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Abstract

Current techniques for query answering over DL-Lite
ontologies have severe limitations in practice, since they
either produce complex queries that are inefficient dur-
ing execution, or require expensive data pre-processing.
In light of this, we present two complementary sets of
results that aim at improving the overall peformance of
query answering systems. We show how to create ABox
repositories that are complete w.r.t. a significant portion
of DL-Lite TBoxes, including those expressed in RDFS,
but where the data is not explicitly expanded. Second,
we show how to characterize ABox completeness by
means of dependencies, and how to use these and equiv-
alence to optimize DL-Lite TBoxes. These results allow
us to reduce the cost of query rewriting, often dramati-
cally, and to generate highly efficient queries. We have
implemented a novel system for query answering over
DL-Lite ontologies that incorporates these techniques,
and we present a series of data-intensive evaluations that
show their effectiveness.

1 Introduction
Current approaches to ontology based query answering
(OBQA) with lightweight Description Logics (DLs) of the
DL-Lite family [Calvanese et al., 2007] rely on query refor-
mulation. These techniques are based on the idea of storing
ABoxes in efficient data repositories, e.g., RDBMSs, and
using the ontology’s TBox to reformulate a given query into
a new query that, when evaluated over the ABox repository,
returns the certain answers to the original query. Experiments
have shown that reformulations may be very large or complex,
and that the execution of these suffers from poor performance.
This triggered the development of alternative reformula-
tion techniques [Pérez-Urbina, Motik, and Horrocks, 2010;
Rosati and Almatelli, 2010; Kikot, Kontchakov, and Za-
kharyaschev, 2011], whose focus has been on the reduction of
the number of generated queries/rules. These techniques pro-
duce reformulations that in many cases are polynomial in the
size of the original query, however the worst-case complexity
is still exponential.1 Alternative approaches [Kontchakov et
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1We consider here DL-LiteA, a variants of DL-Lite that allows
for role inclusions.

al., 2010] use the expansion of the ABox w.r.t. the intensional
knowledge (i.e., the TBox) to avoid query reformulation al-
most entirely. This last approach offers good performance at
query time, however, the cost of data expansion degrades ini-
tialization. We mention also the recent technique of [Gottlob
and Schwentick, 2011], which produces worst-case polyno-
mial rewritings at the cost of complicating their structure,
so that we don’t have evidence that such rewritings, though
small, can be efficiently evaluated. In fact, we argue that
a solution to the performance problem in OBQA systems
requires a broader perspective of the problem, including, but
beyond, the query reformulation technique.

Our first focus is on redundancy in reasoning, in particular
due to completeness of the ABox w.r.t. the TBox. We say that
an ABox A is complete w.r.t. a TBox axiom if the explicit
data in the ABox satisfies the semantics of the axiom, for
example, if A is complete with respect to A v B, then for
every a, if A(a) ∈ A, then B(a) ∈ A. One can see that
being aware of the state of completeness of the ABox allows
one to simplify the query answering process, and in some
cases to avoid query reformulation altogether. In addition,
explicitly expanding data is not the only way to complete
an ABox in OBQA systems, e.g., the data in the ABox may
already be (partially) complete or we could construct the
ABox repository in such a way that it simulates completeness.
We argue that with proper means to characterize, enforce and
deal with completeness, we can optimize query answering.

Our second focus is the role of RDBMSs in OBQA sys-
tems. RDBMSs as ABox repositories have been proposed
with the aim of exploiting their performance, however, the
limitations of these systems have never been taken into
account seriously. The most important limitation is that
RDBMs excel only when faced with average case queries, or
after careful tuning of the query and the system. In OBQA
systems, in which queries are generated automatically, this is
a crucial aspect, and it implies that the overall performance of
query execution is not determined by the rewriting technique
alone, but also by the ABox repository; in particular, by the
choice of DB schema, the indexes defined over this schema,
the mechanism that translates rewritten queries into SQL, and
also the features and configuration of the RDBMS.

With these observations in mind, in this paper we approach
the problem of efficient OBQA from two complementary di-
rections. First we focus on completeness in query answering
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systems and show that (i) (partial) completeness of ABoxes
in OBQA systems that access external data sources (so called
OBDA systems) is to be expected, and, more importantly,
(ii) we can exploit the architecture of OBQA systems to pro-
duce virtual ABoxes that are complete for any TBox in the
RDFS fragment of DL-Lite, without the need to generate
new data. The consequence of this is that RDFS TBoxes in
this fragment will become redundant and, for DL-Lite, TBox
reasoning will only be necessary w.r.t. existential constants.
We introduce one technique that aims at achieving complete-
ness of ABoxes while allowing for the generation of efficient
SQL queries without incurring in high-costs. Second, we
present an approach to take into account completeness of
the data with respect to DL-Lite TBoxes; we characterize
completeness using ABox dependencies and show that it is
possible to use dependencies to optimize a DL-LiteA TBox in
order to avoid redundancy in query answers, independently
of the adopted query reformulation technique. The result-
ing TBoxes are optimal, in the sense that they will contain
only those assertions that are necessary to guarantee correct-
ness (i.e., completeness) of the computed certain answers.
Additionally, we provide an ontology vocabulary simplifica-
tion mechanism that reduces complexity of reasoning w.r.t.
equivalent concepts and roles.

We have implemented a novel system for OBQA over DL-
LiteA ontologies that incorporates our techniques, and we
present a series of evaluations and benchmarks that show that
the techniques presented here are very effective in practice.

2 Preliminaries
We assume a fixed vocabulary V of atomic concepts, denoted
A (possibly with subscripts), and atomic roles, denoted P ,
representing unary and binary relations, respectively, and an
alphabet Γ of (object) constants.

Databases. We regard a database (DB) as a pair D =
〈R, I〉, where R is a relational schema and I is an instance
of R. The active domain ΓD of D is the set of constants
appearing in I, which we call value constants. An SQL query
ϕ over a DB schema R is a mapping from a DB instance I
of R to a set of tuples of value constants.

DL-Lite ontologies. We introduce the DL DL-LiteA, on
which we base our results. In DL-LiteA, a basic role, denoted
R, is an expression of the form P or P−, and a basic con-
cept, denoted B, is an expression of the form A or ∃R. An
ontology is a pair O = 〈T ,A〉 where T is a TBox and A an
ABox. A TBox is a finite set of
• (positive) inclusions B1 v B2 or R1 v R2,
• disjointness assertions B1 v ¬B2, and
• functionality assertions (funct R).

An ABox is a finite set of membership assertions A(c) or
P (c, c′), where c, c′ ∈ Γ. Moreover, DL-LiteA imposes the
syntactic restriction that a role P declared functional, via
(funct P ), or inverse functional, via (funct P−), cannot be
specialized, i.e., cannot appear in the right-hand side of a role
inclusion assertion R v P or R v P−. We call DL-LiteRDFS

the fragment of DL-LiteA in which we rule out concept in-
clusions of the form B v ∃R, disjointness assertions, and
functionality assertions.

Queries over ontologies. An atom is an expression of the
form A(t) or P (t, t′), where t and t′ are atom terms, i.e.,
variables or constants in Γ. An atom is ground if it contains
no variables. A conjunctive query (CQ) q over an ontology
O is an expression of the form q(~x)← β(~x, ~y), where ~x is a
tuple of distinct variables, called distinguished, ~y is a tuple of
distinct variables not occurring in ~x, called non-distinguished,
and β(~x, ~y) is a conjunction of atoms with variables in ~x and
~y, whose predicates are atomic concepts and roles of O. We
call q(~x) the head of the query and β(~x, ~y) its body. A union
of CQs (UCQ) is a set of CQs (called disjuncts) with the
same head. Given a CQ Q with body β(~z) and a tuple ~v of
constants of the same arity as ~z, we call a ground instance of
Q the set β[~z/~v] of ground atoms obtained by replacing in
β(~z) each variable with the corresponding constant from ~v.

Semantics. The semantics of DL-LiteA is based as usual on
the notion of FOL interpretation I = (∆I , ·I), where ∆I is
a non-empty interpretation domain and ·I is an interpretation
function (see, e.g., [Baader et al., 2003]). We just remark that
we adopt the unique name assumption, which enforces that
for each pair of constants c1, c2, if c1 6= c2, then cI1 6= cI2 .
We also make use of the standard notions of satisfaction,
model, and entailment.

Let ΓA denote the set of constants appearing in an ABoxA.
The answer to a CQ Q = q(~x)← β(~x, ~y) over O = 〈T ,A〉
in an interpretation I, denoted ans(Q,O, I), is the set of
tuples ~c ∈ ΓA × · · · × ΓA such that there exists a tuple
~o ∈ ∆I × · · · ×∆I such that all facts in β[(~x, ~y)/(~c I , ~o)]
are true in I, where ~c I denotes the tuple of objects that
interpret the constants in ~c. The answer to an UCQ Q in I is
the union of the answers to all CQs in Q.

The certain answers to Q in O, denoted cert(Q,O), is
the intersection of ans(Q,O, I) for each model I for O.
The answer to Q over an ABox A, denoted eval(Q,A),
is the answer to Q over A viewed as a DB instance. A
perfect reformulation of Q w.r.t. a TBox T is a query Q′
such that for every ABox A such that 〈T ,A〉 is satisfiable,
cert(Q, 〈T ,A〉) = eval(Q′,A).

Mappings. We adopt the definitions for ontologies with
mappings from [Poggi et al., 2008], but we make some sim-
plification for ease of presentation. In particular, in the fol-
lowing we assume that a database contains both value con-
stants and object constants.2 Given a TBox T and a DB
D, a mapping (assertion) m for T is an expression of the
form ϕ(~x) ; ψ(~t) where ϕ(~x) is an SQL query over D

2Hence, we do not discuss here the use of Skolem terms in
mappings, which allow one to bridge the impedance mismatch
between a database storing values, and an ontology maintaining
objects. We refer to [Poggi et al., 2008] for the details, and just
observe that our techniques and the Quest system discussed in
Section 5 fully support the general form of mappings that make use
of Skolem terms.
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with answer variables ~x, and ψ(~t) is a CQ over T without
non-distinguished variables. We call the mapping simple
if the body of ψ(~t) consists of a single atom, and complex
otherwise. A simple mapping is for an atomic concept A
(resp., atomic role P ) if the atom in the body of ψ(~t) has A
(resp., P ) as predicate symbol. In the following, we might
abbreviate the query ψ in a mapping by showing only its
body. A virtual ABox V is a tuple 〈D,M〉, where D is a DB
andM a set of mappings, and an ontology with mappings is
a tupleOM = 〈T ,V〉, where T is a TBox and V = 〈D,M〉
is a virtual ABox in whichM is a set of mappings for T .

An interpretation I satisfies a mapping assertion ϕ(~x) ;
ψ(~t) w.r.t. a DB D = 〈R, I〉 if for every tuple ~v ∈ ϕ(I)
and for every ground atom X in ψ[~x/~v] we have that: if X
has the form A(c), then cI ∈ AI , and if X has the form
P (c1, c2), then (cI1 , c

I
2 ) ∈ P I . An interpretation I is a

model of V = 〈D,M〉, denoted I |= V , if it satisfies every
mapping inM w.r.t. D. A virtual ABox V entails an ABox
assertion α, denoted V |= α, if every model of V is a model
of α. I is a model of OM = 〈T ,V〉 if I |= T and I |= V .
As usual, OM is satisfiable if it admits a model. We note
that, in an ontology with mappings OM = 〈T , 〈D,V〉〉, we
can always replaceM by a set of simple mappings, while
preserving the semantics of OM. It suffices to split each
complex mapping ϕ; ψ into a set of simple mappings that
share the same SQL query ϕ (see [Poggi et al., 2008]). In the
following, we assume to deal only with simple mappings.

Dependencies. ABox dependencies are assertions that re-
strict the syntactic form of allowed ABoxes. In this paper,
we focus on unary and binary inclusion dependencies only.
A unary (resp., binary) inclusion dependency is an assertion
of the form B1 vA B2, where B1 and B2 are basic concepts
(resp., R1 vA R2, where R1 and R2 are basic roles). In
the following, for a basic role R and constants c, c′, R(c, c′)
stands for P (c, c′) if R = P and for P (c′, c) if R = P−.
An ABox A satisfies an inclusion dependency σ, denoted
A |= σ, if the following holds:
• if σ is A1 vA A2, then for all A1(c) ∈ A we have
A2(c) ∈ A;
• if σ is ∃R vA A, then for all R(c, c′) ∈ A we have
A(c) ∈ A;
• if σ is A vA ∃R, then for all A(c) ∈ A there exists c′

such that R(c, c′) ∈ A;
• if σ is ∃R1 vA ∃R2, then for all R1(c, c′) ∈ A there

exists c′′ such that R2(c, c′′) ∈ A;
• if σ is R1 vA R2, then for all R1(c, c′) ∈ A we have
R2(c, c′) ∈ A.

An ABox A satisfies a set of dependencies Σ, denoted A |=
Σ, if A |= σ for each σ ∈ Σ. A set Σ of dependencies
entails a dependency σ, denoted Σ |= σ, if for every ABox
A s.t. A |= Σ we also have that A |= σ. Given two queries
Q1, Q2, we say that Q1 is contained in Q2 relative to Σ if
eval(Q1,A) ⊆ eval(Q2,A) for each ABox A s.t. A |= Σ.

3 Completeness in OBQA Systems
Completeness of the extensional information in the ABox
w.r.t. the intensional information in the TBox plays an impor-

tant role in OBQA. This notion can be formalized as follows.
Definition 3.1. Let O = 〈T ,A〉 be a satisfiable DL-LiteA
ontology. We say that A is complete for an assertion B1 v
B2 in T if A |= B1 vA B2, and that A is complete for T if
it is complete for all assertions in T .

In a DL-LiteA ontology, the ABox is, in general, incom-
plete for the TBox. In fact, since DL-LiteA does not enjoy the
finite model property [Rosati, 2008], there are even TBoxes
for which no (finite) complete ABox can exist. However, in
practice, ABoxes may be already (partially) complete for a
TBox. E.g., an ABox satisfying A1 vA A2 is complete for
A1 v A2.

The presence of completeness in an ABox for the inclu-
sions in the TBox can greatly simplify the reasoning that
needs to be carried out at query execution time. For exam-
ple, the benefits of inducing completeness are well known in
the context of RDFS/SPARQL query answering engines, in
which forward chaining is used to completely avoid query
reformulation at run-time. At the same time, expanding the
data with respect to a TBox is not desirable, since this is
a costly operation in terms of both space and time, even if
done off-line. However, expanding data is not the only way
to achieve completeness of an ABox, as we argue in the
following.

3.1 Completeness in OBDA Systems
We have found evidence [Savo et al., 2010; Calvanese et
al., 2010; Keet et al., 2008] that completeness is a common
trait of OBDA systems, which are systems in which a virtual
ABox 〈D,M〉 is defined from data in an external data source
D through mappingsM. Note that when an external source
is involved, mappings always exist, either as explicit logical
assertions as the ones adopted in this paper, or because they
are implicitly defined through application code. Mappings
become crucial in determining the properties of the ABox. In
particular, any dependencies that hold over the database, or
any containment relationships that hold between the source
queries used in the mappings will be reflected in the ABox
as ABox dependencies.
Example 3.1. Let R be a DB schema with the relation
schema employee with attributes id, dept, and salary, storing
information about employees, their salaries, and the depart-
ment they work for. LetM be the following mappings:
SELECT id,dept
FROM employee

; Employee(id) ∧
WORKS-FOR(id, dept)

SELECT id,dept
FROM employee
WHERE salary > 1000

; Manager(id) ∧
MANAGES(id, dept)

where Employee and Manager are atomic concepts and
WORKS-FOR and MANAGES are atomic roles. Then for
every instance I of R, we have that the ABox constructed
from R, I, andM satisfies the following dependencies:

Manager vA Employee
Manager vA ∃MANAGES

Employee vA ∃WORKS-FOR

∃MANAGES vA Manager
∃WORKS-FOR vA Employee

In particular, the first dependency follows from the contain-
ment between the two SQL queries used in the mappings,
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and the remaining dependencies follow from the fact that we
populate WORKS-FOR (resp., MANAGES) using the same
SQL query used to populate Employee (resp., Manager).

The strong relationship between ABox completeness and
the mappings of OBDA systems emerges when we turn our
attention to the semantics of the data sources and the objective
of building an ABox from an existing source. First, we note
that any given DB is based on some conceptual model. At
the same time, if we associate the data of any given DB
to the concepts and roles of a TBox T to build an ABox, it
follows that this data is semantically related to these concepts
and roles, and that the conceptual model of the DB has some
common aspects with the semantics of T . It is precisely these
common aspects that get manifested as dependencies between
queries in the mappings and that give rise to completeness in
ABoxes. Therefore, the degree of completeness of an ABox
in an OBDA system is in direct relation with the similarity
between the semantics of the DB’s conceptual model and
that of the TBox, and with the degree in which the DB itself
complies to the conceptual model that was used to design it.
To illustrate these observations, we extend Example 3.1.
Example 3.2. Note that the intended meaning of the data
stored in D is as follows: (i) employees with a salary higher
than 1,000 are managers, (ii) managers manage the depart-
ment in which they are employed, and (iii) every employee
works for a department. This meaning is reflected in the
mapping assertions ofM, and every ABox generated from
D throughM will be (partially) complete for a TBox T that
shares part of the semantics of D. In other words, such a
TBox will present redundancy. For example, if T is

Manager v Employee
Manager v ∃MANAGES

Employee v ∃WORKS-FOR

∃MANAGES− v Department
∃WORKS-FOR− v Department

then the first column is redundant w.r.t. Σ. Instead, the se-
mantics of the second column is not captured by the map-
pings. In such an OBDA system, we should reason only w.r.t.
Department. This can be accomplished by optimizing T w.r.t.
Σ using the technique presented in Section 4.

Completeness of an ABox introduces redundancy in rea-
soning. It is well known in automated theorem proving that
by addressing and exploiting redundancy, the runtime of an
inference algorithm may drop from exponential to polyno-
mial [Gottlob and Fermüller, 1993; Joyner, 1976]. We claim
that this is also the case for OBQA, where not only dependen-
cies may already hold in ABoxes, but where we can induce
them in efficient ways, as shown in the following.

3.2 Inducing Dependencies
We consider now OBQA systems that rely on query rewrit-
ing, and on a RDBMS to store the ABox data and to evaluate
the rewritten query over the ABox. In order to store the
ABox, such systems define a relational schema, and mech-
anisms to populate and query the corresponding database
by referring to the concepts and roles of the TBox; in other
words, the ABox is managed transparently to the user. We
can formalize this setting through the notion of virtual ABox
V = 〈〈R, I〉,M〉, as presented in Section 2, where the form

of the database schema R and of the mappingsM may vary,
depending on the actual implementation chosen for the ABox
repository. We model such an OBQA system as an ontology
with mappings, O = 〈T ,V〉, which allows us to analyze the
properties of ABox repositories, or the result of operations
over them, by abstracting away from actual implementation
details of the repository itself.

With respect to completeness, this allows us to generalize
the idea of ABox expansion to the concept of dependency
induction technique. We call dependency induction tech-
nique a procedure that, given an ontology with mappings
O = 〈T ,V〉, uses T to compute an alternative virtual ABox
V ′ s.t. the number of inclusions in T for which V ′ is complete
is higher than those for V . ABox expansion and forward-
chaining are procedures that modify the data in I for a fixed
DB schema R. However, we could also improve complete-
ness of V by manipulating the structure of R, the way we
initially construct I, or the mappingsM.

The critical aspect in dependency induction for OBQA
systems is the trade-off between the degree of completeness
being induced and the system’s performance/cost for data
loading and querying. For example, a system that resorts
to inference materialization3 will in general offer a good
performance at query time. However, the cost of loading the
data in such systems is increased and the system will require
additional space to store the inferences. In scenarios in which
reasoning is non-trivial due to the size of the ontologies, the
additional loading time may be in the range of days, and
the additional data may increase the space requirements of
the application from gigabytes to terabytes [LePendu et al.,
2010].

We present now a dependency induction mechanism that
provides good trade-offs on all these aspects and that does not
generate new data in I. Notably, OBQA systems with virtual
ABoxes created using this procedure will be complete for DL-
LiteRDFS TBoxes, thus making such TBoxes redundant. In the
case of DL-LiteA TBoxes, the only non-redundant inclusion
assertions will be those involving existentially quantified
individuals.

Semantic Index for OBQA systems. The basic idea of the
semantic index technique is to encode the implied is-a rela-
tionships of T in the values of numeric indexes that we assign
to concept and role names. ABox membership assertions are
then inserted in the DB using these numeric values. The aim
is to construct a virtual ABox for the system in which the
mappings can retrieve most of the implied instances of any
concept or role by posing simple range queries to the DB,
which are queries that can be evaluated efficiently in mod-
ern DBMSs using B-tree indexes. Our proposal is strongly
related to techniques for managing large transitive relations
in knowledge bases [Agrawal, Borgida, and Jagadish, 1989],
however, our interest is not in the hierarchies themselves, as
in previous work, but in querying instance data that is asso-
ciated to those hierarchies. It is also related to well known

3This is the traditional way of dealing with RDFS and OWL
inferences in RDF triple stores.
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techniques for XPath query evaluation [DeHaan et al., 2003].
Formally, a semantic index is defined as follows.

Definition 3.2. Given a DL-LiteA TBox T and its vocabulary
V , a semantic index for T is a pair of mappings 〈idx , range〉
with idx : V → N and range : V → 2N×N, such that,
for each pair E1, E2 of atomic concepts or atomic roles in
V , we have that T |= E1 v E2 iff there is a pair 〈`, h〉 ∈
range(E2) such that ` ≤ idx (E1) ≤ h.

Using a semantic index 〈idx , range〉 for a TBox T , we
construct a virtual ABox V = 〈〈R, I〉,M〉 with the com-
pleteness properties described above by proceeding as fol-
lows. We define the DB schema R with a universal-like
relation TC [c1, idx] for storing ABox concept assertions,
and a relation TR[c1, c2, idx] for storing ABox role asser-
tions, such that c1 and c2 have type constant and idx has
type numeric. Given an ABox A, we construct I such that
for each A(c) ∈ A we have 〈c, idx (A)〉 ∈ TC , and for each
P (c, c′) ∈ Awe have 〈c, c′, idx (P )〉 ∈ TR. The schema and
the index allow us to define, for each atomic concept A and
each atomic role P , a set of range queries over D that retrieve
most constants c, c′ such that O |= A(c) or O |= P (c, c′).
For example, if range(A) = {〈2, 35〉}, we define ’SELECT
c1 FROM TC WHERE idx >= 2 AND idx <= 35’. We
use these queries to define the mappings inM as follows4:

• for each atomic concept A and each 〈`, h〉 ∈ range(A),
we add the mapping σ`≤idx≤h(TC ) ; A(c1);

• for each atomic role P and each 〈`, h〉 ∈ range(P ), we
add the mapping σ`≤idx≤h(TR) ; P (c1, c2);

• for each pair of atomic roles P , P ′ such that T |=
P ′− v P and each 〈`, h〉 ∈ range(P ′) we add the
mapping σ`≤idx≤h(TR) ; P (c2, c1);

• for each atomic concept A, each atomic role P such that
T |= ∃P v A (resp., ∃P− v A), and each 〈`, h〉 ∈
range(P ), we add the mapping σ`≤idx≤h(TR) ;

A(c1) (resp., σ`≤idx≤h(TR) ; A(c2));

• last, we replace any pair of mappings σ`≤idx≤h(TC ) ;
A(c1) and σ`′≤idx≤h′(TC ) ; A(c1) such
that `′ ≤ h and ` ≤ h′ by the mapping
σmin(`,`′)≤idx≤max(h,h′)(TC ) ; A(c1) (similarly
for role mappings).

A semantic index could be trivially constructed by assign-
ing to each atomic concept and role a unique (arbitrary) value
and a set of ranges that covers all the values of its subsumees.
However, this is not effective for optimizing query answering
since the size of the semantic index (specifically, the number
of pairs in range(A) and range(P )) determines the size of
M, and this in turn determines exponentially the size of the
final SQL query. To avoid an exponential blow-up, we create
〈idx , range〉 using the implied hierarchies as follows.

Let T be a TBox, and DC the minimal DAG that repre-
sents the implied is-a relation between all atomic concepts

4Here we use relational algebra expressions instead of SQL to
simplify the exposition.

1, {(1, 3)}
A

B
2, {(2, 2)}

C
3, {(3, 3)}

4, {(3, 4)}
D

S
6, {(6, 6)}

5, {(5, 7)}
R

M
7, {(7, 7)}

Figure 1: DC , DR, and the values for idx and range.

σ1≤idx≤3(TC ) ;A(c1)
σ2≤idx≤2(TC ) ;B(c1)
σ3≤idx≤3(TC ) ;C(c1)
σ3≤idx≤4(TC ) ;D(c1)

σ5≤idx≤7(TR) ;R(c1, c2)
σ6≤idx≤6(TR) ; S(c1, c2)
σ7≤idx≤7(TR) ;M(c1, c2)
σ5≤idx≤7(TR) ;D(c1)

Figure 2: The mappings created by the technique.

B vA A C vA A
C vA D ∃R vA D
S vA R M vA R

Figure 3: The induced dependencies.

of T (i.e., the transitive reduct of the concept hierarchy)5.
Then we can construct idx by initializing a counter i = 0,
and visiting the nodes in DC in a depth-first fashion starting
from the root nodes. At each step and given the node N vis-
ited at that step, if idx (N) is undefined, set idx (N) = i and
i = i+ 1, else if idx (N) is defined, backtrack until the next
node for which idx is undefined. Now, to generate range we
visit the nodes in DC starting from the leafs and going up.
For each nodeN in the visit, ifN is a leaf inDC , then we set
range(N) = {〈idx (N), idx (N)〉}, and if N is not a leaf,
then we set range(N) = merge({〈idx(N), idx(N)〉} ∪⋃

Ni | Ni→N∈DC
range(Ni)), where merge is a func-

tion that, given a set r of ranges, returns the mini-
mal set r′ of ranges that has coverage equal to r, e.g.,
merge({〈5, 7〉, 〈3, 5〉, 〈9, 10〉}) = {〈3, 7〉, 〈9, 10〉}. We pro-
ceed exactly in the same way with the DAG DR representing
the role hierarchy.
Example 3.3. Let A, B, C, D be atomic concepts, let R,
S, M be atomic roles, and consider the TBox T = {B v
A,C v A,C v D,D v ∃R,∃R v D,S v R,MvR}.
Let the DAGs DC and DR for T be the ones depicted in
Figure 1. The technique generates idx and range as indicated
in Figure 1, generates the mappings in Figure 2, and for any
ABox, the technique generates a virtual ABox V that satisfies
all the dependencies Σ in Figure 3. Then, we will have that in
query answering, rewriting is only necessary w.r.t. D v ∃R.
We will present in Section 4 a technique to optimize the TBox
to take this into account.

We make some remarks about the effectiveness of this
technique. The factor that defines performance of the seman-
tic index is the number of ranges for each atomic concept

5We assume that T does not contain a cyclic chain of basic
concept or role inclusions. This can be done w.l.o.g. since any TBox
containing such cyclic chain can be transformed into one where the
chain has been removed by using the technique described at the end
of Section 4.
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or role. This highly depends on the order of the edges and
nodes in DC . Determining the optimal DAG for a semantic
index is a complex problem for which the work presented
in [Agrawal, Borgida, and Jagadish, 1989] might provide
guide. However, our experiments show that in practice even
non-optimal semantic indexes behave well (see Section 5).

4 Optimizing TBoxes
Dependencies. Information about completeness of a (vir-
tual) ABox, in the form of dependencies, can be used to avoid
redundancy during reasoning. For example, during query
reformulation we can use conjunctive query containment
(CQC) with respect to dependencies to avoid the generation
of redundant queries. However, this approach is expensive,
since CQC is an NP-complete problem (even ignoring depen-
dencies), and such optimizations would need to be performed
every time a query is reformulated. We show now how we
can improve efficiency by pre-processing the TBox before
performing query reformulation. In particular, given a TBox
T and a set Σ of dependencies, we show how to compute
a TBox T ′ s.t. the set {α | T ′ |= α} is in general smaller
than the set {α | T |= α} and for every query Q the certain
answers are preserved if Q is executed over an ABox that
satisfies Σ. Specifically, our goal is to determine when an
inclusion assertion of T is redundant w.r.t. Σ. To do so we
use the following auxiliary notions.
Definition 4.1. Let T be a TBox, B, C basic concepts, R, S
basic roles, and Σ a set of dependencies over T . A T -chain
from B to C in T (resp., a Σ-chain from B to C in Σ) is a
sequence of inclusion assertions (Bi v B′i)

n
i=0 in T (resp.,

a sequence of inclusion dependencies (Bi vA B′i)
n
i=0 in Σ),

for some n ≥ 0, such that: B0 = B, B′n = C, and for
1 ≤ i ≤ n, we have that B′i−1 and Bi are basic concepts s.t.,
either (i) B′i−1 = Bi, or (ii) B′i−1 = ∃R′ and Bi = ∃R′−,
for some basic role R′. A T -chain from R to S in T (resp.,
a Σ-chain from R to S in Σ) is a sequence of inclusion
assertions (Ri v R′i)ni=0 in T (resp., a sequence of inclusion
dependencies (Ri vA R′i)

n
i=0 in Σ), for some n ≥ 0, such

that: R0 = R, R′n = S and for 1 ≤ i ≤ n, we have that
R′i−1 = Ri.

Intuitively, when there is a T -chain from B to C, the
existence of an instance of B in a model of T implies the
existence of an instance of C. For a Σ-chain, this holds for
ABox assertions. We use T -chains and Σ-chains to charac-
terize redundancy as follows.
Definition 4.2. Let T be a TBox, B, C basic concepts, R,
S basic roles, and Σ a set of dependencies. The inclusion
assertionB v C is directly redundant in T w.r.t. Σ if (i) Σ |=
B vA C and (ii) for every T -chain (Bi v B′i)

n
i=0 with

B′n = B in T , there is a Σ-chain (Bi vA B′i)
n
i=0. The

inclusion assertion R v S is directly redundant in T w.r.t.
Σ if (i) Σ |= R vA S, (ii) for every T -chain (Bi v B′i)

n
i=0

with B′n = ∃R, there is a Σ-chain (Bi vA B′i)
n
i=0, and

(iii) for every T -chain (Ri v R′i)
m
i=0 with R′m = R, there

is a Σ-chain (Ri vA R′i)
m
i=0. Then, B v C (resp., R v S)

is redundant in T w.r.t. Σ if (a) it is directly redundant, or
(b) there exists B′ 6= B (resp., R′ 6= R) s.t. (i) T |= B′ v C
(resp., T |= R′ v S), (ii) B′ v C (resp., R′ v S) is not

directly redundant in T w.r.t. Σ, and (iii) B v B′ (resp.,
R v R′) is directly redundant.

Given a TBox T and a set of dependencies Σ, we apply
our notion of redundancy w.r.t. Σ to the assertions in T to
obtain a TBox T ′ that is equivalent to T for certain answer
computation. It turns out that we have to take into account
also implied assertions and dependencies. We denote with
sat(T ) the saturation of T , i.e., the set of DL-LiteA asser-
tions α s.t. T |= α. Notice that sat(T ) is finite, hence, it is a
valid TBox. Similarly, sat(Σ) denotes the saturation of Σ,
i.e., the set of dependencies σ s.t. Σ |= σ.

Definition 4.3. Given a TBox T and a set of dependencies
Σ over T , the optimized version of T w.r.t. Σ, denoted T opt

Σ ,
is the set of inclusion assertions {α ∈ sat(T ) | α is not
redundant in sat(T ) w.r.t. sat(Σ)}.

Correctness of using T opt
Σ instead of T when computing

certain answers follows from the following theorem.

Theorem 4.1. Let T be a TBox and Σ a set of dependen-
cies over T . Then for every ABox A such that A |= Σ
and every UCQ Q over T , we have that cert(Q, 〈T ,A〉) =

cert(Q, 〈T opt
Σ ,A〉).

Proof. First, we note that during query answering, only the
positive inclusions are relevant, hence we ignore disjointness
and functionality assertions. Since sat(T ) adds to T only en-
tailed assertions, cert(Q, 〈T ,A〉) = cert(Q, 〈sat(T ),A〉),
for every Q and A, and we can assume w.l.o.g. that T =
sat(T ). Moreover, cert(Q, 〈T ,A〉) is equal to the evalu-
ation of Q over chase(T ,A). (We refer to [Calvanese et
al., 2007] for the definition of chase for a DL-LiteA on-
tology.) Hence it suffices to show that for every B v
C that is redundant with respect to Σ, chase(T ,A) =
chase(T \ {B v C},A), similarly for R v S. We give the
proof for B v C; the one for R v S is similar. Specifically,
we prove that if B v C is redundant (hence, removed in
T opt

Σ ), then there is always a chase(T ,A) in which B v C
is never applicable. Assume by contradiction that B v C
is applicable to some assertion B(c) during some step in
chase(T ,A). We distinguish two cases that correspond to
the cases of Definition 4.2.

(a) Case where B v C is directly redundant, and hence
Σ |= B vA C. We distinguish two subcases: (i) B(c) ∈ A.
Since A |= B vA C, we have C(c) ∈ A, and hence B v C
is not applicable to B(c). Contradiction. (ii) B(c) /∈ A.
Then there is a sequence of chase steps starting from some
ABox assertion B′(c′) that generates B(c). Such a sequence
requires a T -chain (Bi v B′i)

n
i=0 with B0 = B′ and B′n =

B, such that each Bi v B′i is applicable in chase(T ,A).
Then, by the second condition of direct redundancy, there is
a Σ-chain (Bi vA B′i)

n
i=0. Since A |= B0 vA B′0 we have

that B′0(c′) ∈ A and hence B0 v B′0 is not applicable to
B′(c′). Contradiction.

(b) Case where B v C has been removed by Defi-
nition 4.2(b), and hence there exists B′ 6= B such that
T |= B′ v C. First we note that any two oblivious chase se-
quences for T and A produce results that are equivalent w.r.t.
query answering. Then it is enough to show that there exists

313



some chase(T ,A) in which B′ v C is always applied be-
fore B v C and in which B v C is never applicable. Again,
we distinguish two subcases: (i) B(c) ∈ A. Then, since
B v B′ is directly redundant, we have that Σ |= B vA B′.
Since A |= Σ, we have that B′(c) ∈ A, and given that
B′ v C is always applied before B v C, C(c) is added to
chase(T ,A) before the application ofB v C, henceB v C
is in fact not applicable. Contradiction. (ii) B(c) /∈ A. Then,
arguing as in Case (a.ii), using B v B′ instead of B v C,
we can derive a contradiction.

Optimality. A critical aspect of computing an optimized
TBox is ensuring that all inferences triggered by this TBox
are non-redundant. That is, every assertion in the optimized
TBox is necessary to preserve the certain answer for every
query Q and ABox A. Optimality of T opt

Σ is provided by the
following theorem.

Theorem 4.2. Letα be a TBox assertion such that T opt
Σ |= α,

and let T ′ be a TBox such that T ′ ⊆ T opt
Σ and T ′ 6|= α. Then

there is a CQ q over T and an ABox A0 such that A0 |= Σ

and cert(q, 〈T opt
Σ 〉,A0) 6= cert(q, 〈T ′,A0〉).

Proof. We give the proof for the case when α is an inclusion
B v C between basic concepts. The proof for the case when
α is a role inclusion is similar.

Since T opt
Σ |= α we have that T |= α and α is not redun-

dant in T w.r.t. Σ. Hence, neither (a) nor (b) of Definition 4.2
hold for α. Then, due to (a), either (i) Σ 6|= B vA C or
(ii) there is some T -chain (Bi v B′i)

n
i=0 with B′n = B s.t.

there is no corresponding Σ-chain (Bi vA B′i)
n
i=0.

In Case (i), consider a minimal ABox A0 s.t. A0 |= Σ
and B(a) ∈ A0, for some constant a. Since Σ 6|= B vA C,
we can construct A0 such that C(a) /∈ A0. For the CQ
q()← C(x), we have that cert(q, 〈T opt

Σ 〉,A0) = true. We
have to show that cert(q, 〈T ′,A0〉) = false. Assume by
contradiction that this does not hold. Then there must be a
basic concept B′ (possibly C itself) s.t. (1) T ′ |= B′ v C,
(2) B′ v C is not directly redundant in T ′ w.r.t. Σ, and
(3) B v B′ is directly redundant in T ′ w.r.t. Σ. Indeed,
Condition (3) is necessary to ensure that B′(a′) ∈ A0, for
some constant a′, while Conditions (1) and (2) are needed to
ensure that 〈T ′,A0〉 |= C(a′). But this contradicts the initial
assumption that B v C is not redundant in T w.r.t. Σ.

In Case (ii), consider a T -chain (Bi v B′i)ni=0 with B′n =
B s.t. there is no corresponding Σ-chain (Bi vA B′i)

n
i=0.

Consider a minimal ABoxA0 s.t.A0 |= Σ andB0(a0) ∈ A0,
and take again the CQ q()← C(x). Due to the T -chain and
since T opt

Σ |= B v C, we have that cert(q, 〈T opt
Σ ,A0〉) =

true . We have to show again that cert(q, 〈T ′,A0〉) = false .
The T -chain ensures that 〈T ′,A0〉 |= B(a0). Then we can
reason as in Case (i).

Complexity and implementation. The described tech-
nique has also the nice property that T opt

Σ can be computed
in polynomial time in the size of T . This is possible because
the computation of direct redundancy is reducible to checks
over ancestors and descendants over DAGs that represent

reachability in the is-a hierarchy of T and reachability in
T -chains. We now present the construction of these DAGs.
Definition 4.4. Given a TBox T , an is-a DAG for T , denoted
D(T ), is a DAG formed by a set V of nodes and a set E of
edges that satisfies the following conditions:
• for each basic concept B (resp., basic role R), there is a

node n(B) (resp., n(R)) in V ;
• for each assertion B1 v B2 ∈ T , there is an edge
n(B1)→ n(B2) in E;
• for each R1 v R2 ∈ T , there are edges n(R1) →
n(R2), n(∃R1) → n(∃R2), and n(∃R−1 ) → n(∃R−2 )
in E.

Given a set Σ of dependencies, we define the is-a DAG for
Σ, denoted D(Σ), analogously, by using Σ instead of T , and
vA instead of v.

Intuitively, the reachability relations of the nodes in an
is-a DAG for T or Σ allow us to represent succinctly all
the inclusion assertions in sat(T ) or sat(Σ). We use these
DAGs to compute all implications of T and Σ. Likewise, we
can use DAGs to represent the chains that exist in sat(T )
and sat(Σ) as follows.
Definition 4.5. Given a TBox T (resp., a set Σ of depen-
dencies), a chain DAG for T , denoted Dc(T ) (resp., chain
DAG for Σ, denoted Dc(Σ )), is an isa-DAG for T extended
s.t. for each R and each B, if n(B) → n(∃R) ∈ E then
n(B) → n(∃R−) ∈ E and, if n(B) → n(∃R−) ∈ E then
n(B)→ n(∃R) ∈ E.

By making use of these DAGs, we can efficiently construct
T opt

Σ . We omit the construction due to space constraints.
Theorem 4.3. Given a TBox T and a set Σ of dependencies,
T opt

Σ can be constructed in polynomial time in the size of T
and of Σ.

Proof sketch. First note that we can pre-process a DAG in
polynomial time to obtain (effectively, through a hash-map)
constant time access to all descendants and ancestors of a
node in the DAG. It is easy to see that using the DAGs D(T ),
D(Σ ), Dc(T ), and Dc(Σ ) as described in Definitions 4.4
and 4.5, one can compare in polynomial time the chains in T
and Σ for any given B by comparing the descendants of B
in the DAGs. Then, for any given inclusion assertion α, we
can check redundancy in polynomial time. Since the number
of assertions to check is quadratic, the whole procedure runs
in polynomial time.

Last, note that reducing redundancy computation to de-
scendants/ancestors checks in DAGs, gives us a direct way
to implement the method presented here.

Dealing with equivalences. We discuss now a conceptu-
ally very simple form of optimization that, however, has a
strong effect on performance of OBQA approaches based on
query rewriting, namely the optimization of the vocabulary
of T and A w.r.t. concept an role equivalences. The idea
behind this optimization is the following: given two atomic
concepts C1 and C2 such that T |= C1 ≡ C2, we choose one
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of the two concepts, say C1, and replace with C1 every ref-
erence to C2 in T and A; also, during query answering, we
replace every atom referring to C2 with an equivalent atom
referring to C1 (similarly for roles and inverse roles). This
simplification allows us to reduce the number of inferences
done at query answering time and, given the exponential na-
ture of many reasoning algorithms, can considerably increase
performance.

Note also that T |= C1 ≡ C2 if and only if T contains
a set {B1 v B2, . . . , Bn−1 v Bn, Bn v B1} of inclusions
between basic concepts, with B1 = C1 and Bn = C2, i.e., a
cycle between C1 and C2. Hence, this technique allows us
to transform T intro a cycle-free TBox, i.e., a DAG, that can
be used to compute all entailments of T as long as we keep
track of the vocabulary simplification we performed.

5 Evaluation
We now present two evaluations of the techniques presented
here, more details can be found at https://babbage.inf.unibz.it/
trac/obdapublic/wiki/Semanticindex.

LUBM3X. This evaluation tests the effect of the opti-
mizations presented in this paper on the performance of
query rewriting engines. For this evaluation we developed
LUBM3X-lite, a variation of the LUBM ontology bench-
mark [Guo, Pan, and Heflin, 2005] that differs from the
original in two ways: (i) LUBM3X-lite consists of 3 copies
of each entity and each axiom of the original LUBM ontol-
ogy. In these copies we appended the suffixes 1X, 2X and
3X to the original entity names. Last we added axioms of the
form A1X v A2X and A2X v A3X for each concept A
in the original LUBM (resp., for each role). This extension
allowed us to deal with the fact that LUBM is rather flat, and
the number of inferences required for each query is often
low; (ii) The expressivity of LUBM goes slightly beyond that
of OWL 2 QL. To deal with this, we approximated the on-
tology to OWL 2 QL expressivity while keeping as much of
the original entailments as possible. We replaced all axioms
of the form A ≡ B u ∃R.C with A v B and A v ∃R.C,
removed all axioms of the form transitive(R) and added
the axioms GradStudent v Student, Director v Employee,
and ResearchAssistant v Employee (which are entailed by
LUBM); (iii) Each SPARQL query of LUBM was modified
to refer to the 3X concepts and roles. The main feature of
LUBM3X-lite is that it increases the computational cost of
answering queries with LUBM while it allows us to reuse the
queries and data generators of LUBM. LUBM3X-lite can be
downloaded from our site.

Rewriting performance. To evaluate rewriting perfor-
mance we used 3 systems: Quest 1.6.1, a new system de-
veloped by us that implements all the aforementioned tech-
niques, Requiem [Pérez-Urbina, Motik, and Horrocks, 2010]
and Presto [Rosati and Almatelli, 2010]. These systems were
chosen because each implements one of the two classes of
rewriting techniques proposed up to now. Quest and Requiem
use techniques that manipulate CQs during rewriting, while
Presto manipulates non-recursive Datalog programs (DPs).

Q Qs(b) Qs(f) Rq(n) Rq(g) Pr(d) Pr(c)
1 441 348 24 12 451 31
2 78185 609 19881 198219 60 1730
3 18 33 10 44 28 35
4 111 176 274 570 31 35
5 1342 1137 1080 3418 35 37
6 2 3 1 1 1 1
7 1979 53 411 1324 33 46
8 4950 47 256 1160 18 42544
9 - 1466 - - 45 245

10 8495 5 4 1 28 28
11 3 2 1 1 17 14
12 154 5 41 54 19 52
13 457 270 210 1011 34 29
14 1 1 0 0 1 0

Table 1: Reformulation time (ms), fastest in bold

Q Qs(b) Qs(f) Rq(n) Rq(g) Pr(d) Pr(c)
1 9 1 42 3 4 3
2 17496 1 17496 972 22 729
3 153 1 150 3 4 3
4 162 1 1356 27 28 27
5 1476 1 5322 69 67 66
6 12 1 12 12 13 12
7 1620 1 1512 108 19 108
8 3888 1 1296 1296 31 2916
9 - 1 - - 22 324
10 36 1 111 12 13 12
11 18 1 18 18 10 18
12 162 1 162 162 16 162
13 1845 1 1560 15 16 15
14 3 1 3 3 4 3

Table 2: Reformulation size (# CQs/Rules), smallest in bold

We can find other examples of CQ-based implementations
in QuOnto [Calvanese et al., 2007], Owlgres [Stocker and
Smith, 2008] and Rapid [Chortaras, Trivela, and Stamou,
2011]. The time required for each of the systems to com-
pute the perfect reformulation is shown in Table 1, while the
number of CQs/rules in the output is shown in Table 2. The
symbol ‘-’ indicates a timeout after 200s. These tests were
performed on an OS X machine with a 2x2.66 Ghz Core i7
processor and 6 GB of RAM dedicated to the Java VM.

First we note that the performance of Quest’s bare refor-
mulation engine (col. Qs(b)), i.e., without the optimizations
mentioned before nor with CQC pruning of the output, is
comparable in performance to that of Requiem in naive mode
(col. Rq(n)), w.r.t. both rewriting time and size of the out-
put. Moreover, both engines have a much lower performance
than Presto in DP mode (col. Pr(d)). However, once the
techniques presented in this paper are activated (col. Qs(f)),
the rewriting engine of Quest outperforms Requiem’s fully
optimized mode (col. Rq(g)) and becomes close in perfor-
mance to Presto. Note that Quest’s reformulation engine did
not change, only the input TBox and the dependencies avail-
able for CQC pruning. This confirms that the optimizations
proposed in this paper do have a very strong impact on the
efficiency of reformulation engines.

With respect to the size of the output, the deep hierarchies
of LUBM3x-lite force Requiem to generate tens or thousands
of CQs while Presto’s DP-based rewritings contain tens of
rules. Note that when Presto expands those DPs into UCQs
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(col. Pr(c)), their size expands considerably. At the same
time, Quest always generates one single CQ as rewriting.
The reason for Quest’s small rewritings is that the optimized
TBox entails few axioms of the form A v ∃R and some role
inclusions related to implications of the form A v ∃R.B.
This allows Quest to generate very few rewritings, which
in addition get further pruned using CQC w.r.t. the depen-
dencies generated by the semantic index. With respect to
the SQL generated by those rewritings, this aspect is not
defined in Requiem or Presto. In the case of Quest, all these
queries generate either one single SQL query with very few
nested unions, or unions of very few select-project-join (SPJ)
queries. This is so because in Quest disjunction is mostly ad-
dressed by the numeric ranges of the semantic index instead
of union operations.

Execution performance. Requiem and Presto cannot be
used for query execution because they lack an ABox layer.
To evaluate this aspect of query answering, we used Owl-
gres 0.1 and Sesame 2.6. Owlgres is a system that relies on
query rewriting (UCQ-based). Sesame is an RDF Java frame-
work that includes its own implementation of a native triple
store, i.e., a specialized form of database that is optimized for
fast execution of SPARQL queries. Sesame supports RDFS
reasoning by means of forward-chaining (i.e., inference ma-
terialization). Quest and Requiem used PostgreSQL 9.1 for
ABox storage. The dataset consisted of a total of 50 “univer-
sities” (unis), i.e., 6863227 ABox assertions (≈2.3Gb in size)
generated using LUBM’s original data generator. The data
set is divided in 50 unis of approx. 137000 assertions each.

We used the same data loading mechanism for all systems,
i.e., first we loaded the LUBM3x-lite TBox, then we loaded
each of the 50 dataset one at a time. Sesame’s loading speed
was initially ≈40s/uni, and as more data was loaded, the
time increased up to ≈250s/uni, for a total time of 2hrs and
20m. Owlgres loading speed was constant at ≈ 107s/uni,
for a total of 1hr and 25m. In the case of Quest, loading
speed was constant at ≈3.3s/uni, for a total of 104s for the
entire dataset with additional 220s for the creation of indexes.
The reason for this rather pronounced gap in performance
in favor of Quest is because Quest loads exactly as many
rows as there are in the input. Moreover, the process does
not consider existing data. In contrast, Sesame’s forward
chaining algorithm generates many times more assertions
than there are in the input; moreover, the application of the
forward chaining rules requires querying the already inserted
data, an operation that grows in complexity as the database
grows. Owlgres also queries the existing data, apparently to
perform consistency checking and to generate URI identifiers.
We also suspect that the loading mechanism of Owlgres is
not very optimized, using SQL INSERT statements instead
of Postgres COPY command as Quest does.

The performance of query execution of the systems is
shown in Table 3, where (c) indicates a cold run, i.e., done
after a full system reboot to clear the DB and OS caches, and
(w) indicates the mean of 5 warm runs respectively. For cold
runs, where the core query answering performance is shown,
Quest outperforms Owlgres and Sesame on average, due to

Q Qs(c) Ow(c) Se(c) Qs(w) Ow(w) Se(w)
1 1504 1756 653 4 9 1
2 134061 218423 246373 30931 4361 4012
3 1312 81 185 1086 7 1
4 462 897 251 373 68 2
5 6888 4770 260 3275 942 16
6 1905 19926 23979 1568 8062 4765
7 563 232 176 367 90 3
8 2644 11048 2692 923 10577 275
9 29807 49535 165731 22557 11282 14300

10 7 16 2 5 14 1
11 444 54 33 360 13 1
12 136 334 50 14 324 1
13 3170 11 16 3131 9 1
14 1135 6862 13856 1132 7184 3593
T 184038 313947 454257 65727 42945 26970

Table 3: Execution time (ms), fastest in bold.

some ’hard’ queries dominating the results. For warm runs,
where OS disk caches and DB caches are heavily involved,
Sesame outperforms the rest. Also note that Sesame performs
better in simple queries, but in general, is outperformed by
Quest and Owlgres (i.e., by Postgres) in complex queries.

Nevertheless, we now comment on some of the DB aspects
of both systems. Owlgres and Quest define one table for each
kind of ABox assertions, i.e., concept, role (object property),
and attribute (data properties) assertions, however, Owlgres
defines multi-column B+tree indexes for some tables, while
Quest only defines single-column indexes; we believe this
could be a factor in Quest’s slightly lower performance for
warm runs. We also observed that in queries 2 and 9, Postgres
query plans for Quest’s SQL queries incur in severe errors. In
particular, the estimation of the row-output of several query-
plan operations is much lower than the actual output. Smaller
errors of this kind also appear in other queries, and in some
of Owlgres queries. We believe that the reason for these
wrong estimates is wrong or poor table/index statistics, and
the performance of both systems should improve once the
DB’s configuration is improved.

Last, comparing the performance of the SQL query rewrit-
ing techniques of Owlgres and Quest is difficult due to several
factors. First, we found that Owlgres’ rewriting engine is
incomplete in that it does not consider entailments about exis-
tential constants, which trivializes the query rewriting process
and in turn, the final SQL. Second, Owlgres implements an
optimization technique that detects CQ emptiness due to con-
cept/role emptiness (which is tracked at load time). This has
a strong effect with our benchmark since the LUBM data
generator does not generate data for concepts and roles of the
LUBM3x extended vocabulary. To conclude, we believe that
in order to reach any conclusions w.r.t. the SQL rewriting
techniques of both systems, it is necessary to further study
their performance using a better RDBMS engine and better
benchmark data.

The next evaluation covers some of these points, i.e., uses
a commercial DBMS engine that should produce better query
plans, and uses data from a real application.

Resource Index. We now describe an evaluation of the
cost of the Semantic Index as well as the performance of
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the queries it generates in the presence of very large vol-
umes of data. This experiment was carried out using data
from the Resource Index (RI) [LePendu et al., 2010] appli-
cation, winner of the Semantic Web Challenge Open Track
2010. The RI is an application that offers semantic search
services over 22 well known collections of biomedical doc-
uments (i.e., resources). The semantics of the search is
defined by the hierarchical information of ≈ 200 ontolo-
gies, including well known bio-medical ontologies like the
Gene Ontology, SNOMEDCT, NCI Thesaurus, etc. The
workflow of the RI can be summarized as follows: (i) Us-
ing natural language processing, each document is analyzed
and annotated with one or more concepts from the ontolo-
gies. The annotations can be seen as ABox assertions, e.g.,
Cervical Cancer(′doc224′). (ii) Users pose queries of the
form q(x)← A1(x) ∧ · · · ∧An(x), where each Ai is a con-
cept from one of the ontologies in the collection. To compute
the answers to the queries, the RI executes the original query
over the expanded ABox data. The ontologies in the RI’s
amount to ≈3 million concepts and ≈2.5 million sub-class
assertions. The annotation process generates a very large
volume of data. For the resource used in this experiment, the
Clinical Trials.gov (CT) collection, the annotation process
generates ≈181 million ABox assertions (i.e., data triples),
corresponding to ≈14 GB of data. The CT resource is only
one out of 22 resources managed by the RI. The total amount
of expanded data managed by the RI is ≈1.5 TB.

Our experimentation focused on the cost of query answer-
ing in this high-end scenario. We explored (a) query refor-
mulation as unions of SPJ queries (CNF), or SPJ queries
with nested views (DNF), (b) query answering using a Se-
mantic Index, and (c) query answering with ABox expan-
sion. The experiment used all the subClass assertions from
the RI’s ontologies and all the annotations for the CT re-
source. Note that given the limited expressivity of the TBox
used by this application, we can avoid query reformulation
w.r.t. the TBox by storing data using a Semantic Index. We
stored the data in a DB2 9.7 DB hosted in a Linux virtual
machine with 4x2.67 Ghz Intel Xeon processors (only one
core was used) and 4 GB of RAM available to DB2. We
issued several queries, the one we describe here is q(x) ←
DNA Repair Gene(x)∧Antigen Gene(x)∧Cancer Gene(x).
The selectivity of the query is high, returning a total of 2 dis-
tinct resources. The performance of each technique is as
follows: (a) when rewriting w.r.t. T in CNF form the result
is one SQL query with 467874 disjuncts, when rewriting in
DNF (as UCQ-based rewriters do), the result is a union of
467874 SPJ queries; none of these queries is executable by
DB2 with our system setup; (b) when we rewrite the query
using the Semantic Index technique, the result is a single
SQL query involving 3 range disjunctions; the query requires
3.582s to execute (0.082s if the DB is warm, e.g., the indexes
have been preloaded); the time required to compute the se-
mantic index is 27s; the size of the semantic index ≈4 GB;
(c) if the ABox is expanded and we execute the original query,
the execution requires 3 s (0 s if warm). With respect to the
cost of the expansion, LePendu et al. indicate that a straight-
forward expansion of the CT resource requires ≈7 days, and
generates ≈140 GB of data and, after a careful optimization

of the process (including data partitioning, parallelization,
etc.) this time can be reduced to ≈40 minutes. Given these
results, we believe that the Semantic Index is possibly a bet-
ter option than data expansion, due to the drastic cost of the
latter. Moreover, it scales to dimensions in which pure query
reformulation may be impossible.

6 Conclusions and Future Work
In this paper we focused on issues of performance query
answering with ontologies. Several directions can be taken
in the future. First, the Semantic Index technique presented
in Section 3 needs to be extended in order to support TBox
updates in an efficient way; such operation may require a
re-assignment of (none, some, or all of) the already com-
puted indexes, which in turn may require updating the ABox
assertions stored in the database; given the possibly high
cost of such operation, it is important to devise a technique
in which these updates are minimal and efficient. In the
context of optimizations w.r.t. completeness can be also ap-
plied in the more strict ‘virtual’ OBDA context, in which
data sources are independent and data can only be accessed
‘on-the-fly’. An initial exploration of this problem can be
found in [Rodrı́guez-Muro and Calvanese, 2011]. Moreover,
although TBox pre-processing is the best choice to start opti-
mizing w.r.t. completeness, it is also a necessary step during
query reformulation. With respect to evaluation, our exper-
iments, although very positive, are preliminary and further
experimentation is required. In particular, it is necessary to
further study indexing and configuration of DBMSs for the
queries generated by the semantic index.
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