
On the Small-Scope Hypothesis for Testing Answer-Set Programs∗

Johannes Oetsch, Michael Prischink, Jörg Pührer, Martin Schwengerer, and Hans Tompits
Institut für Informationssysteme 184/3

Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{oetsch,prischink,puehrer,schwengerer,tompits}@kr.tuwien.ac.at

Abstract

In software testing, the small-scope hypothesis states
that a high proportion of errors can be found by testing a
program for all test inputs within some small scope. In
this paper, we evaluate the small-scope hypothesis for
answer-set programming (ASP). To this end, we follow
work in traditional testing and base our evaluation on
mutation analysis. In fact, we show that a rather limited
scope is sufficient for testing ASP encodings from a rep-
resentative set of benchmark problems. Our experimen-
tal evaluation facilitates effective methods for testing in
ASP. Also, it gives some justification to analyse pro-
grams at the propositional level after grounding them
over a small domain.

Introduction
Answer-set programming (ASP) has emerged as a success-
ful formalism in knowledge representation and nonmono-
tonic reasoning. As a general problem solving paradigm,
ASP facilitates means to declaratively specify solutions to
a given problem and to use ASP solvers to compute re-
spective models, referred to as the answer sets, of these
specifications. Increasingly efficient ASP solver technology
has allowed ASP to become a viable computational ap-
proach in many areas like semantic-web reasoning (Polleres
2005), systems biology (Grell, Schaub, and Selbig 2006),
planning (Eiter et al. 2000), diagnosis (Eiter et al. 1999;
Nogueira et al. 2001), configuration (Soininen and Niemelä
1999), multi-agent systems (Baral and Gelfond 2000),
cladistics (Erdem, Lifschitz, and Ringe 2006; Brooks et al.
2007), super optimisation (Brain et al. 2006), and others.

It is an arguable strength of ASP that the high-level speci-
fication languages supported by state-of-the art ASP solvers
allow to develop concise specifications close to the problem
statement which reduces the need for debugging and testing
methods to a minimum. Despite this, to err is human, and
faults can and do sneak even into such high-level specifica-
tions. Thus, adequate means for validation and verification
are clearly needed for ASP.
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Intelligence (www.aaai.org). All rights reserved.

Though testing is the prevalent means to find errors in
traditional software development, this subject has been ad-
dressed for ASP only recently (Janhunen et al. 2010; 2011;
Febbraro et al. 2011). In particular, the small-scope hypothe-
sis in traditional testing states that a high proportion of errors
can be found by testing a program for all test inputs that are
taken from some relatively small scope (Jackson and Damon
1996), i.e., by restricting the number of objects a test input
is composed of. This suggests that it can be quite effective to
test a program exhaustively for some restricted small scope
instead of deliberately selecting test inputs from a larger one.

A small-scope hypothesis in ASP would be a matter of
interest for two reasons. First, it would allow to devise ef-
fective testing methods for uniform problem encodings (the
prevailing representation mode ASP is used). For illustra-
tion, assume we encoded by means of ASP, using the rules
below, the graph problem of testing whether a graph is dis-
connected, where problem instances are represented by facts
over an input signature with predicates edge/2 and node/1:

reach(X,Y) :- edge(X,Y).
reach(X,Z) :- reach(X,Y), reach(Y,Z).
disconnect :- node(X,Y), not reach(X,Y).

Applying the small-scope hypothesis would mean that if
our encoding is faulty then it is rather likely that an error be-
comes apparent when testing with small problem instances
that consists of not more than, say, three or four nodes. The
second reason is that ASP specifications are formulated at
the first-order level, while ASP solvers operate at the propo-
sitional one and rely on an intermediate grounding step. In
fact, a considerable body of literature deals with ASP at the
propositional level. This is justified by asserting that first-
order ASP representations are only a short-hand for propo-
sitional ones via grounding. However, a uniform problem
encoding like the one above stands, in general, for a propo-
sitional program of infinite size even when no function sym-
bols are used. This is because the size of problem instances,
e.g., the number of nodes in the example, is usually not
bounded. Hence, to ground the rules from above such that
they can be joined with arbitrary large sets of facts over
edge/2 and node/1, we need an infinite supply of constant
symbols. This can lead to a rather grave gap between meth-
ods and theories, like for equivalence testing or debugging,
that operate on the propositional level and their applicabil-
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ity for real-world ASP. The small-scope hypothesis helps to
reconcile the propositional and the first-order level by es-
tablishing that the grounding of a uniform encoding with
respect to a small domain of constants can be, in a sense,
representative for the entire infinite program.

Although it is plausible that the small-scope hypothesis is
a valid principle in ASP, an investigation whether this con-
jecture can be answered affirmatively or not has not been
studied so far. As well, there is, e.g., no solid ground that
allows to determine an adequate scope for testing.

Being an empirical principle, the small-scope hypothesis
is evasive to a formal proof but it can be empirically and
experimentally evaluated. Performing such an undertaking
is the goal of this paper. To this end, we follow Andoni et
al. (2002) who evaluated the small-scope hypothesis for Java
programs that manipulate complex data structures (a more
thorough version of their work is published as technical re-
port (Marinov et al. 2003)). Their evaluation is based on
mutation analysis (DeMillo, Lipton, and Sayward 1978) in
which small changes that should simulate typical program-
mer faults are introduced into a program. This way, a number
of faulty versions of a program, so-called mutants, are gen-
erated. Then, these mutants are exhaustively tested with all
inputs from some fixed scope. The original program serves
as test oracle in this step; in particular, a mutant is said to be
caught by some input if its output on that input differs from
the output of the original program. Finally, it is investigated
how the catching rates change with respect to the size of the
scope.

In our work, we adopt the methodology of Andoni et
al. (2002) for ASP. Our main contribution is twofold:

• We introduce a mutation model for ASP. Such a muta-
tion model has its worth for itself beyond evaluating the
small-scope hypothesis, e.g., for mutation testing, where
a test input collection that catches all mutants of a pro-
gram under test is generated—such a test suite is called
mutation adequate. In traditional software testing, muta-
tion adequacy is regarded as a rather strong criterion for
testing, and we expect that such test inputs are also quite
effective for testing in ASP.

• Based on mutation analysis, we evaluate the small-scope
hypothesis using benchmark problems used for the third
ASP competition (Calimeri et al. 2011). We show that a
rather restricted scope is often sufficient to catch all mu-
tants. Furthermore, we provide concrete hints how to de-
termine a suitable scope and deal with other aspects, like
input preconditions, that are of practical relevance.

Background
We deal with logic programs that correspond to a subset
of the input language of the state-of-the-art ASP grounder
gringo (Gebser, Schaub, and Thiele 2007; Gebser et al.
2009). An ordinary atom is an atom from some fixed first-
order language determined by sets of predicate, function,
and constant symbols, possibly preceded by the symbol “-”
representing strong negation. An ordinary literal is an ordi-
nary atom possibly preceded by “not”, the symbol for de-
fault negation. An atom is either an ordinary atom or an ag-

gregate atom which is an expression of form

l #count { l1, . . . , lm } u or

l op [ l1 = w1, . . . , lm = wm ] u ,

where l1, . . . , lm form a multiset of ordinary literals, each
wi is an integer weight assigned to li, op ∈ {#sum,#min,
#max,#avg}, and 0 ≤ l ≤ u are two integer bounds. Intu-
itively, an aggregate atom is true if “op” maps the (weighted)
satisfied literals li to a value within bounds l and u. Aggre-
gate names #count and #sum may be omitted. A literal is
is either an atom or a default negated atom. Note that the
gringo language also comprises the usual arithmetic oper-
ations as well as comparison predicates.

A rule, r, is a pair of form

a0 :- a1, . . . , am, not am+1, . . . , not an ,

where a0, . . . , an are atoms. The atom a0 may be absent in
r in which case r is called a constraint. If a0 is present but
n = 0, then r is a fact. If r is neither a constraint nor a
fact, then it is referred to as a proper rule. We call B+(r) =
{a1, . . . , am} the positive body, B−(r) = {am+1, . . . , an}
the negative body, and H(r) = {a0} the head of rule r. Intu-
itively, facts state what is known to be true. If all atoms in the
positive body of a proper rule are known to be true and there
is no evidence for any of the atoms in the negative body, then
the head atom has to be true as well. Similarly, a constraint
states that it must never be the case that all positive but none
of the negative body atoms are jointly true.

A rule r is safe if all variables occurring in r also occur
in the positive body of r. We assume in the remainder of the
paper that all rules are safe. A program is a finite set of (safe)
rules. As usual, an expression (program, rule, atom, etc.) is
ground if it does not contain variables. Given a program P ,
we refer to the set of constant symbols occurring in P as the
active domain of P .

An interpretation, I , is a set of ordinary atoms that does
not include an atom and its strong negation. The semantics
of the considered class of logic programs is defined by a
two step procedure: First, a program P is grounded, i.e., it
is transformed into a corresponding ground program, basi-
cally by replacing each non-ground rule by its propositional
instances that are obtained by uniformly replacing each vari-
able by constant symbols from the active domain of P . We
denote the grounding of P by grnd(P). Then, specific in-
terpretations, the answer sets of P , are defined for grnd(P).
Basically, they are defined corresponding to the stable-
model semantics for normal logic programs (Gelfond and
Lifschitz 1988) augmented with the choice semantics for
aggregate atoms in rule heads (Ferraris and Lifschitz 2005;
Simons, Niemelä, and Soininen 2002). We denote the col-
lection of all answer sets of a program P by AS(P ).

We next introduce some basic definitions related to test-
ing in ASP which lift respective definitions for propositional
programs from previous work (Janhunen et al. 2010) to the
first-order level. For each program P , we assume two finite
sets of predicate symbols, IP and OP , which are the pro-
gram’s input and output signature, respectively.
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Definition 1. Let P be a program with input signature IP
and output signature OP . A test input, or simply input, of P
is a finite set of ground atoms over IP . Given some input I
of P , the output of P on I , P [I], is defined as

P [I] = {S|OP
| S ∈ AS(P ∪ I)},

where S|OP
denotes the projection of S to the atoms in OP .

For testing, usually not all possible inputs over a pro-
gram’s input signature are of interest. Consider, for example,
an encoding P for some graph problem similar to the one
from the introduction. To be more specific, assume the prob-
lem at hand is to decide whether a given tree defined over
predicates node/1 and edge/2 is balanced. Now, being a
tree is a precondition of P . Hence, the output of P is only re-
quired to match the expected output for inputs that are trees,
or, more generally, that satisfy a program’s precondition—
we refer to such inputs as admissible (Oetsch et al. 2009;
Janhunen et al. 2011).

Our evaluation approach is based on mutation analysis.
Hence, we will use an ASP program itself as a test oracle
to determine the expected output for any input. In particu-
lar, if P is a program and P ′ is a mutated version of P , we
say that P is the reference program (for P ′). A mutant is
caught if there is some admissible input I of P such that
P [I] 6= P ′[I]. If no such input exists, P ′ is equivalent (to
the reference program). Note that any mutant has the same
input and output signature, as well as the same program pre-
conditions, as its reference program. Finally, we define the
scope of an input as follows:
Definition 2. Let P be a program. Then, an input of P has
scope n if at most n different constant symbols occur in I .

Prelude: A Key Observation
One could ask whether we could prove the small-scope hy-
pothesis for restricted but still interesting classes of answer-
set programs, thus effectively establishing a small-scope the-
orem. However, the answer is negative already for Horn pro-
grams, i.e., programs which do not use default negation,
strong negation, or aggregates. Also, we assume that Horn
programs do not contain function symbols.
Theorem 1. Given a Horn program P and a number n,
determining whether positively testing P with all inputs of
scope n implies correctness of P is undecidable, even if the
output considered as correct for any input ofP is determined
by some Horn program itself.

Proof. The result follows from the undecidability of query
equivalence (Shmueli 1987), which is the following task:
given two Horn programs P and Q such that OP = OQ,
consisting of a single dedicated goal predicate, and IP = IQ,
containing all predicate symbols that only occur in rule bod-
ies of P or Q, determine whether P [I] = Q[I] for any I
over IP . Towards a contradiction, assume testing P posi-
tively with all inputs of scope n implies correctness of P is
decidable. We let program Q determine the output that we
consider as correct for any input over IP . Then, we check
if P [I] = Q[I] for any I with scope n. Clearly, after a fi-
nite number of steps, we would conclude either that P is

correct or that its output diverges from that of Q for some
input—a contradiction to the undecidability of query equiv-
alence.

This negative result provides further motivation of the ne-
cessity for resorting to an empirical evaluation of the small-
scope hypothesis.

The remainder of the paper is structured as follows: In the
next section, we introduce a mutation model for ASP, pro-
viding the basis for our evaluation. Afterwards, we outline
our experimental setup in more detail and present the results
of our evaluation. The paper concludes with pointers for fu-
ture work.

A Mutation Model for ASP
Mutation operations were introduced for many program-
ming languages (Agrawal et al. 1989; Kim, Clark, and Mc-
Dermid 1999; King and Offutt 1991; Offutt, Voas, and Payne
1996). In this section, we introduce a mutation model for
ASP, in particular, for the gringo input language. Com-
pared to most imperative languages, ASP languages are
rather simply structured. Obtaining a complete set of mu-
tation operations—complete in the sense that each language
element is addressed by some operation—is thus more easily
achieved. While more complex languages, like, e.g., Java,
may require a more systematic approach to derive a com-
plete set of mutation operations (Kim, Clark, and McDermid
1999), our selection is more based on programming experi-
ence as in the approach of Agrawal et al. (1989). Simple
mutation operations for propositional answer-set programs
have already been introduced in previous work (Janhunen et
al. 2011).

We start with discussing the general design principles un-
derlying our mutation operations. Above all, mutation op-
erations should model common programmer errors. We are
interested only in simple errors and consider only single-
step operations, i.e., operations that mutate only a single
syntactic element at a time. In fact, one important justifi-
cation of mutation testing is that test cases that are effec-
tive in revealing simple errors are, in many cases, also ef-
fective in uncovering complex errors. This is what is known
as the coupling effect (DeMillo, Lipton, and Sayward 1978).
Also, all mutated programs have to be syntactically correct,
otherwise they cannot be used for testing. Mutants which
cause syntax errors are sometimes called stillborn (Offutt,
Voas, and Payne 1996). In ASP, the most common source
for stillborn mutants are safety violations, hence mutation
operations have to be designed in a way that they never re-
sult in unsafe rules. Another aspect that makes mutation test-
ing in ASP different from, e.g., imperative languages is that
the latest ASP solver generation does not guarantee that the
grounding of a program is always finite if function symbols
or integer arithmetics are used. In our experiments, we do
not consider function symbols other than arithmetic oper-
ations, still the grounding step is not guaranteed to termi-
nate. Hence, we have to deal with another class of stillborn
mutants, namely mutants which are syntactically correct but
who cannot be finitely grounded for some input. This kind of
mutants is harder to avoid than syntactically incorrect ones
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Table 1: Mutation operations for ASP.
Example

Name Operation Original Rules Mutant
RDP delete proper rule p(X) :- q(X). q(X) :- r(X). p(X) :- q(X).
RDC delete constraint good(x-men). :- good(X),evil(X). good(x-men).
RDF delete fact good(x-men). :- good(X),evil(X). :- good(X), evil(X).
LDB delete body literal norm(X) :- p(X), not ab(X). norm(X) :- p(X).
LDH delete head literal norm(X) :- p(X), not ab(X). :- p(X),not ab(X).
LAD add default negation p :- q(X,Y), t(Y). p :- q(X,Y), not t(Y).
LRD remove default negation p :- q(X,Y), not r(X). p :- q(X,Y), r(X).
LAS add strong negation person(X) :- mutant(X). person(X) :- -mutant(X).
LRS remove strong negation norm(X) :- -mutant(X). norm(X) :- mutant(X).
LRP rename predicate r(X,Y):- e(X,Y). :- e(a,b). r(X,Y):- e(X,Y). :- r(a,b).
LRC replace comparison relation :- succ(X,Y), Y > X. :- succ(X,Y), Y >= X.
ARO replace arithmetic operator next(X,Y) :- r(X;Y),Y=X+1. next(X,Y) :- r(X;Y),Y=X*1.
ATV twiddle variable domain :- s(X,Y), X==(Y+X)*2. :- s(X,Y), X==((Y+1)+X)*2.
ATA twiddle aggregate bound 1{guess(X)}N :- max(N). 1{guess(X)}(N-1) :- max(N).
ATW twiddle aggregate weight ok :- 2 [val(P,V)=V] 8. ok :- 2 [val(P,V)=(V+1)] 8.
TST swap terms in literals less(X,Y) :- n(X,Y),X < Y. less(Y,X) :- n(X,Y),X < Y.
TVC change variable to constant p(a;b). fail :- p(X). p(a;b). fail :- p(a).
TRV rename variable first(X) :- rel(X,Y). first(Y) :- rel(X,Y).
TCV change constant to variable ok :- exit(1,Y),grid(X,Y). ok :- exit(X,Y), grid(X,Y).
TRC rename constant first(alpha). last(omega). first(omega). last(omega).

and requires a post-processing step where they are filtered
out.

Another important design aspect of mutation operations is
that mutants that are equivalent to their reference programs
have to be avoided as far as possible. By definition, equiv-
alent mutants cannot be caught by any test input; ideally,
one only takes non-equivalent mutants into account when
assessing catching rates. We thus have to manually identify
equivalent mutants which is a tedious task if the mutation
model does not avoid them to a large extent already in the
generation process. Besides mutants that are equivalent to
their reference program, we aim for a low number of mu-
tants that are pairwise equivalent. On the one hand, we avoid
such mutants by keeping track of which mutations have been
applied already to generate some mutant. So, we can avoid
that the same operation is applied twice when generating a
set of mutants for a program under test. Besides that, we de-
fine mutation operations in a way that makes it unlikely that
they semantically simulate each other.

Following Agrawal et al. (1989), we classify mutation op-
erations according to the level on which they operate. At
the lowest level are mutations that simulate faults of a pro-
grammer when defining simple terms, like wrong names for
constants or variables. Then, at the next level, we deal with
mutations of more complex terms in the form of arithmetic
expressions, like using a wrong mathematical operator. At
the next level reside mutations that resemble faults when
defining literals, like omitting a default negation or using a
wrong predicate name. Finally, we consider mutations that
take place at the rule level, e.g., omitting entire rules, con-
straints, or facts.

Table 1 summarises the mutation operations that we con-
sider for ASP. Each operation is illustrated using a simple
example, and each operation has a unique name consisting
of three letters. The first letter abbreviates the category the

operation belongs to: each operation mutates a program ei-
ther at the rule level (R), at the literal level (L), at the level
of arithmetic expressions (A), or at the level of simple terms
(T). Most operations are quite straightforward, others need
some explanation. For the operation LAS that adds strong
negation, we require that any resulting strongly negated lit-
eral already occurs elsewhere in the program. Otherwise,
this operation would resemble rule deletion operations if the
mutated literal was chosen from the positive body of a rule,
or literal deletion operations if the literal was taken from the
negative body of a rule. Also, if a literal from the head of a
rule is mutated, we would get something quite similar to rule
deletion. Likewise, we require for removing strong negation
(LRS) that the unnegated literal occurs elsewhere. For anal-
ogous reasons as for LAS and LRS, we only rename pred-
icates (LRP) into predicates with the same arity that occur
elsewhere already. Also, when renaming a constant symbol
(TRC) or when changing a variable into a constant (TVC),
the new constant has to occur somewhere else.

The idea of the domain twiddle operations (ATV, ATA,
ATW) is to introduce off-by-one faults into arithmetic ex-
pressions, aggregate bounds, and weights in aggregates.
Hence, some variable or integer constant X is replaced by
(X ± 1) at random.

To avoid equivalent mutants, we check if the affected
terms are different before swapping them within a literal
(TST). When changing comparison relations (LRC), we
never pairwise interchange relations that express inequality,
i.e., <, !=, and >, otherwise resulting mutants tend to be
equivalent due to symmetries.

A Java implementation of our mutation model is publicly
available.1 It takes as input programs written in the gringo
input language. The tool is configured using an XML file

1www.kr.tuwien.ac.at/research/projects/mmdasp.
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that specifies the number of mutants to generate, the kind
of mutation operations, the mode of their application (all or
one), and so on. A more detailed description of the tool can
be found online.

Experimental Setup
To evaluate the small-scope hypothesis for ASP, we follow
the approach of Andoni et al. (2002). In particular, we apply
our mutation model on a set of representative benchmark
instances taken from the third ASP solver competition (Cal-
imeri et al. 2011). Then, we exhaustively test each mutant
over some fixed scope, and we analyse how mutant catching
rates change with the size of that scope.

In what follows, we outline the experimental setup. A de-
tailed description of the considered benchmarks, including
problem specifications and encodings, is available on the
Web.2 These benchmarks are a representative cross section
of challenging problems for both modelling in ASP as well
as solving. In particular, we consider all problems in P and
in NP for which reference encodings are published on the
competition’s Web page. In particular, this includes all prob-
lems from the system track of the competition, provided in
the ASP-Core language, and two additional ones, provided
in the ASP-RFC language. The ASP-Core and the ASP-
RFC language can be regarded as simple language fragments
common to most ASP solvers; the latter comprises aggre-
gate expressions, common to most ASP solvers. A respec-
tive documentation document can be found at the Web page
of the competition.

As a preparatory step, we rewrote all benchmarks into
gringo syntax since we use gringo along with the ASP
solver clasp for determining test verdicts. This step con-
sists of only minor modifications of the programs and thus
poses no threat for retaining the validity of our experiments
for other classes of ASP language dialects. In particular, we

• rewrite guesses expressed using disjunction into choice
rules,

• replace <> with !=,

• rewrite aggregate expressions from the ASP-RFC syntax
into gringo syntax, and

• rewrite queries into constraints.

Of course, instead of rewriting disjunctive heads into choice
rules, we could have used a simple shifting operation. How-
ever, we regard shifting as more invasive since it turns one
disjunctive rule into several normal rules, and, moreover,
choice rules better reflect common ASP practice of how to
express a non-deterministic selection of objects. As well,
confining to the class of normal programs without choices
or disjunction would make our results less relevant. In any
case, mutations of choices are directly comparable to mod-
ifications of disjunctive heads and thus do not restrict our
results.

For each benchmark, we repeat the following steps:

1. we formalise the preconditions of the encoding in ASP,

2https://www.mat.unical.it/aspcomp2011.

% Guess colours.
{ chosenColour(N,C) } :- node(N), colour(C).

% At least one colour per node.
:- node(X), not coloured(X).
coloured(X) :- chosenColour(X,Fv1).

% Only one colour per node.
:- chosenColour(N,C1),

chosenColour(N,C2), C1 != C2.

% Adjacent nodes have different colours.
:- link(X,Y), X<Y, chosenColour(X,C),

chosenColour(Y,C).

Figure 1: ASP encoding of GRAPHCOLOURING.

2. we generate up to 300 mutants according to our mutation
model, and

3. we exhaustively test each mutant for fixed scopes and as-
sess the catching rates.

We exemplify our methods using the simple benchmark
problem GRAPHCOLOURING. The encoding appears in Fig-
ure 1. The input of GRAPHCOLOURING is defined over
predicates node/1, link/2, and colour/1. An input is
admissible if node names are consecutive, ascending in-
tegers start from 1, and link/2 represents a symmetric
relation between nodes. The output signature consists of
chosenColour/2 which encodes a mapping from the nodes
of the graph to available colours such that no two adjacent
nodes are assigned the same colour.

The ASP formalisation of the preconditions of a pro-
gram in Step 1 is needed to automatise exhaustive testing
in Step 3 of our experimental setup. In particular, we refer
to such an encoding as input generator. For any program P
with input signature IP , an input generator IG [P, n] for P
is an ASP program whose output signature equals IP , and
whose output on the empty set is in one-to-one correspon-
dence with the admissible inputs of P from scope n. We as-
sume throughout that any input generator IG [P, n] is defined
only over IP and possibly globally new auxiliary predicates.
Moreover, our testing methods require that atoms over IP
are not defined in P , i.e., they do not occur in the head of any
rule in P (which can always be achieved by slightly rewrit-
ing an encoding). A respective input generator for GRAPH-
COLOURING is given in Figure 2. The encoding is parame-
terised by integer constants s and t. Constant s determines
the maximal number of nodes in a graph and t fixes the max-
imal number of available colours. The sum of s and t gives
the scope n.3

In Step 2, each mutant is generated by applying precisely
one randomly selected mutation operation from Table 1 to
the benchmark program. Stillborn mutants are filtered out in
a post-processing step, where we check whether a mutant

3Technically, the scope is given by the maximum of s and t.
However, we count both the integer ranges defined by s and t since
they are treated independently in the encoding due to different do-
main predicates domN and domC.
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domN(1..s).
domC(1..t).

1 { maxN(X) : domN(X) } 1.
1 { maxC(X) : domC(X) } 1.

node(X) :- domN(X), maxN(M), X <= M.
colour(X) :- domC(X), maxC(M), X <= M.

{ link(X,Y) } :- node(X), node(Y).
link(X,Y) :- link(Y,X).

#hide.
#show node/1. #show link/2. #show colour/1.
#show chosenColour/2.
#show maxN/1. #show maxC/1.

Figure 2: Input generator for GRAPHCOLOURING.

along with its input generator can be grounded for some suf-
ficiently large fixed scope. If this is not possible due to some
syntax error, the mutant is marked as stillborn. Also, if a time
limit of a few seconds is reached (implying that the ground-
ing is presumably not finite), the mutant is marked as still-
born and subsequently not considered for testing. We note
that deciding whether or not the grounding is finite is unde-
cidable in general, however, if grounding of the original pro-
gram takes almost no time and a mutant cannot be grounded
within seconds, it’s sensible to assume that grounding will
not terminate at all in practice.

For Step 3, let P denote a benchmark encoding and P ′
a mutant of P . To check whether P ′ can be caught by an
input with scope n, we need to check if P ′ ∪ IG [P, n]
and P ∪ IG [P, n], or equally grnd(P ′ ∪ IG [P ,n]) and
grnd(P ∪ IG [P ,n]), have the same answer sets projected
to IP ∪ OP . This kind of equivalence problem is actually
a special case of a propositional query equivalence prob-
lem (PQEP) (Oetsch, Tompits, and Woltran 2007). As an
aside, we note that Offutt, Voas, and Payne (1996) consid-
ered also the notion of weak equivalence for mutants of non-
deterministic programs: A mutant is weakly equivalent to a
program under test if any produced output is correct. The
notion of weak equivalence between a mutant and a pro-
gram corresponds to propositional query inclusion problems
(PQIPs) (Oetsch, Tompits, and Woltran 2007) in our set-
ting. However, it is not necessarily the case in ASP that a
program yields some answer set. Therefore, an ASP mutant
that is inconsistent with any test input corresponds to a non-
deterministic mutant that is trivially weakly equivalent with
the program under test. Also, the correctness notion for non-
deterministic programs by Offutt, Voas, and Payne (1996)
amounts to a PQIP. In the ASP setting, however, we are able
to determine total correctness in terms of PQEPs, mainly be-
cause of the fixed small scope.

We assume a further syntactic property, viz. EVA (enough
visible atoms), that allows to treat PQEPs as special case
of modular equivalence (Oikarinen and Janhunen 2009;
Janhunen and Oikarinen 2004). Roughly speaking, EVA
states that there are no hidden guesses which means that all

predicates involved in even cycles through negation also be-
long to the output signature of a program. The coNP com-
plexity of deciding modular equivalence allows a reduction
approach to ASP itself while deciding PQEPs is hard for a
problem class from the third level of the polynomial hierar-
chy. A respective reduction approach from modular equiv-
alence to ASP is realised by the tool lpeq (Oikarinen and
Janhunen 2009), which we used for our experiments. The
output signature IP ∪ OP that is needed for the equiva-
lence tests is specified within the input generator by means
of #hide and #show statements (cf. Figure 2). The men-
tioned assumptions on programs are not a limiting factor
in practice: either they hold already, which is usually the
case, or they can be satisfied by slightly rewriting the ASP
encoding at hand. As EVA was indeed not satisfied by all
benchmarks, the repair was to extend output signatures by
making predicates involved in hidden guesses visible. A re-
lated approach where PQEPs were used as underlying no-
tion of program equivalence for testing programs was con-
ducted for validating student assignment solutions in previ-
ous work (Oetsch et al. 2009). In that case study, the corre-
spondence checking tool cc> (Oetsch et al. 2007) was used.

Besides catching rates, we also studied how the size of the
input space increases with scope. Recall that the admissible
inputs of a benchmark problem are defined via respective in-
put generators. However, even for comparably small scopes,
the huge number of admissible inputs makes exact counting
of answer sets by exhaustive enumeration often infeasible.
Hence, we had to resort to an approximation approach. In
fact, we adopted XOR streamlining (Gomes, Sabharwal, and
Selman 2006) from model counting in SAT for ASP which
is based on parity constraints. A parity constraint on a set
S of atoms expresses that an even (or odd) number of atoms
from S have to be true. Basically, we add s parity constraints
on the output atoms to an input generator and test whether it
yields some answer sets. After t such trials, if all trials yield
some answer set, we know that 2s−α is a lower bound of
the exact number of answer sets with at least 1−2−αt confi-
dence (α ≥ 1 serves as slack factor). Hence, we can use ASP
solvers themselves to find lower bounds on the size of input
spaces with arbitrarily high confidence (by either increasing
t or α). To achieve a

1− 2−7 ≥ 99%

confidence, the lower bounds were computed with parame-
ters t = 7 and α = 1 in our experiments.

Results of the Evaluation
We classified our used benchmark programs according to the
hardness of the respective encoded problem. To wit, Table 2
summarises the results for the benchmark problems that are
solvable in polynomial time and Tables 3 and 4 contain the
results for the NP-hard problems. While the benchmarks in
Table 4 contain at least one recursive predicate, the prob-
lem encodings in Table 3 are tight, i.e., for any input, the
grounding of the encoding joined with that input does not
involve positive recursion. Tight programs are in a sense eas-
ier than non-tight ones since they can be translated directly,
i.e., without extending the language signature, to SAT while
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Table 2: Evaluation results for benchmark instances in P.
Problem Name No. of Mutants Scope No. of Inputs Time (Sec.) Catching Rate

REACHABILITY 31
1 2 0.2 0.25
2 72 0.2 0.96
3 4770 0.3 1.00

GRAMMAR-BASED
INFORMATION EXTRACTION

249

9 8 2.6 0.01
10 72 3.5 0.01
11 584 7.5 0.26
12 4680 32.6 0.47
13 37448 227.9 0.75

HYDRAULICLEAKING
55

4 12 1.6 0.65
5 12 2.9 0.65
6 816 10.5 0.78
7 2096 36.5 0.78
8 63476 148.1 0.83

HYDRAULICPLANNING
247

4 12 4.0 0.55
5 12 4.7 0.55
6 816 11.7 0.70
7 2096 19.9 0.70
8 63476 157.0 0.81

STABLEMARRIAGE 298
1 1 2.5 0.05
2 257 5.1 0.82
3 387420746 56.5 0.86

PARTNERUNITS
POLYNOMIAL

193

3 16 1.8 0.49
6 65552 3.3 0.77
9 1.7 · 1010† 12.3 0.90

12 5.7 · 1017† 59.2 0.91

this is presumably not possible for non-tight programs; re-
spective translations come with an exponential blowup with
respect to the program size in the worst case (Lin and Zhao
2004; Lifschitz and Razborov 2006). All experiments were
carried out on a MacBook Pro with a 2.53 GHz Intel Core
2 Duo processor, 4 GB of RAM, and Mac OS X 10.6.8 in-
stalled.

For each benchmark in Tables 2, 3, and 4, we give the
number of generated mutants and the size of the scope in
terms of constant symbols in ascending order. Then, for
each benchmark and each scope, we report on the size of
the input space. We either give the exact number when-
ever exact model counting is feasible, or we give a lower
bound (marked with a dagger, “†”) of the size of the input
space with a confidence of at least 99% where we follow the
stochastic approach sketched in the previous section. Gener-
ally, input-spaces grow exponentially with respect to scopes.

We also provide the average time in seconds that was
spent to exhaustively test all mutants for some scope. It turns
out that runtimes keep within reasonable bounds, even for
larger scopes. Catching all mutants that are not equivalent
to their reference program takes at most 930 seconds for
the KNIGHTTOUR benchmark. Finally, we give the catching
rates for each benchmark and scope, i.e., the ratio of mutants
that were caught by some input within the considered scope
and the total number of mutants.

We generated up to 300 mutants for each benchmark.
However, for many problems the encoding is rather simple
regarding the number and structure of rules, and exhaus-
tively applying mutation operations gives far less mutants

than 300. Also, filtering out stillborn mutants usually further
reduces the number of mutants by about 20%.

We did not exclude mutants that are equivalent to their ref-
erence program. In general, deciding whether some mutated
program is equivalent to its reference program is undecid-
able which follows from the undecidability of query equiv-
alence (Shmueli 1987). A hint to know when (almost) all
non-equivalent mutants are caught is when reaching a fixed-
point regarding the scope size and catching rates: if further
increasing the scope does not give higher catching rates, we
check manually if the remaining mutants are equivalent (at
least we considered a random sample from the remaining
mutants for these tests). Hence, the difference between 1 and
the respective catching rates gives the rate of mutants that
are equivalent to their reference program. Thus, it gives an
evaluation of our mutation model for each benchmark as a
by-product. Depending on the benchmark, the ratio of equiv-
alent mutants can be as high as 0.33 for NUMBERLINK.

The main reason for equivalent mutants is redundancy in
the benchmark encodings; they often contain redundant lit-
erals in rules or even redundant rules. Clearly, mutating re-
dundant parts of a program usually leads to equivalent mu-
tants, this is comparable to mutating dead code in imperative
languages. Candidates for redundant rules typically are sets
of constraints where one constraint is backing up for another
constraint due to symmetries.

Recall that scope is measured in terms of constants in
inputs. Regarding the progression of scope sizes, it is to
say that we only indirectly determined the scopes by set-
ting parameters of respective input generators like s and
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Table 3: Evaluation results for benchmark instances in NP with tight encoding.
Problem Name No. of Mutants Scope No. of Inputs Time per Mutant (Sec.) Catching Rate

FASTFOOD
OPTIMALITYCHECK

167

1 3 1.4 0.02
2 17 2.7 0.28
3 87 8.8 0.91
4 481 43.1 0.94
5 2663 293.7 0.94

KNIGHTTOUR 292
5 1.8 · 1022† 18.6 0.00
6 3.2 · 1032† 917.1 0.77
7 7.1 · 1044† 929.9 0.78

DISJUNCTIVE
SCHEDULING

285

1 2 2.4 0.07
2 349 3.6 0.35
3 3896155 11.8 0.76
4 1.3 · 1011† 194.3 0.79

PACKINGPROBLEM 285
2 1 2.4 0.32
6 56 10.4 0.64

12 1971 410.8 0.87

MULTICONTEXT
SYSTEMQUERYING

275

5 10644498 2.7 0.40
6 6.8 · 1010† 2.8 0.80
7 5.6 · 1014† 3.3 0.96
8 7.3 · 1019† 4.7 0.98

HANOITOWER 284

6 16 9.3 0.62
7 416 15.4 0.77
8 832 22,9 0.82
9 29632 41.0 0.82

10 44448 53.0 0.87

GRAPHCOLOURING 67
2 2 0.6 0.22
3 4 0.6 0.43
4 20 0.6 0.95

SOLITAIRE 281

2 4 2.6 0.00
4 512 3.4 0.04
6 786432 16.0 0.96
8 2.1 · 109† 245.4 0.97

WEIGHT-
ASSIGNMENTTREE

219

2 1 1.9 0.01
3 4 2.1 0.01
4 32 3.9 0.32
5 126 5.2 0.32
6 999 40.3 0.78
7 4368 53.6 0.78
8 41664 750.7 0.79

t in the GRAPHCOLOURING example from the previous
section. For others, parameters control size of grids, sets,
etc. Although we mostly incremented these parameters step-
wise, the actual scope sometimes increases in a quadratic
manner like for the PACKINGPROBLEM. The relation be-
tween parameters and scopes depends on the individual
encodings; a more general methodology regarding this is-
sue shall be addressed in future work. We report only on
scopes such that the set of resulting admissible inputs is
not empty. Also, sometimes encodings mention already con-
stant symbols like in GRAMMARBASEDINFORMATIONEX-
TRACTION, hence the active domain of considered encod-
ings is not always empty. In such cases, we let the active
domain (or at least subsets identified by equivalence par-
titioning) contribute to the scope of generated inputs right
from the beginning. Hence, the scope for, e.g., GRAMMAR-
BASEDINFORMATIONEXTRACTION starts already with 9.

An interesting observation is that the problem complex-
ity, viz. P or NP, does not seem to have a big influence
on the size of the scope needed to catch all mutants. It
turned out that the considered encodings require a scope
greater than the size of their active domains plus the max-
imal number of distinct variables occurring in any rule.
While this number serves as a lower bound for estimat-
ing suitable scope sizes, no encoding requires more than a
few additional constants. Hence, the size of the scopes re-
quired to obtain mutation-adequate test suites in fact allows
for exhaustive testing using existing equivalence checking
tools that operate on the propositional level. If the num-
ber of test inputs that have to be considered is prohibitively
large for explicit testing if no reference program is available,
one may use other test input selection strategies like ran-
dom testing or structure-based testing (Janhunen et al. 2010;
2011).
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Table 4: Evaluation results for benchmark instances in NP with non-tight encoding.
Problem Name No. of Mutants Scope No. of Inputs Time per Mutant (Sec.) Catching Rate

SOKOBANDECISION 295

2 4 3.0 0.04
3 8 3.4 0.06
4 256 4.4 0.60
5 384 5.8 0.60
6 36864 25.4 0.84
7 49152 53.2 0.84
8 16777216 352.0 0.94

LABYRINTH 293
6 4.3 · 1012† 3.4 0.06
7 8.7 · 1012† 4.0 0.07
8 4.7 · 1021† 23.9 0.94

NUMBERLINK 222

4 24 2.7 0.36
5 56 3.2 0.36
6 16568 20.9 0.63
7 99576 30.4 0.63
8 92751096 517.2 0.67

MAGICSQUARESETS 270 5 332 3.0 0.97
9 1048908 5.9 1.00

MAZEGENERATION 292
3 468840 8.9 0.76
4 42063108 16.0 0.82
5 2.1 · 1012† 41.8 0.95

Conclusion and Future Work
In this paper, we empirically evaluated the small-scope hy-
pothesis for ASP. Our experiments are based on mutation
analysis, a respective mutation model for ASP was intro-
duced for this purpose. Indeed, it showed that inputs from a
small scope, i.e., inputs defined over a relatively small num-
ber of constant symbols, are sufficient to catch all mutants
of a program under test. The small-scope hypothesis is sup-
ported by concrete scopes that could be obtained for differ-
ent kinds of encodings. In general, the size of the active do-
main plus the maximal number of distinct variables occur-
ring in any rule of a program is a good starting point for de-
termining the size of a suitable scope. Our work also shows
that testing methods devised for propositional programs can
be quite effective for non-ground programs as well. Since
the scope needed for testing is small, the increase of size
when grounding a program seems manageable for respec-
tive tools. Results of this work can be directly transferred to
practice, e.g., for exhaustively testing programs submitted to
an upcoming ASP solver competition over some small do-
main that can be learned by mutation analysis using respec-
tive reference encodings.

Mutation testing for itself can also be used as a tool to
detect redundancies in ASP encodings. Sometimes, redun-
dant rules or literals in an ASP program originate from re-
dundant conditions in a problem statement already. More of-
ten, however, redundancies are a hint for program errors. To
check for redundant rules or literals in a program, we sys-
tematically apply rule or literal deletion mutations on the
program under test, respectively. Then, we fix a small scope
and check whether we can catch all mutants. If we cannot
catch a mutant, the small-scope hypothesis implies that the
mutant is most likely equivalent and the deleted rule or lit-
eral was redundant.

For future work, we plan, on the one hand, to refine
our mutation model by some further operations to take un-
restricted function symbols, disjunction, weak constraints,
minimise statements, queries, other forms of aggregates,
etc., into account. Thereby, we would extend our mutation
model and make it applicable to other solver dialects like
that of DLV. On the other hand, we may reduce the set of
mutation operations that is considered by identifying a sub-
set of operations such that mutation adequate test suites are
not less effective for testing than test suites generated using
the complete set of operations. Such an approach is known
as selective mutation (Offutt, Rothermel, and Zapf 1993).

Also, the relation between mutation operations and code
coverage in ASP needs to be studied. It is known that mu-
tation analysis subsumes structure-based testing (Offutt and
Voas 1996). Hence, for any code coverage condition, we can
introduce respective mutation operations such that mutation
adequate input collections satisfy the considered coverage
condition. Notions of code coverage for ASP have been in-
troduced in previous work (Janhunen et al. 2010). We be-
lieve that mutation analysis could be used to find good crite-
ria to improve our structure-based coverage notions defined
there.

We also want to improve the theoretic basis of the small-
scope hypothesis by identifying sufficient conditions that al-
low to restrict the input domain such that equivalence be-
tween a program under test and a mutant on the restricted
domain implies equivalence on the unrestricted infinite do-
main. Although this is not possible in general (cf. Theo-
rem 1), we conjecture that this can be shown at least for tight
programs (note that the majority of NP benchmarks in our
experiments are tight).

Regarding the definition of input generators, we some-
times avoided isomorphic inputs to reduce the size of the
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input space at the representational level, viz. by adding
symmetry-breaking constraints. Related approaches for test
input generation, like Korat (Boyapati, Khurshid, and
Marinov 2002), avoid such isomorphic inputs when com-
puting test inputs. To extend ASP solvers in a way that iso-
morphic answer sets are avoided during search without the
need to change a program encoding seems to be a promising
direction for future work as well.
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