely described) situations. According to (Abraham,
Gabbay, and Schild 2009) such problems were already en-
countered by Talmudic commentators for determining what
behavior is the most appropriate in a given situation!

Let us consider the screen example used by (Abraham,
Gabbay, and Schild 2009), where computer screens are de-
scribed by 6 characteristic features: P is for price over 450,
C for self collection, I for screen bigger than 24 inch, R for
reaction time below 4ms, D for dot size less than 0.275, and
S for stereophonic; 1 means “yes” and 0 means “no”. We
have 3 screens (screen 1, screen 2 and screen 4) whose char-
acteristics are known and screen 3 where the truth value of
the attribute S is missing (see Table 4). Various approaches
may be thought of for attacking such a common sense prob-
lem. We present how homogeneous proportions may be use-
ful for solving it, together with a brief mention of two other
recent approaches, which are handling it somewhat differ-
ently. In each approach, however, it is admitted that the prob-
lem has not always a solution, i.e. there are cases where the
problem of providing a plausible Boolean value for some
unknown feature of a considered situation, will remain un-
decided.

A general idea, explicitly or implicitly, common to all ap-
proaches is that replacing an unknown value ? by either 1 or
0 should result in the least possible perturbation of the ma-
trix. This idea may be implemented differently. In the pro-
posed approach we suggest to enforce an homogeneous pro-
portion T that already holds for completely informed fea-
tures. In (Abraham, Gabbay, and Schild 2009) the idea is to
choose the value that, when it is added, least perturbs the
partial ordering that what was existing between the column
vectors of the matrix. In (Schockaert and Prade 2011), the
idea is rather to respect betweenness and parallelism rela-
tions that hold in conceptual spaces.

Homogeneous proportion approach Assume we have
a Boolean vector describing incompletely a situation with
respect to a set of n + 1 considered features, say v =
(v1, ..., vn, xn+1), where for simplicity we assume that only
xn+1 is unknown. For trying to make a plausible guess
of the value of xn+1, we have a collection (which may
be rather small) of completely informed examples ei =
(ei1, ..., e

i
n, e

i
n+1) for i = 1, n. Then one may have at least

three strategies:
i) comparing v to each ei separately, and using a k-nearest

neighbors approach; this extends the idea that the proportion
T (e, e, e, v) should hold true and has v = e as a solution.

ii) looking for pairs ei, ej such that T (eih, vh, vh, e
j
h)

makes a continuous homogeneous proportion T for a max-
imal number of features h; it thus implements some idea
of having vh between eih and ejh ; observe however, that
in the Boolean case, this would force to have the trivial
situations T (1, 1, 1, 1) or T (0, 0, 0, 0) on a maximal num-
ber of features, and to tolerate some “approximate” patterns
T (1, 1, 1, 0), T (0, 1, 1, 1), T (0, 0, 0, 1), or T (1, 0, 0, 0),
while rejecting patterns T (0, 1, 1, 0) and T (1, 0, 0, 1), in
agreement with footnote 3.

iii) looking for triples ei, ej , ek such that T (eih, e
j
h, e

k
h, vh)

makes an homogeneous proportion T for a maximal number
of features h.

In cases ii) or iii), the principle amounts to say that if an
homogeneous proportion – we restrict to homogeneous pro-
portions due to their symmetry and encoding independency
properties – holds for a number of features as great as pos-
sible among features h such that 1 ≤ h ≤ n, it should still
hold for feature n+1, which provides an equation for finding
xn+1 if solvable. If there are several triples that are equally
good in terms of numbers of features for which the propor-
tion holds, but lead to different predictions, one may then
consider that there is no acceptable plausible value for xn+1.

Discussing the screen example Abraham, Gabbay, and
Schild (2009) compare the two graphs induced by the par-
tial ordering between the columns of the matrix when the
missing value is replaced respectively by 1 and 0. It appears
that the graph associated with 1 is superior to the one asso-
ciated with 0, because it is connected, while the other one is
not. This corresponds to an instance of a more general graph
comparison procedure (not recalled here) and it leads here
to promote 1 as the value we are looking for. Let us examine
now the application of the three strategies described above.

The application of the first strategy yields 1 considering
that screen 3 is already identical to screen 4 on 3 features.

Using the second strategy, we observe that screen 3 is only
in “between” screen 2 and screen 4 in the sense described
above, leading again to 1 as a solution.

Using the third strategy that should involve 4 dis-
tinct items, we can observe that the analogical proportion
screen 1 : screen 2 :: screen 4 : screen 3 component-
wise for features C, R, and D (while it fails on P and I).
Again we get 1 as a solution for ensuring an analogical pro-
portion (namely A(1, 1, 1, 1)) on S. Observe also that what-
ever the order in which the screens are considered, an ho-
mogeneous proportion holds for features C, R, D, and S.
For instance, if we consider the permutation (screen 4 :
screen 2 :: screen 1 : screen 3), these four features sat-
isfy a paralogical, as well as a reverse analogical proportion.
Since there are only 4 screens in this example, we have no
option to consider other triples of screens that together with
the incompletely described screen will have the same ho-
mogeneous proportion satisfied on possibly more features.
Note that when T is an homogeneous proportion, the equa-
tion T (1, 1, 1, x) may have only x = 1 as a solution (for
proportions A,R, P ). Considering other triples (if available)
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may lead to other equations having 0 as a solution. A predic-
tion based on the triple making an homogeneous proportion
with the incompletely described item on a maximal number
of features, should be preferred. In case of ties on this max-
imal number of features between concurrent triples leading
to opposite predictions, no prediction can be given.

The screen example is clearly a toy example. Abraham,
Gabbay, and Schild (2009) also discuss another very similar
examples with four cameras, which can be handled in the
same way, as well as several other small examples mainly
originated from jurisprudence rules in Jewish, Islamic and
Indian legal reasoning. These latter examples where the
meaning of the rows and columns may vary, could be also
handled using homogeneous proportions, sometimes work-
ing with columns rather than lines when the matrix has two
lines only (or even with the cells themselves if the matrix
has only 4 cells). However, in such examples, the matrix ap-
pears to go beyond the simple description of items in terms
of relevant features, and one may wonder if the matrix ab-
duction problem remains exactly of the same kind, for in-
stance, when the matrix associates causes and effects, which
is not the case in the screen or in the camera example.

It is worth noticing that in their approach, the above-cited
authors emphasize that the use of 0 and 1 in the Boolean cod-
ing in their matrices is not just a matter of convention. They
write commenting on a matrix that would pertain to hurri-
canes that “To turn the data into 0–1 data we need to decide
on a cut-off point. Say for winds we choose 150 miles per
hour. We have two choices for the wind column. Do we take
1 to mean over 150 miles per hour or do we take it to be 1 =
under 150 miles per hour? The reader might think it is a mat-
ter of notation but it is not! We need to assume that all the
column features pull in the same direction. In the hurricane
case the direction we can take is the capacity for damage.
In the LCD screen and camera case it is performance.” Such
an hypothesis clearly agrees with their intuition of basing
their approach on the partial ordering existing between the
columns. In our approach, when we constraint our propor-
tions to allocate to 0 and 1 the same role (code independency
property), we get that A,R, P, I are the only logical propor-
tions to satisfy code independency and symmetry. In fact,
considering A,R, P, I together has the advantage of mak-
ing the conclusion obtained independent of the ordering in
which the tuples are considered in a triple, as explained now.

Why using the A,R, P, I proportions Observe that a tu-
ple of 4 Boolean values, corresponding to the values of the
same feature for 4 items, may correspond to 24 = 16 val-
uations. 8 of them have an odd number of 0’s (and an odd
number of 1’s), e.g., (0, 0, 0, 1) or (1, 1, 0, 1), and are thus
“irregular ” in the sense that all values are equal except
one. The 8 remaining valuations have an even number of
0’s and 1’s. They are exactly the valuations encountered in
the truth tables of the homogeneous proportions, as can be
checked on Table 1. In fact, A,R, P, I are the only code in-
dependent proportions which are true for 6 of these 8 val-
uations (since a logical proportion is true for only 6 val-
uations among 16). Moreover, one can notice that these 8
valuations correspond to 4 basic intuitively meaningful sit-

uations: i) (1, 1, 1, 1) and (0, 0, 0, 0) to complete similarity;
ii) (1, 0, 1, 0) and (0, 1, 0, 1) to changes made in the same
direction for the two first components and the two last ones;
iii) ii) (1, 0, 0, 1) and (0, 1, 1, 0) to changes made in opposite
directions; iv) (1, 1, 0, 0) and (1, 1, 0, 0) to partial similarity
of the two first components and of the two last ones, thus
referring to two different contexts.

It is also worth noticing that when we consider 4 Boolean
vectors, which are such as for any component (i.e., feature)
we have a pattern with an even number of 0’s and 1’s, the
following property holds: If a maximum number of 3 of the
4 above types of even patterns are present in the 4 Boolean
vectors compomentwise, then there exists at least one homo-
geneous proportion that holds for all components. Note that
none of the homogeneous proportions can cover the 4 types
of even patterns. Moreover, when we change the ordering
in which the vectors are considered, there will always exist
an homogeneous proportion that holds for all components
(provided that 3 or less of the 4 above types of even patterns
are present). Finally, the homogeneous proportion covers the
component where one value is missing for one of the vectors,
which means that the proportion equation is then solvable,
its solution will remain the same when changing the order-
ing of the vectors, and solving the new corresponding pro-
portion equation. Thus in a given matrix, looking for a triple
of vectors that maximizes the number of features where the
same homogeneous proportion holds true (or is solvable) to-
gether with the vector having the missing value, is a way of
taking advantage of the regularities existing in the matrix to
predict the missing values.

Clearly in such problems, the prediction is only “plausi-
ble”, whatever the method. The proposed approach makes
sense, beyond its properties and the principles that are at
work in it, may be also somewhat indirectly justified by the
fact that the approach applies as well to IQ tests, as exem-
plified in this paper, and can be rather successfully scaled up
into a learning device (at least for homogeneous proportions
A and P (see (Prade, Richard, and Yao 2012) for prelimi-
nary results). In practice, we may also use different methods
for matrix abduction and to “validate” a prediction only if
all methods agree.

Concluding remarks
This paper has singled out four homogeneous logical pro-
portions (including the analogical proportion) which satisfy
properties that are similar to the ones enjoyed by arithmeti-
cal or geometric proportions. Each of these proportions have
distinctive properties that have been laid bare. Their respec-
tive roles is still to be investigated in greater details. Still
the underlying logical view of analogical proportions has
been shown to be able to handle sophisticated IQ tests (but
we might consider the application of the other homogeneous
proportions as well). Homogeneous logical proportions also
provide a general setting for proposing solutions to the com-
monsense matrix abduction problem. A detailed compari-
son of the different recently proposed approaches to this
problem, whose applicability conditions somewhat differ, is
still to be done. Other lines of future research include the
extension of the four homogeneous logical proportions to
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multiple-valued settings in order to handle non-Boolean fea-
tures (see (Prade and Richard 2010b) for the homogeneous
proportions A,R, P ). It also appears that what is at work in
geometrical IQ proportional analogies might be also trans-
posed to other types of scenes such as topographic maps,
see (O’Donoghue, Bohan, and Keane 2006) on this issue.
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