
Fixed-Parameter Algorithms for Finding Minimal Models∗

Martin Lackner and Andreas Pfandler
Vienna University of Technology, Austria
{lackner, pfandler}@dbai.tuwien.ac.at

Abstract

Computing minimal models is an important task in
Knowledge Representation and Reasoning that appears
in formalisms such as circumscription, diagnosis and
answer set programming. Even the most basic question
of whether there exists a minimal model containing a
given variable is known to be ΣP

2 -complete.
In this work we study the problem of computing mini-
mal models from the viewpoint of parameterized com-
plexity theory. We perform an extensive complexity
analysis of this problem with respect to eleven param-
eters. Tractable fragments based on combinations of
these parameters are identified by giving several fixed-
parameter algorithms. For the remaining combinations
we show parameterized hardness results and thus prove
that under usual complexity theoretic assumptions no
further fixed-parameter algorithms exist for these pa-
rameters.

Introduction
Computing (subset) minimal models of propositional for-
mulas is an important task in reasoning formalisms such
as closed-world reasoning and circumscription (McCarthy
1980; Lifschitz 1985), diagnosis (Reiter 1987) and answer
set programming (Marek and Truszczynski 1999; Gelfond
and Leone 2002; Baral, Provetti, and Son 2003). How-
ever, finding minimal models is computationally hard: The
corresponding decision problem – asking whether there is
a minimal model containing a given variable – is ΣP2 -
complete (Eiter and Gottlob 1993). This problem is harder
than the classical satisfiability problem since one has not
only to guess the model but also to verify its minimality.
Since computing minimal models is an ubiquitous task in
many reasoning formalisms, ways have to be found to deal
with its high computational complexity.

Parameterized complexity theory has been developed to
cope with computationally hard problems. The main idea is
to study the complexity of a problem from a multivariate
point of view. This is in contrast to a classical complexity

∗The research was supported by the Austrian Science Fund
(FWF): P20704-N18.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

analysis where only the input size n is considered. Addi-
tional variables – so called parameters – describe charac-
teristics of the input instance. The main concept is fixed-
parameter tractability. A problem is called fixed-parameter
tractable (fpt) with respect to the parameters k1, k2, . . . , kl
if it can be solved in time O(f(k1, k2, . . . , kl) · nc). Here f
is a computable (usually exponential) function and c a con-
stant. Under the assumption that the parameter values are of
moderate size this runtime bound can be very favorable even
for large instances. Thus, the search for fpt algorithms is a
major technique to deal with hard problems.

Parameterized complexity theory has often and success-
fully been applied to problems in AI, as can be observed in
the survey (Gottlob and Szeider 2008). Answer-set program-
ming, for example, has been extensively studied (Truszczyn-
ski 2002; Jakl, Pichler, and Woltran 2009; Pichler et al.
2010; Fichte and Szeider 2011). Its underlying problem
however – the computation of minimal models – has re-
ceived less attention. In (Ben-Eliyahu and Dechter 1996)
the first fpt algorithms for computing an arbitrary minimal
model have been presented. However, the paper does not
make use of parameterized complexity theory and therefore
contains no systematic study of the interplay of parame-
ters. A first parameterized complexity analysis of computing
minimal models was performed in (Gottlob, Scarcello, and
Sideri 2002). The focus of that paper lies on intractability
proofs and presents an algorithm only for a rather restricted
case. In (Chen and Flum 2008) the problem of whether there
exists a minimal model of a specific size is studied but again
the focus lies on intractability classifications. In (Gottlob,
Pichler, and Wei 2010) fixed-parameter tractability with re-
spect to the parameter tree-width is shown but no further
parameters are considered.

The aim of this paper is to design efficient fpt algo-
rithms for finding minimal models of a CNF formula ϕ that
additionally satisfy a property π. This paper contains the
first comprehensive parameterized complexity analysis of
this problem. We consider eleven natural parameters which
are all efficiently computable. These include the maximum
clause size, the number of non-Horn clauses, how often vari-
ables occur as positive literals, the maximal cardinality of
the model we are looking for, etc. (see Table 1).

Our fpt algorithms are especially efficient in case the cor-
responding parameter values are small. A potential area of

85

Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning

application for our results is to use the fpt algorithms as
extensions of existing methods. For example, we present
an fpt algorithm parameterized by the maximum cardinal-
ity of the model and the maximum number of positive lit-
erals per clause. This algorithm is especially well-suited for
applications in diagnosis where the theory is mostly rule-
based, i.e. close to Horn formulas. Furthermore, in diagnosis
one is mainly interested in small models (explanations). The
maximum number of positive literals per clause can be com-
puted in linear time and therefore one can efficiently decide
whether or not to use this fpt algorithm.

We make full use of the fpt machinery by proving parame-
terized hardness results. These results rule out the possibility
of further fpt algorithms – under usual complexity theoretic
assumptions. We are able to show that this paper contains
all possible fixed-parameter tractable fragments with regard
to the parameters studied. Therefore we provide a complete
parameterized complexity classification for the 211 combi-
nations of parameters. Our main contributions are:

• We present several fpt algorithms, each of which makes
use of a different combination of parameters. These com-
plement each other since they perform especially well on
distinct classes of formulas. The results are of additional
interest since so far few fpt algorithms for ΣP2 -complete
problems are known.

• For all other combinations of parameters we show that
under usual complexity theoretic assumptions no fixed-
parameter algorithms exist. This is achieved by elaborate
fixed-parameter intractability proofs.

• In particular, we prove W[2]-completeness when param-
eterizing by the maximum cardinality of the model. This
answers a long-standing open question posed in (Gottlob,
Scarcello, and Sideri 2002).

Preliminaries
Graphs and sets. An (undirected) graph is defined as a pair
G = (V,E) where V is the set of vertices and E consists
of subsets of V of size 2. Given a graph and a vertex v,
the neighborhood N(v) ⊆ V is the set containing v and all
vertices connected to v by an edge. For m ∈ N, we use [m]
to denote the set {1, . . . ,m}. The power set of a set A is
denoted by P(A).
Boolean logic. A literal is a variable (positive literal) or a
negated variable (negative literal). A clause is a disjunction
of literals. A formula is in conjunctive normal form if it is
a conjunction of disjunctions of literals. The class of such
formulas is denoted by CNF. It is convenient to also view a
CNF formula as a set of clauses and a clause as a set of liter-
als. A formula is monotone if it does not contain negations.
Horn formulas are CNF formulas with at most one positive
literal per clause.

Given some formula ϕ we denote by var (ϕ) the set of
variables occurring in ϕ. An interpretation I ⊆ var (ϕ) is a
subset of the variables. An interpretation I is called a model
(of the formula ϕ) if ϕ is satisfied by setting the variables
in I to true and the variables in var (ϕ) \ I to false. The
weight of an interpretation or a model is its cardinality. We

call a model M (subset) minimal if there exists no model
M′ ⊂M, i.e.M′ is a proper subset ofM.
Assignments and reduced formulas. Given a formula ϕ,
an assignment of a set V ⊆ var (ϕ) is a pair (T ,F) such that
T ∪F = V and T ∩F = ∅. The set T denotes the variables
that are set to true; the set F those that are set to false. Given
an assignment (T ,F) and a CNF formula ϕ, the reduced for-
mula ϕ[T ,F] is ϕwhere all variables in T are set to true and
all variables in F are set to false. More specifically, ϕ[T ,F]
is obtained from ϕ by first removing all clauses that contain
variables in T as positive literals or variables in F as neg-
ative literals and second removing all remaining literals of
variables in T ∪ F . In case the empty clause is produced by
this procedure, ϕ[T ,F] is not satisfiable and hence we de-
fine ϕ[T ,F] := {∅}. We say that an assignment (T ′,F ′)
is a subassignment of an assignment (T ,F), denoted by
(T ′,F ′) ≺ (T ,F), if T ′ ∪ F ′ = T ∪ F and there is some
non-empty ∆ ⊆ T such that (T ′,F ′) = (T \ ∆,F ∪ ∆).
Finally, ϕ[T] is an abbreviation of ϕ[T , ∅].
Parameterized complexity theory. In this paper we denote
the input size, i.e. the size of the encoding of the instance,
by n. In contrast to classical complexity theory, a parame-
terized complexity analysis studies the runtime of an algo-
rithm with respect to one or more parameters k1, . . . , kl ∈ N
together with the input size n. A problem parameterized by
k1, . . . , kl is fixed-parameter tractable (fpt) if there is a com-
putable function f and a constant c such that there is an al-
gorithm solving it in time O(f(k1, . . . , kl) · nc). Such an
algorithm is called fixed-parameter tractable as well. We de-
fine parameterized problems as subsets of Σ∗ ×N, where Σ
is the input alphabet. If a problem is parameterized by two
or more parameters, the second component of an instance
(x, k) corresponds to the sum of all parameter values. The
class FPT consists of all parameterized problems that are
fixed-parameter tractable. In order to show parameterized
intractability results, we make use of fpt-reductions.

Definition. Let L1 and L2 be parameterized problems, i.e.
L1 ⊆ Σ∗1 × N and L2 ⊆ Σ∗2 × N. An fpt-reduction from L1

to L2 is a mapping R : Σ∗1 × N→ Σ∗2 × N such that

1. (I, k) ∈ L1 iff R(I, k) ∈ L2.
2. R is computable by an fpt algorithm with parameter k.
3. There is a computable function g such that for R(I, k) =

(I ′, k′), k′ ≤ g(k) holds.

We now define the parameterized complexity classes that
will be needed in this work. A central problem which can
be used to define the so-called W-hierarchy is WSAT.

WSAT≤ / WSAT=

Instance: A formula ϕ ∈ CNF and k ∈ N.
Question: Does ϕ have a model with weight at most

/ exactly k ?

W[1] can be defined as the class of problems fpt-reducible
to WSAT= restricted to CNF formulas with clause size
at most 2 (parameterized by the weight k). The general
WSAT= as well as WSAT≤ are W[2]-complete. The class
para-NP (Flum and Grohe 2003) is defined as the class of

86

all problems which can be solved in fpt-time on a nonde-
terministic Turing machine. In particular all unparameter-
ized problems that are in NP are in para-NP for any pa-
rameterization. If a problem remains NP-hard even when
the parameter is set to a constant value, it is para-NP-hard.
The following relations between these complexity classes
are known: FPT ⊆ W[1] ⊆ W[2] ⊆ para-NP. It is
broadly believed that problems that are hard for W[1] or
higher classes are not fpt, i.e. FPT 6= W[1]. We exem-
plarily mention that VERTEX COVER is in FPT, INDE-
PENDENT SET is W[1]-complete and DOMINATING SET is
W[2]-complete (all parameterized by the solution size). Fur-
ther details can be found e.g. in (Downey and Fellows 1999;
Flum and Grohe 2006).

Weighted Minimal Model Satisfiability
The main goal of this paper is to study the (parameterized)
complexity of finding minimal models that satisfy a given
(CNF) property. We do this by studying the following deci-
sion problem:

WEIGHTED MINIMAL MODEL SAT (WMMSAT)
Instance: A triple (ϕ, π, k), where ϕ and π are

CNF formulas such that var (π) ⊆
var (ϕ) and k ∈ N.

Question: Is there a minimal model M of ϕ with
|M| ≤ k that is also a model of π?

Note that WMMSAT does not ask the question whether
there is a minimal model of ϕ ∧ π. Consider for example
ϕ := (x ∨ ¬x) and π := x. This instance has no minimal
model of ϕ that also satisfies π since the empty set is the
only minimal model of ϕ. However, {x} is a minimal model
of ϕ ∧ π.

Also, observe that although WMMSAT is a decision prob-
lem, it is closely related to the problem of actually comput-
ing a minimal model. The reason for this is that we can use
repeated calls of a procedure solving WMMSAT to actually
compute a model. For this let ϕ be the formula we want to
find a minimal model of and var (ϕ) = {x1, . . . , xm}. First,
we solve the WMMSAT instance (ϕ, x1,m). If this is a Yes-
instance, we continue with the instance (ϕ, x1∧x2,m). Oth-
erwise we continue with the instance (ϕ,¬x1∧x2,m). Each
call determines the truth value of one variable. As long as
there exists a minimal model, we can compute a minimal
model by solving m WMMSAT instances.

Observe that in this case we do not make use of the addi-
tional requirement that we are looking for minimal models
of bounded weight. However, in many contexts one is es-
pecially interested in small models (e.g. diagnosis). This is
the reason why we have included the upper bound k on the
weight in the WMMSAT problem definition.

Furthermore, notice that if we set π to true, WMMSAT
is equivalent to WSAT≤. This is because ϕ has a minimal
model of weight ≤ k iff it has a model of weight ≤ k.

One can assume that ϕ does not contain clauses of the
form {v} (facts) and {¬v} (anti-facts) since these already fix
a truth value for each possible model. Additionally, we can
assume that π does not contain anti-facts because this would

k the maximum weight of the minimal model
d the maximum clause size
d+, d− the maximum positive/negative clause size,

i.e. only positive/negative literals are counted
h the number of non-Horn clauses
b the size of a strong Horn backdoor set (ex-

plained in the corresponding section)
p the maximum number of positive occur-

rences of a variable in ϕ
v+, v− the number of variables that occur as posi-

tive/negative literals in ϕ or in π
d+π the maximum positive clause size in π
‖π‖ the length of π, i.e. the total number of vari-

able occurrences in π

Table 1: List of considered parameters. Unless otherwise
mentioned all these parameters refer to ϕ.

also allow to fix the corresponding truth value to false. For
facts in π this is not the case. Consider again the example
ϕ := (x ∨ ¬x) and π := x. Fixing the truth value of x to
true is not valid since ϕ has no minimal model containing x.

In this paper we perform an extensive parameterized com-
plexity analysis of WMMSAT. The parameters that are con-
sidered are listed in Table 1. All these parameters (except
for b) can be computed in polynomial time. For every com-
bination of these parameters we either show fixed-parameter
tractability or present a hardness result.

A Parameterized Completeness Result for
WMMSAT Parameterized by k

The first theorem answers an open problem posed in (Got-
tlob, Scarcello, and Sideri 2002, at the end of Sec-
tion 6.3): For which complexity class is WMMSAT com-
plete when parameterized by the weight? To answer this
question we make use of a model-checking problem over
Σt,u formulas, a fragment of first-order formulas. The
class Σt,u contains all first-order formulas of the form
∃x1∀x2∃x3 . . . Qxtψ(x1, . . . , xt), where ψ is quantifier
free and Q is an ∃ if t is odd and a ∀ if t is even. The length
of the quantifier blocks – with the exception of the first ∃
block – are of length at most u.

MC[Σt,u]
Instance: A finite structureA, a formula ψ ∈ Σt,u.
Question: Is A a model of ψ ?

When parameterized by the length of the formula ψ, the
problem MC[Σ2,u] is W[2]-complete for u ≥ 1 (Downey,
Fellows, and Regan 1998; Flum and Grohe 2005). In the fol-
lowing proof the encoding of CNF formulas as logical struc-
tures builds upon ideas presented in (Flum and Grohe 2006,
Chapter 7).

Theorem 1. WMMSAT parameterized by the maximal
weight k is W[2]-complete.

Proof. It is easy to see that WMMSAT is W[2]-hard. Just
observe that (ϕ, true, k) is a Yes-instance iff ϕ has a model

87

of weight≤ k. This problem is the W[2]-hard WSAT≤ prob-
lem as introduced in the preliminaries.

Membership is shown by a reduction of a WMMSAT in-
stance (ϕ, π, k) to an MC[Σ2,1] instance (A, ψ). Observe
that if a clause c contains more than k negative literals, then
c is satisfied by all weight k interpretations. Therefore, we
will assume that such clauses were removed from ϕ and π in
a preprocessing step. In addition, we check during the pre-
processing whether the empty set is a model of ϕ. In this
case, we reduce (ϕ, π, k) to a trivial Yes-instance if ∅ is
also a model of π and to a trivial No-instance if ∅ is not a
model of π. If the empty set is not a model of ϕ we continue
as follows. The structure A = (A,E,ROOTϕ,ROOTπ,
VAR,POS , N0, . . . , Nk) is obtained as follows. The do-
main A contains an element for each clause in ϕ and π, for
each variable in ϕ and two root elements (denoted by rootϕ
and rootπ). Since var (π) ⊆ var (ϕ), elements for all vari-
ables of π are contained in A. The relation E contains a pair
(rootϕ, c) (resp. (rootπ, c)) for each clause c ∈ A that oc-
curs in ϕ (resp. π). The relation POS contains a pair (c, p)
for each variable p occurring positively in clause c. Further-
more, ROOTϕ := {rootϕ} and ROOTπ := {rootπ}. The
set VAR contains all variables of ϕ (and of π). For each
clause c = {p1, . . . , pj ,¬n1, . . . ,¬ni} of ϕ and π we cre-
ate a tuple (c, n1, . . . , ni) ∈ Ni. Notice that 0 ≤ i ≤ k. It
is also worth mentioning that although the formulas ϕ and π
share the relations E ,VAR,POS , N0, . . . , Nk, they can be
still distinguished via the distinct root elements.

Let X := {x1, . . . , xk} be a set of first-order variable
symbols and #(·) an enumeration of all proper subsets of
X , i.e. a bijection from P(X)\{X} to [2k−1]. The formula
ψ is defined as:

ψ := ∃x1 . . . ∃xk ∃rϕ ∃rπ ∃c1 . . . ∃c2k−1 ∀c

ROOTϕ(rϕ) ∧ ROOTπ(rπ) ∧
∧
i∈[k]

VAR(xi) ∧

ψSAT(X, rϕ, c) ∧ ψMIN(rϕ) ∧ ψSAT(X, rπ, c)

ψSAT(S, r, e) := E(r, e)→[∨
x∈S

POS (e, x) ∨
∧

0≤i≤k

∧
z∈Si

¬Ni(e, z)
]

ψMIN(r) :=
∧

X′⊂X
¬ψSAT(X ′, r, c#(X′))

The variables x1, . . . , xk are used to select a model of
weight ≤ k, the variables c, c1, . . . , c2k−1 represent clauses
and rϕ (resp. rπ) is the root node in the parse tree of ϕ (resp.
π). The formula ψSAT(S, r, e) checks whether in the for-
mula selected by root r, the clause e is satisfied by the in-
terpretation S. Therefore ∀c ψSAT(X, r, c) checks whether
X is a model of the formula selected by r. The formula
ψMIN(r) then checks whether X is a minimal model (of the
formula selected by root r) by demanding for each X ′ ⊂ X
a clause (namely c#(X′)) that is not satisfied by S. This guar-
antees that each interpretation X ′ ⊂ X violates at least one
clause. Notice that while we require that both ϕ and π are

Algorithm 1: branch(ϕ, k,S)

1 C ← ∅
2 if ∅ ∈ ϕ[S] then
3 return ∅ // ϕ[S] is not satisfiable

4 if every clause in ϕ[S] contains a negative literal then
5 return {S} // ∅ is the only minimal

model of ϕ[S]

6 else
7 if |S| ≥ k then
8 return ∅ // No model containing S

with weight ≤ k
9 Pick a clause c ∈ ϕ[S] containing only positive

literals.
10 foreach variable x ∈ c do
11 C ← C ∪ branch(ϕ, k,S ∪ {x})
12 return C

satisfied by the interpretation {x1, . . . , xk}, minimality has
to be checked only for ϕ. Finally, it can easily be verified
that the length of ψ can be bounded in terms of k.

An Fpt Algorithm for Small Clause Size
In the previous section we have shown that WMMSAT is
W[2]-complete when parameterized by the weight k. In this
section we show that this hardness result does not hold if
we bound the clause size of ϕ. More specifically we show
that WMMSAT is fpt with respect to the weight k and the
clause size d. Actually we can even show fixed-parameter
tractability with respect to k and the positive clause size d+.

The corresponding fpt algorithm relies heavily on the
recursive procedure branch(ϕ, k,S). This procedure com-
putes a set of models that satisfy ϕ, have weight≤ k and are
supersets of S. In particular, this set contains all minimal
models of ϕ of weight≤ k that are supersets of S. However,
the set computed by branch also contains models that are
not minimal. See Algorithm 1 for details.
Example 1. In Figure 1 we illustrate branch with the argu-
ments ϕ = (a ∨ b) ∧ (a ∨ c) ∧ (¬b ∨ d) ∧ (¬a ∨ ¬c ∨ ¬d),
k = 3 and S = ∅. The clause chosen to be branched on is
always written in bold. We see that branch(ϕ, 3, ∅) returns
three models: {a} and {b, c, d} are minimal; {a, b, d} is not
minimal.

As mentioned before, we can prove that branch finds all
minimal models:
Lemma 2. The procedure branch(ϕ, k, ∅) returns a set of
models of ϕ having weight ≤ k. In particular, all subset
minimal models of ϕ having weight ≤ k are contained.

Proof. LetM be a minimal model of ϕ. The main observa-
tion is that in each branching step of the branch procedure
we can choose a variable fromM. Since we branch on posi-
tive clauses andM is a model, one variable in each of these
clauses has to be an element ofM. Also every element ofM

88

(a ∨ b) ∧ (a ∨ c) ∧ (¬b ∨ d) ∧ (¬a ∨ ¬c ∨ ¬d)

(¬b ∨ d) ∧ (¬c ∨ ¬d)

{a}

a

(a ∨ c) ∧ (d) ∧
(¬a ∨ ¬c ∨ ¬d)

(a ∨ c) ∧ (¬a ∨ ¬c)

{a, b, d}

a

{b, c, d}

c

d

b

Figure 1: Example of the branch procedure.

has to appear in a clause on which we branch because other-
wiseM would not be minimal. ThereforeM is returned by
branch(ϕ, k, ∅).

We now describe the first fpt algorithm in this paper.

Theorem 3. WMMSAT can be solved in time O
(
(d+)

k ·
2k · n

)
.

Proof. The algorithm works as follows: First, the procedure
branch(ϕ, k, ∅) computes a set of models C of weight ≤ k.
By Lemma 2, C contains all minimal models of ϕ and some
models that are not minimal. The algorithm now considers
every model M ∈ C that is also a model for π. It remains
to check whether it is a subset minimal model for ϕ. This
can be done by testing whether any proper subset ofM is a
model of ϕ as well. If not, (ϕ, π, k) is a Yes-instance. IfM
is not minimal, we continue with the nextM∈ C.

In order to determine the runtime, observe that branch
has a branching factor of at most d+ and the recursion depth
is at most k. In case a model for ϕ and π is found, we have
to check for at most 2k − 1 subsets whether they are models
of ϕ. In total we obtain a runtime of O

(
(d+)

k · 2k · n
)
.

Remark. Since d+ ≤ d, the runtime bound holds for the
parameters d and k as well.

Fpt Algorithms for (Almost) Monotone
Formulas

This section contains an fpt algorithm that performs well
on almost monotone formulas with a bounded number of
non-Horn clauses. The algorithm itself is rather intricate. We
therefore do not give a detailed “low level” run time analy-
sis. This means we ignore polynomial factors by using the
O∗(·) notation. O∗(·) is defined in the same way as O(·)
but ignores polynomial factors. We start by introducing the
central notion of this section: succinct sets of models.

Succinct Sets of Models
Consider the monotone formula ψ = (a∨b)∧(b∨c)∧(d∨e).
This formula has four minimal models: {a, c, d}, {a, c, e},
{b, d} and {b, e}. Observe that the decision whether to in-
clude d or e in the minimal model is independent of the

choice which of a, b, c to include. Actually we can group
these models in two sets: those that include a, c and those
that include b. These two sets of models can be denoted by{
{a}, {c}, {d, e}

}
and

{
{b}, {d, e}

}
. Variables that occur

together in the same set are equivalent in the sense that they
satisfy exactly the same clauses. These observations already
hint at the merit of such succinct sets of models: the elimi-
nation of redundancies. If one is just interested in the satis-
fiability of ψ, the distinction between d and e does not make
much sense since they appear in exactly the same clauses.
This distinction is however crucial for solving WMMSAT
since for example d and e might appear in different clauses
in π. These observations give rise to the following definition.

In this subsection ψ is always a monotone formula. While
a model of ψ is a subset of var (ψ), a succinct set of mod-
els (SSM) is a subset of P(var (ψ)), i.e. it contains sets of
variables.
Definition. Let S ⊆ P(var (ψ)). The set S is an SSM of ψ
if the conditions S0, S1, S2 and S3 hold.

S0 For all distinct sets s1, s2 ∈ S, s1 ∩ s2 = ∅.
S1 For all x, y ∈ var (ψ) it has to hold that ∀c ∈ ψ (x ∈
c↔ y ∈ c) iff ∀s ∈ S (x ∈ s↔ y ∈ s).

Whenever variables appear in exactly the same clauses, they
have to be together in an element of an SSM. Therefore ev-
ery element in an SSM is in this sense maximal.
S2 For each clause c ∈ ψ there is a set s ∈ S such that
c ∩ s 6= ∅.

This property requires an SSM to cover all clauses in ψ.
S3 There is no s ∈ S such that S \ {s} satisfies S2.
This forces an SSM to be minimal. Note that \ is the usual
set difference operator.
Example 2. We consider again the formula ψ = (a ∨
b) ∧ (b ∨ c) ∧ (d ∨ e). The set

{
{b}, {d}

}
is not an

SSM because of S1 (d appears in each clause e ap-
pears in and therefore they have to be contained in the
same set in an SSM). The set

{
{b}
}

is also not an SSM
since it violates S2 (the clause (d ∨ e) is not covered).
S3 is e.g. not fulfilled by

{
{a}, {b}, {d, e}

}
(the subset{

{b}, {d, e}
}

already is an SSM and hence satisfies S2).
Also the set

{
{a}, {c}, {d}, {e}

}
violates S3 since the sub-

set
{
{a}, {c}, {d}

}
satisfies S2.

Intuitively, a succinct set of models is – in contrast to a
model – a set of possible choices for variables instead of a
set of variables. This is reflected by the following definition.
Definition. LetM⊆ var (ψ) and S ⊆ P(var (ψ)) (e.g. S is
an SSM of ψ). ThenM is in S (denoted byM∈̃S) if there
exists a bijection γ : M→ S such that x ∈ γ(x) for every
x ∈M.

Let S = {s1, . . . , sl} be an SSM. Observe that this defi-
nition implies that ∀x1 ∈ s1 ∀x2 ∈ s2 . . . ∀xl ∈ sl the set
{x1, . . . , xl} ∈̃ S. The following two lemmas point out the
close connection between SSMs and minimal models.
Lemma 4. Let M be a minimal model of ψ. Then there
exists an SSM S such thatM∈̃ S .

89

Proof. We can construct an SSM in the following way:
S :=

{
{y ∈ var (ψ) | ∀c ∈ ψ(y ∈ c↔ x ∈ c)} | x ∈M

}
.

It can easily be checked that S0, S1, S2 and S3 hold.

Lemma 5. Let S be an SSM of ψ. IfM ∈̃ S, thenM is a
minimal model of ψ.

Proof. Let c be a clause of ψ. We are going to show that
c ∩ M 6= ∅. From S2 we know that there is a set s ∈ S
such that c ∩ s 6= ∅. We then conclude from S0 that for all
x, y ∈ c ∩ s it holds ∀t ∈ S (x ∈ t ↔ y ∈ t). Then S1
implies that s ⊆ c. FinallyM ∈̃ S implies that there is an
x ∈ M with x ∈ s and thereforeM∩ c 6= ∅. This proves
thatM is a model of ψ.
M is also a minimal model. Towards a contradiction as-

sume that there is a model M′ ⊂ M. Let x ∈ M \M′.
Then there is an s ∈ S with x ∈ s. Since ψ is mono-
tone, M′ is a model and M′ ⊆ M \ {x}, we know that
M \ {x} is a model. Therefore for each clause c ∈ ψ it
holds that (M\ {x}) ∩ c 6= ∅. From S0 it follows that x is
not contained in t ∈ S, t 6= s, i.e. x is only contained in s.
Since ∈̃ is defined by the bijection γ, x is the only element
in γ(x) = s that is contained inM. By that we know that
(M\ {x}) ∈̃ (S \ {s}). Hence it also holds for every c ∈ ψ
that there exists a t ∈ (S\{s}) such that t∩c 6= ∅ (since t∩c
contains an element ofM\ {x}). This proves that S \ {s}
satisfies S2 – which contradicts S3.

The following lemma proves an upper bound on the num-
ber of SSMs that plays a crucial role in the runtime estimates
later on.
Lemma 6. Let ψ be a monotone CNF formula and let |ψ|
denote the number of its clauses. Furthermore, let C denote
the set of all SSMs of ψ with cardinality ≤ k. Then |C| ≤
2k·|ψ|.

Proof. We show this bound with the help of an injective
function µ from C to a set whose size can easier be bounded.
Let µ be a function from C into{

{q1, . . . , qk} | qi ⊆ ψ for i ∈ [k]
}
.

Notice that q1, . . . , qk are sets of clauses and need not to
be distinct. The formula ψ has 2|ψ| subsets (of clauses) and
hence this set has a cardinality of less than 2k·|ψ|.

In order to describe the injective function µ let S be an
SSM of ψ. Recall that we can consider ψ as a set containing
clauses and clauses can be considered as sets of variables.
We define µ(S) as the set

{
{c ∈ ψ | s ⊆ c} | s ∈ S

}
. Since

|S| ≤ k the cardinality of µ(S) is also ≤ k.
It remains to prove that µ is injective. Assume that

µ(S) = µ(T). We are going to show that this implies that
S = T . Let s ∈ S. Then there is a corresponding set {c ∈
ψ | s ⊆ c} in µ(S). Since µ(S) = µ(T) there is a t ∈ T
such that {c ∈ ψ | s ⊆ c} = {c ∈ ψ | t ⊆ c} ∈ µ(T).
It therefore has to hold for all c ∈ ψ that s ⊆ c ↔ t ⊆ c.
Let x ∈ s and y ∈ t. From S0 and S1 it follows that for all
c ∈ ψ that x ∈ c ↔ s ⊆ c and also y ∈ c ↔ t ⊆ c. Hence
for all c ∈ ψ, x ∈ c ↔ y ∈ c. Now S1 implies that y ∈ s
and x ∈ t. Consequently s ∩ t 6= ∅ and hence by S0 s = t.
Therefore S = T and by that injectivity of µ is shown.

Remark. Note that due to the simple nature of this injective
function µ one can easily see that all SSMs of ψ with cardi-
nality ≤ k can be generated in time O∗

(
2k·|ψ|

)
.

We end this subsection by introducing the operator ∩̃.
Definition. Let S be an SSM of ψ and I ⊆ var (ψ). S ∩̃ I
is defined the following way:
• If there is an x ∈ I such that x /∈ s for all s ∈ S then
S ∩̃ I := {∅}.

• If there is an s ∈ S such that |s∩I| ≥ 2 then S∩̃I := {∅}.
• Otherwise S ∩̃ I := {s ∩ I | s ∈ S ∧ s ∩ I 6= ∅} ∪ {s |
s ∈ S ∧ s ∩ I = ∅}.
The intuition behind this definition is that S ∩̃ I contains

(with respect to ∈̃) all minimal models contained in S that
are supersets of I. Therefore the two exceptions are required
in this definition: If the first property holds then noM ∈̃ S
contains x. If the second property holds then noM∈̃ S can
contain all variables in s∩I. In these cases the result of S∩̃I
is {∅} because there is noM∈̃ {∅}.

Observe that S ∩̃ I is not necessarily an SSM since it
might be that S1 is no longer fulfilled. However, the follow-
ing lemma holds.
Lemma 7. Let S be an SSM of ψ and I ⊆ var (ψ). Then
M∈̃ (S ∩̃ I) iffM∈̃ S and I ⊆M.

This lemma is immediate consequence of the definitions
of ∩̃ and ∈̃.

The Algorithm for Monotone Formulas
Before we present the full algorithm in the next subsection,
we first explain the special case where the formulas ϕ and
π are monotone. Algorithm 2 provides an overview of the
procedure.

Algorithm 2: Fpt-algorithm for monotone formulas –
Theorem 8

1 Let N be the set of all variables that occur as facts in ϕ.
2 Let l := min{k − |N |, |ϕ[N]|}.
3 Cπ ← branch(π[N], l, ∅)
4 foreachMπ ∈ Cπ do
5 foreach SSM S of ϕ[N] with cardinality ≤ l do
6 if S ∩̃Mπ 6= {∅} then return Yes

7 return No

If variables occur as facts, i.e. clauses of size 1, in ϕ they
have to be a part of every model. Therefore we only consider
ϕ[N] and π[N], where N denotes the set of all facts in ϕ.
The constant l is a bound on the maximum possible size of a
minimal model of ϕ[N]. On the one hand l ≤ k− |N | since
we are only interested in models of weight≤ k. On the other
hand a minimal model of the formula ϕ can have weight
at most |ϕ| and hence l ≤ |ϕ[N]|. In Line 3 we employ
the branch procedure as described earlier to compute a set
containing all minimal models of π[N] of weight≤ l. Recall
that this set might also contain non-minimal models. Then
we check for each Mπ ∈ C and for each SSM S of ϕ[N]

90

Algorithm 3: Fpt-algorithm for arbitrary CNF formulas – Theorem 9 and 10

1 Let V − denote all variables that occur as negative literals in ϕ or in π.
2 foreach assignment (T ,F) of V − with weight |T | ≤ k do
3 Let N be the set of all variables that occur as facts in ϕ[T ,F].
4 Let l := min(k − |T | − |N |, |ϕ[T ∪ N ,F]|). // The "remaining" weight.
5 Cπ ← branch(π[T ∪ N ,F], l, ∅)
6 foreachMπ ∈ Cπ do
7 foreach SSM S of ϕ[T ∪ N ,F] with cardinality ≤ l do

// For each M∈̃ (S ∩̃Mπ), M∪ T ∪N is a model of ϕ ∧ π. We have to check
whether there is a M∈̃ (S ∩̃Mπ) such that M∪ T ∪N is minimal.

8 Let L be the set of all (T ′,F ′) ≺ (T ,F) where ϕ[T ′ ∪N ,F ′] contains at most (k − |T | − |N |) · p clauses.
9 foreach function β with domain L and β(T ′,F ′) ∈ ϕ[T ′ ∪N ,F ′] do // Choose one clause per

subassignment. Is there an M∈̃ (S ∩̃Mπ) that is not a model for these
clauses?

10 Let var (β) be the set of all variables that appear in the range of β.
11 if for all s ∈ (S ∩̃Mπ), s \ var (β) 6= ∅ then return Yes

// There is no M∈̃ (S ∩̃Mπ) such that M∪ T ∪N is a minimal model of ϕ.

// There is no minimal model of ϕ extending (T ∪Mπ,F).

// There is no minimal model of ϕ extending (T ,F) that also satisfies π.

12 return No

with cardinality ≤ l whether there is aM ∈̃ S withMπ ⊆
M. Lemma 7 implies that there is aM∈̃S withMπ ⊆M
if M ∈̃ (S ∩̃ Mπ). This is exactly the case if S ∩̃ Mπ 6=
{∅}. Furthermore, by Lemma 4 we know that every minimal
model is contained in an SSM. Hence checking this property
decides the WMMSAT instance.

Example 3. Let ϕ := (a ∨ b ∨ c) ∧ (d ∨ e ∨ h ∨ i) ∧
(f ∨ h ∨ i), π := (a ∧ f) and k := 3. We now demon-
strate how Algorithm 2 works. FirstN = ∅ since ϕ does not
contain facts. The formula π has only one model: {a, f}.
There are two SSMs of ϕ: S1 :=

{
{a, b, c}, {d, e}, {f}

}
and S2 :=

{
{a, b, c}, {h, i}

}
. We obtain S1 ∩̃ Mπ ={

{a}, {d, e}, {f}
}

and S2 ∩̃ Mπ =
{
∅
}

(since there is no
s ∈ S with f ∈ s). Therefore only S1 contains models that
are supersets of {a, f}, namely {a, d, f} and {a, e, f}. Con-
sequently this is a Yes-instance.

Theorem 8. WMMSAT for monotone ϕ and π can be
solved in time

O∗((d+π)k · 2k
2·p) or (1)

O∗((d+π)h · 2h
2

). (2)

Proof. Recall that the procedure branch considers at most
(d+π)k models. From Lemma 6 we know that there are at
most 2k·|ϕ[N]| SSMs of ϕ[N]. Observe that computing all
these SSMs can be done in timeO∗(2k·|ϕ[N]|). This yields a
runtime of O∗

(
(d+π)k · 2k·|ϕ[N]|) for Algorithm 2.

Regarding Equation (1) observe that if the number of
clauses is larger than k · p, ϕ is not satisfiable by a weight
k interpretation. Hence we can assume that |ϕ[N]| ≤ k · p
which yields Equation (1).

When parameterizing by h we have no immediate bound
on the maximum weight k. However, we know that the
monotone formula ϕ[N] has at most h clauses since it con-
tains no facts. Hence, a minimal model of ϕ[N] has weight
at most h. This yields Equation (2).

The Algorithm for Arbitrary Formulas
Algorithm 3 extends the algorithm for monotone formulas
(Algorithm 2) to arbitrary formulas. This is possible due to
the parameter v−. This parameter allows us to perform a
brute-force search over all assignments to variables that oc-
cur negatively. Clearly, all remaining variables occur only
positively. Finding a model is straight-forward with this pa-
rameter whereas checking for minimality is more involved.

In a first step (Line 2) we pick an assignment (T ,F) of
V −, the set of all variables that appear as negative literals
either in ϕ or π. The reduced formulas ϕ[T ,F] and π[T ,F]
are monotone and therefore we can apply the strategy of
Algorithm 2. Let N denote the set of all facts in ϕ[T ,F].
We iterate over a set containing all minimal modelsMπ of
π[T ∪ N ,F] (generated by the branch procedure) and over
all SSMs S of ϕ[T ∪ N ,F]. From Lemma 4 it follows that
for every minimal model of ϕ[T ∪N ,F],M∈̃S. Therefore
this algorithm indeed considers all candidates of appropri-
ate minimal models. By Lemma 5 and Lemma 7 it holds for
each M ∈̃ (S ∩̃ Mπ) that M∪ N is a minimal model of
ϕ[T ,F] and a model of π[T ,F].

It remains to check whether there is anM ∈̃ (S ∩̃ Mπ)
such that M ∪ N ∪ T is minimal with respect to ϕ. For
this we consider all subassignments (T ′,F ′) ≺ (T ,F)
(Line 8). For each (T ′,F ′) we consider ϕ[T ′ ∪N ,F ′]. Ob-
serve that since ϕ[T ′ ∪ N ,F ′] is monotone, ϕ[T ′ ∪ N ,F ′]

91

is satisfiable iff ϕ[T ′,F ′] is satisfiable. Furthermore, since
T ′ ⊂ T , if there exists a model M′ of ϕ[T ′,F ′] with
M′ ∪ T ′ ⊂ M ∪ T ∪ N then there also exists a model
M′′ of ϕ[T ′ ∪N ,F ′] withM′′ ∪ T ′ ∪N ⊂M∪ T ∪N .
As observed in Algorithm 2, if ϕ[T ′∪N ,F ′] has more than
k·p clauses it cannot be satisfied by a weight k interpretation.
Therefore a subassignment (T ′,F ′) where ϕ[T ′ ∪N ,F ′] is
“too large” cannot have a model that is a counterexample to
the minimality property.

The question is now: Is there anM∈̃ (S ∩̃Mπ) such that
for each subassignment (T ′,F ′) ≺ (T ,F), ϕ[T ′ ∪ N ,F ′]
contains a clause that is not satisfied byM. We check that in
Line 9 by choosing one clause per subassignment. If S∩̃Mπ

still contains a model after removing the variables in these
clauses, we have a Yes-instance. This is because for every
remaining modelM in S ∩̃Mπ ,M∪T ∪N is a minimal
model of ϕ and a model of π. Also |M ∪ T ∪ N| ≤ k.
Example 4. Let ϕ := (¬x ∨ a ∨ b ∨ c) ∧ (¬x ∨ d ∨ e ∨
h ∨ i) ∧ (¬x ∨ f ∨ h ∨ i) ∧ (x ∨ a) ∧ (x ∨ d ∨ e ∨ h),
π := (a ∧ f) and k := 3. The set V − = {x}. Assume
that we are currently considering the assignment ({x}, ∅)
(Line 2). There are no facts in ϕ[T ,F] hence N = ∅. The
only (minimal) model of π[T ∪ N ,F] is Mπ = {a, f}.
Observe that ϕ[T ∪N ,F] = (a∨ b∨ c)∧ (d∨ e∨ h∨ i)∧
(f ∨h∨ i) is equal to formula ϕ in Example 3. Hence ϕ[T ∪
N ,F] has two SSMs: S1 :=

{
{a, b, c}, {d, e}, {f}

}
and

S2 :=
{
{a, b, c}, {h, i}

}
. As before we obtain S1 ∩̃ Mπ ={

{a}, {d, e}, {f}
}

and S2 ∩̃Mπ =
{
∅
}

. There is only one
subassignment: (∅, {x}). Since ϕ[∅, {x}] = a∧ (d∨ e∨ h),
there are two possible functions β: β1(∅, {x}) = {a} and
β2(∅, {x}) = {d, e, h}. Observe that for no pairing of S1,S2
with β1, β2 the condition in Line 11 is fulfilled. We therefore
continue with the assignment (∅, {x}) in Line 2. Here N =
{a} and ϕ[T ∪ N ,F] = (d ∨ e ∨ h). This yields one SSM
S3 =

{
{d, e, h}

}
. We obtain S3 ∩̃ Mπ =

{
∅
}

. Hence the
condition in Line 11 cannot be fulfilled and (ϕ, π, 3) is a
No-instance.
Theorem 9. WMMSAT can be solved in

O∗
(

2v
−
· 2k

2·p · (d+π)k · (1.19 · p)2
k
)
.

Proof. There are
(|V −|

k

)
=
(
v−

k

)
≤ 2v

−
assignments of V −

with weight≤ k. From Lemma 6 we know that there at most
2k·|ϕ[T ∪N ,F]| SSMs of ϕ[T ∪N ,F] we have to consider. As
in the proof of Theorem 8 this yields an upper bound of 2k

2·p

in our case. The branch procedure applied to π[T ∪ N ,F]
(Line 5) generates at most (d+π)k models.

We now bound the number of functions described in
Line 9. The domain has size at most 2|T | − 1. For each con-
sidered (T ′,F ′) ≺ (T ,F) (Line 8), the range of β(T ′,F ′)
is at most (k − |T | − |N |) · p. An assignment (T ′,F ′) ≺
(T ,F) where ϕ[T ′∪N ,F ′] has more than (k−|T |−|N |)·p
clauses can never yield a model of ϕ with weight≤ k. In to-
tal this yields an upper bound of ((k − |T |) · p)2|T | . One
can show that (k − |T |)2|T | ≤ 1.192

k

. Since |T | ≤ k we
obtain the upper bound (1.19 · p)2k on the number of func-
tions. Observe that these functions can also be generated in

timeO∗
(
(1.19·p)2k

)
. These bounds taken together yield the

theorem.

We can also achieve a different upper bound for Algo-
rithm 3:
Theorem 10. WMMSAT can be solved in

O∗
(

2v
−
· 2h

2

· (d+π)h · h2
v−
)
.

Proof. The proof is similar to the one of Theorem 9. There
are (2v

−
assignments of V −. Since ϕ[T ∪ N ,F] is mono-

tone and contains no facts, it contains at most h clauses.
Hence l ≤ h. In Line 5 at most (d+π)h models are generated
by the branch procedure. From Lemma 6 follows that there
are at most O(2h

2

) SSMs of ϕ[T ∪N ,F] to be considered.
We now bound the number of functions described in

Line 9. The domain has size at most 2v
− − 1. For each

(T ′,F ′) ≺ (T ,F), the range of β(T ′,F ′) has cardinality
at most h. This is because every clause in ϕ[T ′ ∪N ,F ′] ei-
ther is a non-Horn clause or is a fact that originates from a
non-Horn clause in ϕ. If ϕ[T ′ ∪N ,F ′] contained a fact that
originates from a Horn clause in ϕ, this would be a fact in
ϕ[T ∪ N ,F] as well. This would be a contradiction since
ϕ[T ∪ N ,F] does not contain facts. In total this yields an

upper bound of h2
v−

on the number of functions.

Fixed-parameter Tractability with Backdoor
Sets

A promising type of parameters are distance measures to
trivial instances. For instance, the number of non-Horn
clauses h can be considered as a distance measure to Horn
formulas. Recall that Horn formulas have an unique mini-
mal model, which can be computed in linear time (Dowl-
ing and Gallier 1984). Another way of looking at the dis-
tance to trivial instances is the concept of (strong) back-
door sets. This concept was introduced in the context of FPT
in (Nishimura, Ragde, and Szeider 2004). With the help of
backdoor sets promising results for SAT, Quantified Boolean
Formulas (Samer and Szeider 2009) and ASP (Fichte and
Szeider 2011) have been obtained. We make use of strong
Horn backdoor set, a special type of backdoor set.
Definition. A strong Horn backdoor set of a formula ϕ is a
set B ⊆ var (ϕ) such that for any assignment (T ,F) of B,
ϕ[T ,F] is a Horn formula.

An example of a strong Horn backdoor set can be found
later on in Example 5. Computing a strong Horn backdoor
set of size b is equivalent to computing a vertex cover of
size b. The currently best algorithm for computing a vertex
cover of size b (Chen, Kanj, and Xia 2010) has a runtime of
O(1.2738b+b ·n) and consequently a strong Horn backdoor
set can be computed in this time. An fpt algorithm for com-
puting an arbitrary minimal model that makes use of a con-
cept similar to strong Horn backdoor sets was already pre-
sented in (Ben-Eliyahu and Dechter 1996). We are, however,
interested in finding minimal models which fulfill a certain
property π. The following algorithm solves WMMSAT with
the help of a strong Horn backdoor set.

92

Theorem 11. Let b be the size of a strong Horn backdoor set
for ϕ, which is given as additional input. Then WMMSAT
can be solved in time O(3b · n).

Proof. Let B ⊆ var (ϕ) with |B| = b be the backdoor set
given in the input. In the algorithm all possible assignments
of B are considered. For each such assignment (T ,F) we
compute the reduced formula ϕ[T ,F]. Since ϕ[T ,F] is a
Horn formula we can compute its unique minimal model
in linear time. In case ϕ[T ,F] is unsatisfiable, we continue
with the next assignment of B. If ϕ[T ,F] is satisfiable we
have obtained a model M of ϕ and check whether it also
satisfies π and is of size ≤ k. If one of these conditions is
violated we continue the search. In case both conditions are
fulfilled we check for all S ⊂ M ∩ B – using the previ-
ously described method – whether ϕ[S,B \ S] has a model
M′ ⊆M. If no suchM′ can be found, the algorithm termi-
nates with Yes. Should there be such anM′ then S∪M′ is a
model of ϕ and a proper subset of S ∪M. Hence the search
is continued until each assignment of B has been considered.

We now establish an upper bound on the runtime. Given
an assignment (T ,F), computing ϕ[T ,F] and finding the
unique minimal model ofϕ[T ,F] can be done in linear time.
In order to ensure minimality we have to check 2p − 1 sub-
sets for every assignment of B setting p variables to true.
Thus, the minimality check for such an assignment of B
takes (2p−1)·O(n) time and the total runtime for an assign-
ment isO(n)+(2p−1)·O(n). There are

(
b
p

)
possible assign-

ments that set p variables to true. Taken together the runtime
of the algorithm can be bounded by

∑b
i=0

(
b
i

)
2i · O(n) =

O(3b · n).

Example 5. We now illustrate the concept of strong Horn
backdoor sets and the presented algorithm. Let a WMMSAT
instance be given by π := (¬b ∨ d), k := 2 and ϕ := (a ∨
b∨ c)∧ (¬c∨ f)∧ (¬a∨ d)∧ (¬c∨¬d)∧ (¬a∨¬b∨ f)∧
(a ∨ b ∨ ¬c). It can easily be verified that {a, b} is a strong
Horn backdoor set. We depict the results of the algorithm in
Table 2. Observe that the first row is dropped because it is
not subset minimal. Furthermore, notice that {b} cannot be
a solution since it does not satisfy π. Thus, the only solution
for the given WMMSAT instance is {a, d}.

a b ϕ[T ,F] Model?
1 1 (¬c ∨ f) ∧ d ∧ (¬c ∨ ¬d) ∧ f {a, b, d, f}
1 0 (¬c ∨ f) ∧ d ∧ (¬c ∨ ¬d) {a, d}
0 1 (¬c ∨ f) ∧ (¬c ∨ ¬d) {b}
0 0 c ∧ (¬c ∨ f) ∧ (¬c ∨ ¬d) ∧ ¬c UNSAT

Table 2: Example of the algorithm presented in Theorem 11

The next two results follow from Theorem 11.
Corollary 12. WMMSAT can be solved in timeO(3v

+ ·n).

Proof. Let V + be the set of all variables that appear as pos-
itive literals in ϕ ∧ π. Observe that V + is a strong Horn
backdoor set and can be computed even in linear time.

Corollary 13. WMMSAT can be solved in timeO(3h·d
+·n).

Proof. Notice that all variables that appear positively in non-
Horn clauses (at most d+ · h many) are a strong Horn back-
door set.

Hardness Results
In this section we show that this paper contains all possible
fpt results with respect to the parameters in Table 1. This is
achieved by four proofs showing hardness with respect to
combinations of parameters. Note that hardness for a set of
parameters implies hardness for any subset of these param-
eters as well. In contrast to this, an fpt result with respect to
a set of parameters implies fixed-parameter tractability for
any superset of these parameters.
Theorem 14. WMMSAT parameterized by k, d−, h, p, d+π
and ‖π‖ is W[1]-hard.

Proof. We give an fpt-reduction from INDEPENDENT SET,
which is W[1]-complete when parameterized by the solution
size k – see e.g. (Downey and Fellows 1999). An instance of
INDEPENDENT SET is given by a graph G = (V,E) and
an integer k > 0. The question is whether there is some
V ′ ⊆ V with |V ′| = k such that there is no {x, y} ∈ E with
x ∈ V ′ and y ∈ V ′.

We construct the WMMSAT instance as follows. Let
V = {v1, . . . , vm}. The variables used in ϕ are going
to be {v1, . . . , vm} ∪ {v11 , . . . , v1m, . . . , vk1 , . . . , vkm}. The
WMMSAT instance is then given by (ϕ, true, 2k), where
ϕ is defined in the following way:

ϕIS :=
∧

{x,y}∈E

(¬x ∨ ¬y)

ϕ1 :=
∧
l∈[k]

(vl1 ∨ . . . ∨ vlm)

ϕ2 :=
∧
i∈[m]

∧
1≤l<l′≤k

(¬vli ∨ ¬vl
′

i)

ϕ3 :=
∧
i∈[m]

∧
l∈[k]

(vli → vi)

ϕ := ϕIS ∧ ϕ1 ∧ ϕ2 ∧ ϕ3

We continue by explaining the functionality of the subfor-
mulas. The independent set property is enforced by subfor-
mula ϕIS. The subformula ϕ1 introduces k copies of each
vertex and ensures that at least k of thesem·k copies have to
be in the model. Subformula ϕ2 ensures that it is not possi-
ble to set more than one copy of each vertex to true. Finally,
subformula ϕ3 ensures that a vertex has to be in the model
if one of its copies is in the model. The correctness proof of
this reduction is omitted due to space constraints.

It remains to be verified that all parameters can be
bounded in terms of k. The parameters d+π and ‖π‖ are 0.The
only non-Horn clauses occur in ϕ1 and there are k of them.
Each variable occurs positively at most k times and there-
fore p is bounded by k. Finally, the maximal negative clause
size in ϕ is 2, which gives a bound on d−.

Before we continue with the next hardness proof con-
cerning WMMSAT, we show that the following variation of
DOMINATING SET is W[2]-hard as well.

93

MULTICOLOR DOMINATING SET
Instance: A graph G = (V,E), an integer k > 0

and a k-coloring c : V → [k]
Question: Is there a size k dominating set contain-

ing exactly one vertex of each color?

Proposition 15. MULTICOLOR DOMINATING SET param-
eterized by k is W[2]-hard.

Proof. We give an fpt-reduction from DOMINATING SET,
which is W[2]-complete when parameterized by k – see e.g.
(Downey and Fellows 1999). Given a graph (V ′, E′) and
k ∈ N, the problem asks whether there is a dominating
set S ⊆ V ′ of cardinality ≤ k, i.e. V ′ =

⋃
v∈S N(v).

We construct a MULTICOLOR DOMINATING SET instance
(G, k) with G = (V,E). Let V = {v1, . . . , vm}. The
new vertex set consists of k copies of V ′, to be specific
V ′ := {v11 , . . . , v1m, v21 , . . . , v2m, . . . , vk1 , . . . , vkm}. We de-
fine E :=

{
{vj1i1 , v

j2
i2
} | {vi1 , vi2} ∈ E′ ∧ j1, j2 ∈ [k]

}
∪{

{vj1i , v
j2
i } | 1 ≤ j1 < j2 ≤ k

}
. The coloring is defined

by c(vji) := j. Observe that G′ has a dominating set of size
≤ k iff G has a multicolor dominating set of size k.

Theorem 16. WMMSAT parameterized by k, d−, h, p and
v− is W[2]-hard.

Proof. Let (G, k) be a given MULTICOLOR DOMINATING
SET instance with G = (V,E) and a coloring c : V → [k].
We now define for each j ∈ [k] the set of j-colored vertices
Vj := {v ∈ V | c(v) = j}. The formula ϕ is defined as
ϕ :=

{
Vj | j ∈ [k]

}
, i.e. every set Vj corresponds to a

(positive) clause. The formula π is defined as π := {N(v) |
v ∈ V }, i.e. each neighborhood is a clause. This yields the
WMMSAT instance (ϕ, π, k) with parameters h = k, p =
1 (recall that h and p are not concerned with π), d− = 0
and v− = 0. We are going to show that G has a multicolor
dominating set of size k iff (ϕ, π, k) is a Yes-instance.

Let D = {vi1 , . . . , vik} be a multicolor dominating set of
G. Without loss of generality let c(vi1) = 1, c(vi2) = 2, etc.
Observe that D is a minimal model of ϕ. D is also model of
π since being a multicolor dominating set it has to contain a
vertex of each neighborhood in G.

For the other direction let M = {vi1 , . . . , vik} ⊆
var (ϕ) = V be a minimal model of ϕ and a model of π.
Since every variable occurs in only one clause in ϕ, the ver-
tices vi1 , . . . , vik have to be of different color. Furthermore,
since M is model of π, M has a non-empty intersection
with each neighborhood and is hence a multicolor dominat-
ing set of G.

Theorem 17. WMMSAT parameterized by k, d−, v−, d+π
and ‖π‖ is W[2]-hard.

Proof. We show this hardness result by an fpt-reduction
from DOMINATING SET parameterized by k. Given the in-
put graph G = (V,E) and the solution size k, we create the
formula ϕ := {N(v) | v ∈ V }. The WMMSAT instance is
then defined as (ϕ, true, k). Since π is trivially fulfilled, the
problem “degenerates” to finding a model of ϕ with weight

at most k. Such a model directly corresponds to a dominat-
ing set of G. Concerning the other parameters: d− and v−
are 0 since ϕ contains only positive literals. The parameters
d+π and ‖π‖ are also 0 since π does not contain any vari-
ables.

Proposition 18. WMMSAT parameterized by d, d+, d−, p,
v−, d+π and ‖π‖ is para-NP-hard.

Proof. One can encode (similar to Theorem 17) the unpa-
rameterized VERTEX COVER problem, which is NP-hard on
graphs with degree at most 3 (Garey and Johnson 1977). All
considered parameters are then bounded by a constant.

Conclusion
WMMSAT is a parameterized decision problem tailored to
capture the complexity of computing minimal models. We
have performed a complete parameterized complexity anal-
ysis with respect to the eleven parameters in Table 1. We
have identified several fixed-parameter tractable fragments
and designed corresponding fpt algorithms. The fpt results
are presented as dashed boxes in Figure 2. Relations be-
tween parameters are indicated by arrows. Recall that an fpt

d+π

‖π‖

≤

v−k p

h

d+

d

d−

b

v+

T
hm

9

Thm 10Thm 3

T
hm

11
C

or12

C
or

13

≤

≤

≤

Figure 2: A map of the presented fpt algorithms.

result with respect to a set of parameters also holds for any
superset of the parameters. For all remaining combinations
of parameters we have shown hardness results and thereby
ruled out the possibility of further fpt algorithms – unless
FPT = W[1]. Note that hardness results with respect to a
set of parameters also hold for any subset of the parame-
ters. Therefore the six fpt results displayed in Figure 2 to-
gether with the four hardness theorems in this paper provide
a complete parameterized complexity classification for all
211 combinations of parameters.

The application of our results to minimal model-related
problems such as circumscription, answer-set programming
and diagnosis remains as future work. Also to experimen-
tally evaluate how well the fpt algorithms behave in practice
remains to be done. We expect that our fpt algorithms per-
form well and can significantly improve algorithms having
to compute minimal models.

94

References
Baral, C.; Provetti, A.; and Son, T. C. 2003. Special issue
on programming with answer sets. Theory and Practice of
Logic Programming 3(4+5).
Ben-Eliyahu, R., and Dechter, R. 1996. On computing min-
imal models. Ann. Math. Artif. Intell. 18(1):3–27.
Chen, Y., and Flum, J. 2008. The parameterized complexity
of maximality and minimality problems. Ann. Pure Appl.
Logic 151(1):22–61.
Chen, J.; Kanj, I. A.; and Xia, G. 2010. Improved up-
per bounds for vertex cover. Theor. Comput. Sci. 411(40-
42):3736–3756.
Dowling, W. F., and Gallier, J. H. 1984. Linear-time al-
gorithms for testing the satisfiability of propositional Horn
formulae. J. Log. Program. 1(3):267–284.
Downey, R. G., and Fellows, M. R. 1999. Parameterized
Complexity. Springer.
Downey, R. G.; Fellows, M. R.; and Regan, K. W. 1998.
Descriptive complexity and the W hierarchy. In Proof
Complexity and Feasible Arithmetic, volume 39 of AMS-
DIMACS Volume Series, 119–134. AMS.
Eiter, T., and Gottlob, G. 1993. Propositional circumscrip-
tion and extended closed-world reasoning are ΠP

2 -complete.
Theor. Comput. Sci. 114(2):231–245.
Fichte, J. K., and Szeider, S. 2011. Backdoors to tractable
answer-set programming. In Proc. of IJCAI 2011, 863–868.
IJCAI/AAAI.
Flum, J., and Grohe, M. 2003. Describing parameterized
complexity classes. Inf. Comput. 187(2):291–319.
Flum, J., and Grohe, M. 2005. Model-checking problems as
a basis for parameterized intractability. Logical Methods in
Computer Science 1(1):1–36.
Flum, J., and Grohe, M. 2006. Parameterized Complexity
Theory. Springer.
Garey, M. R., and Johnson, D. S. 1977. The rectilinear
steiner tree problem is NP-complete. SIAM Journal on Ap-
plied Mathematics 32(4):pp. 826–834.
Gelfond, M., and Leone, N. 2002. Logic programming and
knowledge representation - the A-Prolog perspective. Artif.
Intell. 138(1-2):3–38.
Gottlob, G., and Szeider, S. 2008. Fixed-parameter algo-
rithms for artificial intelligence, constraint satisfaction and
database problems. The Computer Journal 51(3):303–325.
Gottlob, G.; Pichler, R.; and Wei, F. 2010. Bounded
treewidth as a key to tractability of knowledge representa-
tion and reasoning. Artif. Intell. 174(1):105–132.
Gottlob, G.; Scarcello, F.; and Sideri, M. 2002. Fixed-
parameter complexity in AI and nonmonotonic reasoning.
Artif. Intell. 138(1-2):55–86.
Jakl, M.; Pichler, R.; and Woltran, S. 2009. Answer-set
programming with bounded treewidth. In Proc. of IJCAI
2009, 816–822.
Lifschitz, V. 1985. Closed-world databases and circumscrip-
tion. Artif. Intell. 27(2):229–235.

Marek, V. W., and Truszczynski, M. 1999. Stable mod-
els and an alternative logic programming paradigm. In The
Logic Programming Paradigm: A 25-Year Perspective, 375–
398. Springer.
McCarthy, J. 1980. Circumscription - a form of non-
monotonic reasoning. Artif. Intell. 13(1-2):27–39.
Nishimura, N.; Ragde, P.; and Szeider, S. 2004. Detecting
backdoor sets with respect to Horn and binary clauses. In
Proc. of SAT 2004.
Pichler, R.; Rümmele, S.; Szeider, S.; and Woltran, S. 2010.
Tractable answer-set programming with weight constraints:
Bounded treewidth is not enough. In Proc. of KR 2010, 508–
517. AAAI Press.
Reiter, R. 1987. A theory of diagnosis from first principles.
Artif. Intell. 32(1):57–95.
Samer, M., and Szeider, S. 2009. Backdoor sets of quantified
Boolean formulas. J. Autom. Reasoning 42(1):77–97.
Truszczynski, M. 2002. Computing large and small stable
models. Theory and Practice of Logic Programming 2(1):1–
23.

95

